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Abstract -- I t  i s  known tha t  g iv rn  a cornpositc intcgcr N = p l p z  ( such tha t  pl  G p s  3 

(mod 4)), arid (I a quadratic rcsidur riiodulo N ,  gucssirig l.he least signilicant bit of a square root 
of 9 with any iioii-ncgligiblc advantagr is :IS hard ;is ractoring iV. 

In this paper we cxLcnd Lhe nbovc restill l o  rriulLi-primc riuiribcrs N = plp2- .  .pi (such t ha t  

p l  E pz G - 1 8  ZE pi 3 (mocl 4)). Wc show tha l  given N and q ,  a quadratic residue mod 
N, guessing Lhe least signilicant bit or a squnrc root of y is as hard as cornplclcly f:ictoring N. 
Furlhermorc, thc difliculty of guessing the  Ic;ist significant bit of l h e  square root or q remains 

unchanged CVCR when all but two of thc  prirne factors of N ,  p 3 ,  . . . , p  [, are known. 

The result is useful in desiging multi-party cryptographic protocols. 

1. Introduction 
The problem of Factoring large composite inkgers is perhaps the single most impor tan t  

computational problem in public key cryptography, as is evident from the large number of 

cryptosysterns bascd on i t  (e.g. RSA 1151, Rabin 1131, Williams 1181, Goldwaser-Micali [lo]). 
The importance of the  f'actoring problem motivated various research elfork. Among those are 

1) 

2) 

3) 

Most of these works have concentrated on  composite numbers N which are the product of two 

primcs p 1 p 2 .  

Designing more efficient factorization algorithms. 

Investigating the  security of specific bits i n  the modnlar squaring function. 

Investigating factorization algorithms given partial information on thc factors 1141. 

In this paper wc investigate the  problem OF bit security for the modular squaring function 

with respect to multi-prime composites N = p l p z  ...pi. The salient property of our work is 

tha t  we investigate the b i t  security given partial factorization p3>...,pl of N (i.e. all bu t  two 
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hclors  :ire known).  Wc stiow th;h the par t ia l  Jnctorizntion doe3 not help .  More specific:rlly, 

any nori-ncgligiblc adv:inI.;igc i r i  giiwsirig l h c  Iciist, signilicant bit iri  thc  z2 (rnod N )  functiori is 

cquiwlcnt to hctoririg thc rcrriainiiig pair p i p 2  (arid thus tolally r d m  N) .  In other words, i f  i t  

is irilcmiblc t o  factor two prirnc corripositcs, Lticn il is irifi!;isiblc to guess tlic Icast signilicarit bit 

i n  the squaririg rriodulo N runctiori cvcn i f  0110 ti:is :iIrriosL all or N ’ s  ractors. 

Our work cxlcntls lhc results or Alcxi, Chor, Goldrcicti :iricl Schnorr [ I ] ,  who considcrcd the bit 

sccurity of RSA and IZabin funetions. Thcsc two functions :ire dclincd wilh rospcct to two-prime 

moduli N = p .  q. The ltSA function is dcfncd  3s raising to a powcr e and rcducing modulo 

N (whcre e and ( p  - l ) ( q  - 1) arc relatively prime). Ilnhin’s l‘unction is sqriaring rriodulo N .  
The RSA is I-to-1, while Rabin’s function is I-to-1. This clil~crcncc i s  criicial in trying to extend 

the [ I ]  rcsrilts to rnulli-prime moduli. T’:xtcndirig the ItSA rcsull to multi-prime moduli i s  easy, 

since thc extended function is still I-to- 1 .  I n  the  case of llabiri’s runction, squaring rriodulo a n  

I-prirnc moduli is a 2‘-to-] function, and dcxling with it is more cornylicatcd. ln this papcr, wc 

denionstrate how these complications can be rcsolvcd. 

Our results have applications i n  thc  design of millti-party cryptographic proLocols. In par- 

ticular, i t  is useTul in  contexts whcre partial factorization, b u t  riot complete factorization, is 

released to a subset of the participants, while certain information must still be kept secret. Corn- 
bining our result with techniques of probabilistic encryption [lO,S] ,  arbitrary information can be 
encoded so that it still remain totally secure, in such circumstances. 

The remaining of this paper is organized as follows. In section 2 we introduce notations and  

terminology. In scction 3 we review previous related results. In section 4 the  main result is 
proved. In section 5 we mention two applications to the design of multi-party cryptographic 

protocols. We conclude by proposing an  open problem. 

