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1. Introduction. It is well known that the RSA public-key cryptosystem can be
broken if the composite modulus can be factored. It is not known, however, whether
the problem of breaking any RSA system is equivalent in difficulty to factoring the
modulus. In 1979 Rabin [5] introduced a public-key cryptosystem which is as diffi-
cult to break as it is to factor a modulus R = PPy > where PysP, are two distinct
large primes. Essentially Rabin suggested that the designer of such a scheme first
determine Py and P, keep them secret and make R public. Anyone wishing to
send a secure message M (0 < M < R) to the designer would encrypt M as K, vwhere

K = M (mod R)

and 0 < K < R, then transmit K to the designer,

The designer can determine M from K by solving the congruences
x2 = K {(mod pl)

(1.1) yz z K (mod P,)
for x and y. Since M I +x (mod pl) and M = y (mod pz) , by using the Chinese
Remainder Theorem he can deduce four different possibilities for M. If M has some
kind of internal redundancy, it should be possible to select the correct M from

among the four candidates.

There are two difficulties with this scheme.
(i)  Although there are O{(log p) probabilistic methods for solving the
quadratic congruence (see §5)
x2 = M (mod p)
when p is a prime, the solutiom of (1.1) and the subsequent use of the
Chinese Remainder Theorem can still be quite time consuming.
(ii) The 4:1 ambiguity in the decrypted messages can be a problem, especially

if (as is often the case in transmitting keys) internal redundancy in M

is to be minimized.

Indeed, Rabin only advocated his technique as a signature scheme and nmot as an
ercryption technique. He also pointed out that, if we imnsist that Py =Py =1
(mod 3), then we can replace the K = w? (mod k) step by K = M3 (mod R) and also
get a scheme as difficult to break as it is teo factor R. However, in this case we

get a 9:1 ambiguity in the decrypted messages.
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In [10]) Williams showed how a scheme like Rabin's could be developed in which
problems (i) and (ii) could be eliminated. This technique made use of the following
theorem.

Theorem 1.1 If p, = p, = -1 (mod &) , R = PP, » and the Jacobi symbol (X/R) = 1.
For some X , then

(p, - D(p, - 1)/4
x "1 P2 = +1 (mod R). T
Corollary. If K = XZ {mod R) and (X/R) =1, then ,

Kd Z+X (mod R) ,

where d = ((pl - 1)(p2 - /4 + 1)/2.

In this scheme the designer determines R and d and a small S such that

(s/R) = -1. (In [10] R was caleulated in such a way that S = 2.) He makes R

and S public and keeps d secret. Anyone wishing to send a secure message
M to the designer
(1) determines b1 (= 0 or 1) such that (M/R) = (-l)bl;
(2) puts
- P
MO 2 S M (mod R} ,
where 0 < MO < R, and computes b2 (= 0 or 1) such that bz = MO (mod 2);
(3) computes
(1.2) K = Mg (mod R) ,
where 0 <K<R;

(4) and then transmits L = {K,bl,bz}.

To decrypt L the designer

(1) finds e (mod R) ,
where 0 < N < R ;

(2) puts N_=R - N or N, whichever is even;

0

(3) and computes
- h by
M= S (-1) N, (mod R)

where 0 < M < R.

This scheme, like Rabin's, is as difficult to break as it is to factor R.
Actually, the scheme presented here differs from that given in [10] in two respects.
First, it is more general in that it allows for the utilization of an arbitrary S
such that (5/R) = -1 instead of restricting § to 2. 4lso in [10] the designer
could include a value of e such that ged(e,5(R)) = 1 in his public key 1R,5,el.
This allows for the combination of the above idea with that of the RSA technigue.
This is ezsily done by replacing (1.2) above by

K 2 H2® (mod R)-

0f course, the designer must now evaluate his value for d by solving the
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linear congruence
de = ((p; = 1)(p, - 13/4 + 1)/2 (mod 6(R)).
The use of this e values (especially if e 1is fairly large) will frustrate attacks

like those mentioned by Liptom in {1].

The purpose of this paper is to show how this same idea can be extended to the
M3 scheme suggested by Rabin. We first point out that in order to develop our pre-
vious cryptosystem it was necessary that we
I. have the Jacobi symbol and (in order that the scheme be useable) be able
to determine the symbol rapidity, i.e. in 0(log R) steps;
II. have Theorem 1.1;
III. and have a method for the designer to identify the actual message which

was sent (decryption steps (2) and (3)).