2. Terminology 

We begin this section by presenting some number theorctic terminology which will be  used 

throughout the paper. We proceed by defining a specific class of composite integers which will 

constitute t he  domain of our investigation. We conclude this section by formally defining t h e  

notion of a “factoring bit”. 

2.1 Preliminaries 

Definit ion 1: Let N he a natural  number. ZN will denote the ring of integers modulo N, where 

addition and multiplication are done modulo N. The length of N will be denoted by n. 

Definit ion 2: Let N be a natural  number, and z an in lqc r .  [z]N will denote the remainder of 

z modulo N (nolice tha t  for all z, 0 5 [ z ] ~  < N ) .  I,N(x:) will denote Ihe least significant bit of 
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[z]N in t h n  ordinary binary cxparision. 

Definition 3: I d  N bc: :in iiitcgcr. ‘I’hcn n is said to bc ii quadrafic residue modulo A‘ i f  t h e  

cxisl an iiihgcr z such t h a t  z’ = a (rriod N ) .  Olhcrwisc, a is said to bc n i t  quadratic non-rcsidue 

modulo N .  1x1 us t lcnok by t h :  sct  o r  quadratic rcsiriucs modulo N .  
1,ct N = p~pz.-.p~ be a product or  1 distinct odd prirncs. Note Lhat a is a quadratic rcsidue 

niodulo N i f  and only if a is a qu;idralic rcairluc rriodulo each or the pi’s .  

Definition 4: Let p bc ;in odd prinlc number, and h an intcgcr rclativcly prime to p .  T h e  

Legendre symbol is ticfined to  bc 1 if‘ h is n quadratic rcsiduc rnodulo p ,  and -1 otherwise. 

For N = p~p~..-p~, a product or 1 distinct odd prirncs, and h rclativcly prime to N ,  the Jacobi 

symbol ($) is dcfincd to bc n:=, (k). 
I S V C I ~  though (.he dcfinilion of‘ l.hc .lacobi symbol USPS thc faclorization of‘ N ,  it is wcll known 

tha l  ( A )  be easily c:omputcd rvcn i f  h”s factorization i s  not givcn. Ariolhcr fact which is uscd in 

this paper is the rnr~ltiplicativity or tlic Jacohi symbol, rinrncly ($) = ( & ) a  (s). For further 

details on thcsc propcrtics and thcir proofs, scc [12, ch. 31. 

(a> 

2.2 Blum Integers 
When a11 the prime factors of N = p l p p . .  .pl are congruent to 3 (mod I ) ,  the sct of quadratic 

residucs modulo N has a n  interesting property. Each quadratic residue has czactly one square 

root which is a quadratic residue itself. In other words, squaring modulo N is a permutation 

over QN. Blum was t h e  first to  point ou t  the  cryptographic significance of this fact [3]. Let 

BI= { NIN = p l  -pz-..p~, p i  

Definition 5: Let N = pIp2--.pI be in H I ,  and q be a quadratic residue modulo N .  We denote 

by 4 the square root of q which is a quadratic residue itself, namely (fi) = q and 4 E Q N -  

We restrict our  attention to N E BI,  since for each quadratic residue q E QN, fi and  t h e  

3 (mod 4), 1 I: i 5 l ) ,  and call N E BI Blum Integers. 

2 

least significant bit of a re  well defined. 

2.3 Bit Security for Factoring 

Following 161 and [I l l ,  we formally define thc notion of bit security for factoring. For t h e  

definition, rccall t ha t  n denotes the  length of N .  
Definition 6: Lct ON be a probabilistic oracle which, given a quadratic residue q (modulo N ) ,  
outputs a gucss, O,(q), for LN(& (this guess might dcpcnd on the inlernal coin tosses of ON). 
Let c( . ) be a function from integers into the intcrval [ 0 ,  $1. We say tha l  ON is a c(n)-oracle if 

thc probability tha t  the oracle is correct, on an input q randomly sciected rrom the set  QN, is 

at Icast $ + t (n) .  

Thc probability space in the  definition is I hat of all q E QN and all 0 - 1 sequences of internal 
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coin tosscs, wit l i  iirii~~irrri dislri t)uLioii. Notiw 1,Ii;il Ihcrc is n o  rrqiiirrnicnls frttrri l hc  or:iclc i T  i t  

is rvd 2s input :I nurnbor i n  ZN which is riol a qiiiidratic rcsidur. 