Our strategy for extending our idea, then,will be to extend each of I., IL., and

III.).

2. Arithmetic in 9(p). Let Z denote the set of all rational integers and let p

2
be a primitive cube root of unity, that is p~ +p + 1 = 0. Let K = Q(p) be the
algebraic number field formed by adjoining p to the rationals @. In this section
we will review several of the well-kmown results concerning K and then develop a

theorem analogous to Theorem 1.1.

We first denote by OK the set

O = {a+ b | a,beZ}
OK is the set of all algebraic integers in K. If a ¢ OK , then o = a + bp
2
for some a,b € Z and the norm of a , N(a) , is ofF where @ = a + bp". Thus

N(a) = a2 - ab + bz.

The primes in 0, are given by

(i) 1-p;
(ii) p, where p 1is a prime in Z and p = -1 (mod 3);
(iii) a + bp, where a = -1 (mod 3), 3!b, and N(a + bp) = p, where p is a

prime in 7Z aund p = 1 (mod 3).

Since OK is a unique factorization domain, for any § ¢ OK’ we have

t <o
(2.1 g = Wnni“L,
i=1
where the s (i = 1,2, ... ,t} are primes of OK and ﬁs{l,‘l,c,'o}- Also,

this expression for 8 is unique (up to order of che ﬂi's)
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We also have

Theorem 2.1 If o € OK and T

is a prime of OK , then
(N(w) - 1)/3 _
a =

pk(mod ),
where A e {0,1,2}. C

I1f, with Jacobi, we define the symbol

{a/T1] to be the value of

pA in Theorem 2.1,
we can get an extended Jacobi symbol by defining [a/B] as

(a/B1 =

H =T

(a/m 171,
i r t
when B has the prime power decomposition given by (2.1).

Let Py H P, = 1 (mod 3) be two distinct primes in Z, R = PPy » and let
T,

be primes of OK such that N(Wl) =p, and N(WZ)

bl d 7
Py Such 1 an
always exist and in Algorithm 1 of section 5 we describe an expeditious method

2
for
finding them. ILf o= ag blo and m, = a, bz o, (al, bl’ ay, b2 ¢ #Z), then

nlﬂz = A+ Bp ,
where A = aja, - ble’ B = bla2 - bZal - ble and gcd(B,R) = 1.
Compute C € Z by
¢ = -AB (mod ®).
Note that since
2 L o2
R =pp, = N(Tlﬂz) = A" - AB + B",
we have
C2 +C+ 120 (mod R) and C3 = 1 (mod R);
indeed,
¢ = p (mod T
We can now prove a result analogous to Theorem 1.1.
Theorem 2.2 If

(pl - 1Xp2 - 1)/9 =

-1 (mod 3)
then

and [X/WIWZI =1 for some X ¢ Z,
g{Pr - Dlpy = /8 b gy

where A € {0,1,2}.

Proof. Let o° = [¥/7,] (< ¢ {0,1,2]).

Since [¥X/7®. 7.1 =

T R
1Ml = 1, we must have [A/»z] = ¢ .
Now <(p1 - l)(p2 - 1)/9 = - <{(mod 3}
hence,
(2.2) <(p1 - 1)/3 = (3 - ()(pz - 1}/3 (mod 3).
(p, - 1)/3 .
We have X pl = "
and

»  (mod T
3_
* (mod ”2);

( - 1)/3
X 2 / ER
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thus, if A = x(p, - 1)/3 (mod 3) (xe{0,1,2}), then from (2.2) we see that

1)(p2 - 1)/9 A

( -
X 1 = p" (mod WL)

and

I

( - 1)( - 1)/9
x F1 P2 %2 (mos m).

1t follows that ( X 3/9
p, - L)(p, -1
x 1 2 = pA = ¢ (mod nlnz)_

and (p, - Dip, - 1)/9

x 'L P2 :¢* (mod m). O
Corollary. If L and T, are defined as above, K = X3 (mod R) and [X/Wlﬂz] =1,
then

Kd = c*x (mod R},

vhere Ae{0,1,2} and d = ((Pl - 1)(p2 - 13/9 + 1)/3.