Definition 7: Wc say that the  least-significant bit  of 4 is ( ( n ) - J c c u r e  if thcrc is a prob:ibilistic 

polynomial Lirnc algoritliiii th : i t  on inpul  N , g  E QN arid :iccc~q to an arhitrary c(n)-oracle for 

thc Icast significant bit, ON, computcs &. 
Remarks :  As is cuwtorriary, we say ltial a n  :ilgorilhrri is polynornin! Lirric i f  its running time is 

polynomial i n  its input Icnglh. In parlicular, the riin tirric will be polynomial i n  n, thc Icrlgth (in 

binary) of Lhc rnodulus N .  In t h c  I:ut dcfinilion, l.hr specific polynomial niiglil drpcnd on c(.). 

Thc Samc applies to lhe  ncxt ticfinition. 

Definition 8: Wc say that the least-significant bit o j J  i3 c(n)-secure even if the factorization of 

iv ia partially known i r  thcrc is a probabilistic polynorriial tirrie algorithm that on  i n p u t  N ,  q E 
Q N ,  some (but not all) the prime r:':lclors of AT and xccss  i.o an arbilrnry c(n)-or:iclc Tor t h c  least 

sigriifiraril bit, ON, cornpr~tcs .&. 
Wc will subvcqricrilly rcplacc r(n) by c for notn1ion:d convcnicricc. Ilowever, c will still be a 

function of n. 

3. Prev ious  Results 
In this section, we briefly review related prcvious results by llabin [13], Rlurn, H u m  and Shuh 

141, Alexi, Chor, Goldrcich and Schnorr [I] and Vazirani and Vazirani 1171. 

3.1 T h e  Equivalence of Factoring and Extracing Square Roots 

Theorem 1 (Rabin): The following problems arc probabilistic polynomial time equivalent 

1) Factoring a composite i nkge r  N product of two primes. 

2) Given 1%' and q E QN, finding a square root of q. 

This Theorem easily extends to multi-prime integers. 

3.2 Reducing Square Root Extraction to a Strange Oracle  

Following a sequcrice of rcsults in [11,2,16,9], Alcxi, Chor,  Goldreich and Schnorr [I] proved 

l/poly(n)-security results for the  lcast significant bit  of 3 variaiit of t h c  squaring modulo N = 

p l p z  function. Their p r o d  can be broken into two parts. First, a spccial type oraclc, called 

(c,q)-oracle is defined (scr bclow). I t  is shown tha t  factoring ib  i n  polynomial-timc givcn access to  

an (c,y)-oracle. Next, i l  was shown t h a t  an  (c/2, q)-oracle can be implemented using any c-oracle 

for the lcast significant bit of a particular squarc root. 

Definition 9: Let N f 231 and q E QN be a qu:dratic rcsiduc. An (c,q)-oracle is an oracle that. 



452 

on input 8 E %N or11pi1l.s l , ~ ( s . f i )  wilt1 probability a t  h u t  $ +<. (Ilcrc: the prob:ibility is taken 
over all possible choices or .? : i d  the  interri:il coin tosses or the oracle witti unirorrrl probability 

distribution.) 

The following Thcorein is implicit in 11). 

Theorem 2 (Alexi, Chor, Coldrcich and Schnorr): l’hcrc exisk a probabilistic polynomial t ime 

algorithm that on input  N = p l p 2  E 111, q E Q N  and access to an arbitrary (t,q)-oracle, finds 

a- 
The proof of Theorem 2 is almost idcntical to thc proof i n  (I]  of equivalence between invcrting 

the RSA and gucssing its lcasl significant bit. Whilc Theorern 2 deals with two primc composites, 

it cxtcnds to  rnulli-pririrc composites. Combining the cxlcndcd Thcorcms 1 and 2, we get  

Corollary 1: ’l’hcrc mists a probabilistic polynomial time algorithm that on input N = 
p1p2*-*p1, q E QN and access l o  an (c,q)-oraclc, cornplctcly factors M. 
11 is lcft to be shown that on input  jV E I l l , q  E Q, and acccss to an 6-ordc  for L~(fl, an 
(c/Z,.)-oraclc can be implcmcnlcd. This will be discussed i n  the next siibscction. 

3.3 Reducing the Strange Oracle to LSB Oracle when N = p l p 2  

In this subsection we deal with implerncnting an (c, q)-oracle, given access to an c-oracle for 

Lp,(J;). The main difficulty lies in the  fact tha t  an (c,q)-oracle must perform well when s ranges 

over ZN while the  c-oracle is guaranteed to  perform well only when its inpiit ranges over QN. 
The approach taken in resolving this difficulty is to map the queries to the ( 6 ,  q)-oracle into 

“queries” and “non-queries” to the  c-oracle. “Queries” are answered by invoking the  r-oracle, 

while “non-queries” a re  answered by flipping a coin. This requires the ability to  distinguish 

“queries” from “non-queries”. For N = p I p 2 ,  two alternative implementations of this abstract  

approach were suggested. 

The First Alternative 

In [l], a slightly different predicate was considered (and shown to be equivalent to factoring). 

Instead of L,(J) ( the  lcast significant bit  of the  square root which is a quadratic residue itself), 

they considered Bp,(.), the Icmt significant bit or the square root which has Jacobi Symbol 1 and 

is smaller than N / 2 .  I n  the setting of [I] it is casy to test  whether [ B . & ] N  < N / 2  and whether 

the  Jacobi Syrnhol (5)  equals 1. Such 3’s arc rriappcd to “querirs”. 

In the case of two-primp moduli each quadratic rcsiduc has a u n i q u e  square root which satisfies 

the two conditions. Ilowever, i n  case the mndulus has I > 2 factors, each quatratic residue has 

2‘-2 roots which satisfy the above two conditions. Thus, thc solution of [ l ]  to implementing t h e  

(c, q)-oracle does not Scem to extcnd to multi-primc moduli. 
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The Second Alternative 

A dilTercnt method of iinplcnic:ntiiig the  ( c ,  q)-oriiclc was siiggcstcd by Vazirani and Viizirani 
[17]. They obscrvcd th:it by I < l i ~ r r i ,  13lurn and Stiub [I], thc quatlratir rcsiduosily of Y iriodulo a 

two-prim cornpositc N can be dctcrniincd by using an c-oracle ON rnr the least significant bit. 

If s E QN Lhcri Lhe c-oracle for LN(B&) else a coin is flipped. 

The advanlage or this nicthod is tha t  the  square root which is a quadratic residue itself is 

well defiricd also for mu l t i -p r im 13111rn integers. So there is hope of extcnding this method. 

LeL us rccall how quadratic rcsiduosity can be tested using an c-oracle for LN(&. 
Theorem 3 (Blurn, Mum and Shub): Let N = p l p 2  6 U I .  There cxisL a probabilislic polynomial 

time algorithm tha t ,  on input  N ,  n E ZN and access to any c-oracle for the least significant bit, 
ON, detcrrnincs whcthcr s E QN. 
Proof’s sketch: If (R) = -1 thcn answer “.Y QN”.  We arc lcFt with the caw that  (5 )  = 
1. Corisidcr the following cxpcrimcnt. 12aridorrily sclcct r E QN wilh urijrorrrl probability 

distribution (this is done by choosing an clcnicnt in Z N ,  with uniforrri probability, ant1 squaring 
it). Let b be the oracle’s answer on query [ ( 7 .  s)~]~.,T. Clearly, 

1 
8 E Q N  impjics P7(h = LN(T * 8 ) )  2 

QN then -r - B E QN. As is always the case, L N ( r  8 )  = 1 - LN(-r * a )  

+ 6. 
On the other hand, if s 

and thus 
1 
2 

a QN implies Pr(b = I,N(T . 3)) 5 - - t . 
So the two cases 8 E QN and  s 

polynomially many r’s. I 
QN can be distinguished (with high probability) by sampling 

A crucial point in  t he  proor is tha t  for two-prime modulj N = p1p2,  q E &N has only two 

square roots with Jacobi Symbol +l. One of them is fi and the other is -&. This is not t h e  

case when N has more then two prime factors. In fact, q has 2l-l square roots which have Jacobi 
symbol f l .  In the next section we show “a way around” th i s  last problem. 

4. The Main Result 
In this section we implement an (c,q)-oracle, given access an c-oracle to ON, where N is a 

multi-prirnc Blum integer. This, in t u r n ,  implies tha t  an +oracle for t h e  l e a s t  significant bit, ON, 
enables the complete factorization of N.  