3. The M3 Scheme. Im our M3 scheme the designer selects two large distinct

primes p;,p, such that p; = p, =1 (mod 3) and (pl - 1)(p2 - 1)/9 = -1 (mod 3).

He then determines b b A, B, C, d as described in §2. He also selects

al) az; 1’ 2
(by trial) a value for SeZ such that [S/Wlﬂzl = p and evaluates S-l (mod R).

He makes his encryption key {A,B,S} public. Since R = a2 - aB + 82, the key

: 2
occupies the same amount of space as that needed by our M scheme.

To encrypt a message M (0 < M < R) the sender executes the following steps.
(1) Evaluate the extended Jacobi symbol [M/A + Bp] = pbl, where bIE{O,l,Z}.
(2) Determine

= ]. = v
M, = MS » M E Oy (mod R),

where 0 < HO,MI < R. Put M2 =R - MO - Ml. Since

MO + Ml + Mz =R = 1 (mod 3), one of MO’ Ml’ Mz is distinct modulo 3
from the other two. If this is Mi’ put bz = 1i.
(3) Compute
(3.1) K = Mg {mod R),
where 0 < K < R.

(4) Transmit E(M) = L = {K, b 2}.

l)
To decrypt the message L , the designer must perform the following steps.
(1) Determine
¥ = x4 {mod R),
where 0 < N < R.
(2) Calculate
No = ¥, Ny = Ny (mod R) (0 <N, <R), Ny =R - Nj - Ny

Let Nj be that one of N Ny, N, which is distinct modulo 3 from the

03
other two.
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(3) Compute
b, b,
ML) = s l¢ N (mod R),

where ¢ < D(L) < R.

That D(L) = D(E(M)) = M follows easily from the corollary of Theorem 2.2 and

the simple fact that C2 + C+ 1= 0 (mod R). Hence {NO, Nl’ NZ} = {MO, Ml’ MZ}

and Nj = Mi = ClMO (mod R). 1f, as in the case disccused in §1, we wish to add a

value of e such that ged(e,3(R)) 1 to the encryption key, we can do so easily
by replacing (3.1) by

K = Mge {mod R).
Also, d must now be a solution of the linear congruence

de = ((p1 - 1)(p2 ~ 1)/9 + 1)/3 (mod $(R))

There is, of course, one problem here that we have not discussed and that is the
method of computing [M/A + Bp] rapidly and without knowing how to factor A + Bo.

In §5 we describe an 0(log R) algorithm for doing this.

We conclude this section by pointing out that this idea can also be used to
produce signatures in much the same manner as that used in [10); further, our encryp-

tion scheme is an example of a claw-free permutation (see Goldwasser et al. [2]).

4. Security. In this section we will show that it is as difficult to break this
system as it is to factor R in Z. This problem is equivalent in difficulty to
the problem of factering A + Bpin OK' We first require three lemmas.

Lemma 4.1. Let K = Y3 (mod R) for some Y ¢ Z. For any i €{0,1,2} there exists
an X € Z such that

X35 K(mod R) and [X/ m TTZ] = pi[Y/WIT-
Proof. Let j, k e {0,1,2} such that

j- k= i(pl - 1)/3 (mod 3).

1

Since
(pl - 1)(p2 - 1)/9 2 -1 {mod 3),
we must have
(4.1) i = j(p1 - 1)/3 + x(p, - 1)/3 (mod 3}.

If we use the Chinese Remainder Theorem to find X such that

X = ¢lY (mod P,
k
X =2 CY (mod PZ)’
then
X3 = Y3 2 K (mod R}
- e Jrem 1¥rv/a = 0
and [X/ﬂIWZ] [C/Wll [L/ﬂ2] [y/ 12

[D/ﬂllj[p/ﬂz]k[Y/7172]

= o ry/mm,l
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by (4.1).

Lemma 4.2 For any Y £ Z such that ged(Y,R) =1 and any b, b, ¢ {0,1,2] there

1* "2
exists a unique MeZ (0 < M < R) such that for the encryption key [A,B,S, e} we
have

EM) = {K,bl,bz},

where K = Y:3 (mod R) and 0 < K < R.

Proof. Let fe = 1 {(mod ¢(R))
and put T =yt (mod R).
By Lemma 4.1 there must exist X € Z such that X3 Z T (mod R) and [X/ ‘le TYZ] = 1.