Theorem 4: Let N = M p 3 p 4 . .  ’ P I ,  M = p l p z  and N E RI, where the  p,’s arc distinct odd 

primes. Then there is a probabilistic polynomial tirnc algorithm that on input N, q E QN, 
~ 3 ~ ~ 4 , .  . . , p i  and access to an arbitrary t-oracle Tor the least significant bit, ON, implements an  

(c / (2 ’  t. I), g)-oracle. 
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Proof: I d .  Q;Y = {e  : (g) = ( 5 )  = - I  :,rid (k) = I for civcry 3 5 i 5 t ) .  

Civeii q E Q N ,  and acccs.. to lhc c-or;iclc Tor thc lcasl signilicant. bil, ON,  wc irriplcrncnt an 
( 2 - l .  c,q)-oraclc as follows. 0 1 1  qucry s E ZN, wc firs1 C O I I I ~ U L C  lhc Jacobi Syrr~bol (+) arid 

Lhc Lrgcndrc Symbols (A), (&), ..., (k), I r  cithcr of thc abovc cquals -1 lhcri 8 4 Q N  u QL, 
and, wc rcturn the o u ~ c o r n e  or a n  unbixucd coin Hip. It rcin;Jns to dcnl with 8 E QN u QL. We 
consider two cascs: 

Case I: The  oracle ON answers to I , N ( s f i )  arc considerably worse for ,9 E QL, compared to  

8 E Qh* In this case wc first use ON to tcst whclher 8 E &N. Our answer Lo LN(s&j is 

O N ( S ’ .  q )  i f  s E QN, and a flip of a coin if s E QL. 
Case 11: The  oraclc ON answers to L N ( s f i )  arc no1 considcrnbly worse for s E QL, compared 

to 8 E QL. In  this case, we answer to LN(s&) by ! 3 p ~ ( s ~  .q). Intuilively, it docs not malter 

hcre whether 8 E Q N  or  n E QL. 
To trcat the above cascs formally, we dcfine thc succcss probabilitirs of ON oil qucry [ r ’ ] ~  where 

r E QN (correspondingly r E (2”) is randomly chosen. (The probabilities arc taken over C N ’ S  

internal coin losses.) Let 

f = Pr(ON(r2)  = L N ( 7 ) )  where 7 is randomly chosen in QN 

f’ = P r ( O N ( r 2 )  = L N ( ~ ) )  . where r is randomly choscn in Qh . 
By ON’S definition, f 2 + c, bu t  no a-priori bounds on f‘ are known. 

With overwhelmingly high probability (say 1 - 2-”), both f and f’ can be approximated 

with good accuracy (say c / 8 )  by the  following polynomial time Monte Carlo experiments: TO 
approximate f, randomly aelcct many independent r E QN with uniform probability distribution. 
(A random r E QN is selccted by  picking an element of 2, at random and squaring it modulo N.)  
Compare ON’S  answer on with the  known L N ( f ) .  To approximate f’, randomly select many 

independent T E Q‘, with uniform probability distribution, and compare ON’S answer on  [ r ’ ] ~  

with the known LN(T). A random r E QL is selected by picking r’ E Q M  and r” E QP3Pc...P,, a t  
random, setting r = -7’ (mod M) and  r r” (mod p3p4...pL), and computing c by the  Chinese 

Reminder Theorem. 

Let us denote the  above approximations by 7 and ,? respectively (i.e. l l - j l  < c/S and [f‘-Fl < 
L/S with ovcrwhelming high probability). We now consider two cascs 

Case I: I ,  < j - €12. 
in this case wc will use ON to test whether 8 E Qhr.  To do that,  randomly select r E &N with 

uniform probability distribution. Let b be the oracle’s answer on qucry [ ( r . 8 ) 2 ] N .  If 8 E QN thcn 
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f'r(b = I,N(r. 8 ) )  = j ,  whilc if 8 E C& then JJr(b = ~ , N ( T .  a))  = J'. Sincc I/ - 1'1 > ( / I  (with 

ovcrwhclrriing probabilily), thc  two CBSCS cnrl be dislinguishcti by a MonLcCarlo cxpcrirricnt. 

l r  wc have dccidcd lha t  8 E QN thcn wc qucry thc oracle on s 2 q  and rcturri whatcvcr i l  has 

answcrcd (i.c. wc rcturri O N ( y 2 q ) ) .  Othcrwisc, wc flip an unbiascd coin and rclurn its outcome. 

Caae II: 2 1 - €12.  
In this caw wc will no t  try to test whcthcr 8 E Q N  or Y E Q&, but rather qucry ON on sag 

and return O N ( s 2 q ) .  Here f' 2 $ with overwhclrning probability. 

Probability Analysis 
We now analyze the probability t h a t  the  answer to LN(a,.hj) produced by the above procedure 

is correct. The  probability space is tha t  or 311 choices of Y E %N and all internal coin tosses with 

uniform distribution. 

The evcnt 8 QN u QN occurs with probability 1 - 2 .  2-' and is always dctcctcd. In this 
case the above procedurc is corrccl with probability exactly one half. 

The evcnt s 6 Q N  U Q N  occurs with probability 2-'f1. I n  Case I, the answer is correct with 

probability ;($ + 1) 2 8 + 5 (up  to the  ovcrwhelmingly small error term or  the approximations). 

In Case U, the  answer is correct with probability i(f + f') 2 + (with the same qualification). 

The  overall probability t h a t  our procedurc is correct, is therefore bounded below by 

Thus, we have implemented a n  (c/(2' + l), 9)-oracle I 

The proof of Theorem 4 shows how to implement an  (t/2', q)-oracle given an e-oracle for t h e  least 

significant bit L N ( * ) ,  where N has I prime ractors. Thus, when 1 = O(1ogn) the  advantage of 

t he  new oracle is polynomially (in n) related to the advantage of the original one. Combining 

Corollary 1 and Theorem 4,  we get 

Corollary 2: Let N ,  M E BI such tha t  M divides N .  Suppose that  M has two prime factors 
and N has 1 = O(1ogn) distinct prime factors, where n is the length of N .  Then the following 

two tasks (1) and (2) are computational equivalent, and both are polynomial-time reducible to 

(3). 

1) Factoring M .  

2) Given M ,  p 3 ,  p4, ..., pi (a partial factorization of N = Mpsp,. .  .pr) and g E QN, guess 

L ~ ( f i ]  with succcss probability excccding 4 + 1. 
Let 1 5 k < 1, N l , N z ,  ..., Nk such tha t  N = N I N a . . . N ; ,  and M divides N1. Given N1, 
N2, ..., i"dk and 4 E QN, gucss LN(&) with succcss probability cxcccding 4 + 

p o W n )  

3) 

PO'Y(*) 
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5. Applications to Protocole Design 

Chor, Coldwascr ,  Micali, and Awcrbuch [7] suggcstcd to use a conipositc nurribcr N product 

or 1 = 2‘ + 1 prinrcs in ordcr to “vcriliably sharc” a sccrcl bit among nuny playcrs, 1 of which 

can bc untrusty. They suggcsLcd two iniplcmcntaLions of this schcnic: Onc is bmccl 011 thc  ItSA, 

whilc thc othcr is bnscd on modular squaring. The sccurity or the sccond irnplcmcntation relics 

on thc result or t h i s  paper. A hricf description o r  the schenic rollows. 

The sccrct is thc  I c u t  significant bit of J;i, wherc q E &N is a quadratic residue modulo N .  
AILer establishing the  sccret, the dealer distributcs “picccs” or it to cvcry participant (one piece 

per participant). A random split of N corresponds to one picce or thc sccrct bit. Since N has 
2’+ 1 primc factors, it cannot  bc totally factored with only t pieces. Uy our rcsult, it is infeasible 

for t participants to guess thc secrct I,N(&) with any non-ncgligiblc ndvantagc. On t h c  othcr 

hand, with ovcrwficirningly high probability, 3t picccs yicld thc coniplctc ractoriration of N and 

allow the recovcry of the  sccrct bit.  

6. An O p e n  Problem 
A crucial condition for proof of Corollary 2, is that the number or  prime factors is logarithmic 

in the length of t h e  modulus. The reason being that the inverting algorithm nceds answers for 

random elemenls in ZN, while the c-oracle for least significant bit answers only on q E QN. Thus, 

only a 2-’ fraction of t h e  queries a re  answered, where 1 is the nurnbcr of primes in N .  Getting 
around this difficulty will require either a different inverting algorithm or a better analysis of 
what happens when the  oracle is asked on q E 2, - QN. 
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