Define X = ¢'X (mod R) , where 0O < X < Rsi=0,1,2, and let X, be that one of
XO’XI’XZ which is distinct modulo 3 from the other two. Set
k = 2(b, - §) (mod 3), k ¢ {0,1,2}
and put
-2b. 1
M=5 1¢°% (mod R),
where 0 < M < R.

Now
b

-2b
" 1 TT2](= [S/H%HZ]( N ;}/]3;
p, - 1)+ (p, -1
([C/HIHZI = p 1 2 = 1)
also, )
. 2b
M, = els™ v = ¢k (mod R),
where h = 2(b, - j) + i and 0 < Mi { R. Hence, we get {MO,MI,MZ} = {XO’Xl'XZ}

2
and when i = b then

2 .
LI ¢I% (mod R).

It follows that Mi =X and Mi is distinct modulo 3 from the other two Mm values

when 1 =Db,. Also
z 3e e Jef 3
MT 2 XTT =T =¥ Z Y I K (mod R).

Hence E(M) = {K,bl,bzi. Since D(E(M)) = M , M must also be unique. U
Lemma 4.3 If X, Y eZ , x3z Y3 (mod R), and [x/flﬁ ] # [Y/ﬂlﬂzl, then

ged (X - c'v,R) = Py for some ic¢ {0,1,2}.

2

Proof. Since X = Y3 (mod R), we have
(X - ¥)(X - CY)(X - c¥) = 0 (mod p1p2).
1 .
If pp, [X - ¢Y, then _
. _ L1 _
(jm m, 1 = fery/mm,t, = [Y/i/"l“z},
which is not so. Thus, there must exist some X - CY with di¢ {0,1,2} such that

1 G

», [ - ¢’y and b, [ % - ¢'Y. It follows that ged (X - C'Y,R) = p
Now suppose that we have some algorithm F which we will decrypt 1/k of all

messages. If an arbitrary Y 1is selected such that [Y/ T 1“2] #1 and

P
ged(Y,R) = 1 (Note that S is a possible value of Y.), then put K =¥ (mod R)
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with 0 < K < R and select any bl,bze {0,1,2}. By Lemma 4.2 there exists a unique
M such that

EM) = {K,bl,bz}.
After k trials at a value for Y we would expect that F would determine the
corresponding M from {K,bl, Z}' Putting MO = M5 1l (mod R) and X = Mg (mod R),
we have

X3 H Y3 (mod R)
and

L= (% mm] # [/l

It follows from Lemma 4.3 that with knowledge of M and Y , we can easily factor R.

It might be felt that, in revealing the values of A and B , the designer in
some way aids his opponent to factor R = Az - AB + Bz> For example, if his opponent
were able to find G,H such that G # A, *B, (A - B) and R = G2 - GH + HZ, then he
could factor R by using his knowledge of A,B,G,H. We point out, however, that if we are
given C such that C2 +C+ 1% 0 (mod R) , then (2C + 1)2 = -3 (mod R) amnd it
can be shown that by using Algorithm 1 we can compute A and B such that

R = A2 + AB + B2

in 0(log R) operationa. Thus, knowledge of ¢ 1is equivalent to the knowledge of
A and B. Now 03 = 1 (mod R) and if we could find X such that Xz (mod R)
and [X/ﬂ11&] # 1, we could factor K. But this is really no different from taking

an arbitrary Y, determining K = Y3 (mod R) and then finding some X such that

X3 = K and [X/"lﬂzl # [Y/Wlﬂz], a problem equivalent in difficulty to factoring R.
That is, unless there is something special sbout a value of K = 1, knowledge of C
seems, for the problem of factoring R, to give no more information than the know-

ledge of an arbitrary Y.

We should, nevertheless, emphasize here that the method of showing the equiva-
lence of breaking our system to the problem of factoring R is constructive; that is,
this encryption technique is vulnerable to a known cipher text attack, if such an
attack can be mounted. We refer the reader to the relevant comments in [10] concern-

ing this,

The problem of extending our method further to an e encryption scheme, where
r 1is a prime and Py = p, = 1 (mod r) 1is rather difficult. In the first place, it
is necessary to be able to further extend the Jacobi symbol and be able to evaluate
it in O(log R) time. This would mean, as far as is known today, that the cycletomic
extension of the rationals Kr = Q(0), where p is a primitive rth root of unity, must
be Euclidean. A4s Kr can be Euclidean only when the class number of Kr is 1, this

means that t could only be 2, 3, 5, 7, 11, 13, 17, 19. Of these it is known that

if r=2,3, 5, 7, 11, then Kr is Euclidean. The other values 13, 17, 19 have not
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been investigated (see Lenstra {4]). While it may, in principle, be possible to
extend the algorithms in §5 to the cases of 4 = 5, 7, 11 , the details would be very
onerous and the corresponding computations would be concomitantly slowed. Possibly,

the case of r = 5 might be worthwhile investigating.

5. Algorithms. In this section we describe two algorithms. The first of these is
a method of determining a and b , given m and x such that x2 = -3 (mod m), for

which m = 32 - ab + b2.

If m is a prime we can find x in O(log m) operations by using either the
algorithm described by Lehmer [3] or that of Shanks [7]. This often requires that
we know in advance a quadratic non-residue of m. There is no 0(log m) deterministic
way known for doing this, but in practice one finds such a non-residue by trial very
easily. An O0(log m) deterministic method for finding x whem m is prime has been
given recently by Schoof [6], but as Schoof himself says, no one would ever use this

very complicated technique.

The algorithm we present here is a simple adaptation of the method described by
Wilker [8] to solve u2 + 5v2 = m. There is no loss of generality in assuming m is
not a perfect square and m = 1 (mod 3).

Algorithm 1. (Find s,t such that m = 52 + 3t2 when m =z 1 {(mod 2).)

(1) Use the Euclidean algorithm to find TgiFyaToseees where
x = qgm + Ty 0 < Ty (m
m = qr, + L 0 < L < Ty
Ty = 4,7 + r, 0 < r, < T
2 _ 2 2 .
If T {m, then m = Ty + 3 and we are done. If s > m, then find T
such that
r2 > m and rz { m.
n -1 n
Only 0O(log m) operations are needed to do this.
(2) Put s = 2r . When 3|~ and r2 < 9m , put t = +r /33
n n -1 n -1 n -1

otherwise, put t = :t(rn - k) , where

k = ((3r_¢ - £ ¢
n n -

1 ofn - 1%n " 2h - /6 (mod rn).

Here 0 <k < r_ , r,
n

e, (mod 3), and |e¢ | <1.
i i i

We have m = s> + 3t2 = (s + )% - 2t(s + o) + 4&”
If m is a prime p and we want a prime 7T = a + bo such that N(W) = p,
then we select the sign of s such that a =s + t = =1 (mod 3) and put b = -2t

when 3| t. If 3t , we select the sign of t such that a = 2t = -1 (mod 3) and

put b = s + €.
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The next algorithm we present is one which can be used to evaluate the extended
Jacobi symbol [w/B] without requiring the factorization of &. This algorithm was
undoubtedly known to Jacobi and is given in Williams and Holte [9]. We assume that
@ =A4A+Bp , B=C+ Dp. Here the symbols A,B,C,D do not have the meanings assigned
to them previously but merely denote rational integers such that 3 ID and 3| D.
Algorithm 2. (Determine g and vy such that [a/f] = og[Sly] and N(y) < N(B)).

(1) Find E=4 - xC+yD, F =B~ yC - xD+ yD, wvhere

x = Ne{(AC + BD - AD)/N(B)},
y = Ne{(BC - AD)/N(B)},

N(8) = C2 - CD + D2 , Ne{a} denotes the nearest integer to o.

(2) If E = -F (mod 3), divide E+ Fp by 1 -p k times until
(E + Fo)/{1 - D)k =E+Fp and E # -F (mod 3). This process is facili-

tated by making use of the observation that if E = -F + 30 , then

(E+ Fp)/(1 -p)=2Q-F + Q.
(3) If 3|F, put j =0, G=E, H=F; if 3|E, put j=1, G=F - E, H = -E;
if 3JFE, put i =2, G=-F, H=E - F. Then vy = G + Ho and
g = (2k + j)(cZ - 1)/3 - jcD/3 (mod 3).

We have [o/B] = 93[5/ vl and N(y) < 3/4 N(B). Clearly we can repeat this
algorithm until we get a symbol of the form [2l/A] = 1 ; the accumulated power of ¢
will then be the value of [a/B]}. Since N(y) < 3/4 N(B) , we see that this algorithm

must terminate in O{(log N(B)) operations.
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