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Abstract —- It is known that given a composite integer N = pyp; ( such that py = pe = 3
(mod 4)), and g a quadratic residuc module N, guessing the least significant bit of a square root
of ¢ with any non-negligible advantage is as hard as factoring N.

In this paper we exlend the above result Lo multi-prime numbers N = p;py---p; {such that
pp=pa = - = p = 3 (mod 4)). We show that given N and g, a quadratic residue mod
N, guessing the least significant bit of a squarc root of ¢ is as hard as completely factoring N.
Furthermore, the diflicully of guessing the least significant bit of Lhe square root of ¢ remains
unchanged ever when all but two of the prime factors of N, p3,...,p1, are known.

The resull is useful in desiging multi-party cryptographic protocols.

1. Introduction

The problem of factoring large composite integers is perhaps the single most important
computational problem in public key cryptography, as is evident from the large number of
cryptosystems based on it {e.g. RSA [15], Rabin [13], Williams [18], Goldwasser-Micali [10]}.
The importance of the Factoring problem motivated various research cfforts. Among those are
1) Designing more efficient factorization algorithms.
2) Investigating the security of specific bits in the modular squaring function.
3) Investigating actorization algorithms given partial information on the factors [14].
Most of these works have concentrated on composite numbers N which are the product of two
primes pyp2.

In this paper we investigate the problem of bil security for the modular squaring function
with respect to multi-prime composites N == pyps...p;. The salient property of our work is

that we investigate the bit security given partial factorization p;,...,p; of N (i.e. all but two
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factors are known). We show that the partial factorization does not help. More specifically,
any non-negligible advanlage in guessing the least significant bit in the 22 {inod N) function is
equivalent Lo factoring the remaining pair pipa {and thus totally factor N). In other words, if it
is inlcasible Lo factor two prime composites, then it is infeasible to guess the least significant bit
in the squaring modulo N function even if one has almost all of N's lactors.

Our work extlends Lhe resulls of Alexi, Chor, Goldreich and Schnorr [1], who considered the bit
security of RSA and Rabin functions. These two functions are deﬁneﬂ wilh respect to Lwo-prime
moduli N = p-q. The RSA function is defined as raising Lo a power e and reducing modulo
N {where e and (p — 1){g — 1) are relatively prime). Rabin’s function is squaring modulo V.
The RSA is 1-to-1, while Rabin’s funclion is 4-to-1. This dilTerence is crucial in trying to extend
the [i] results to muiti-prime moduli. Extending the RSA result to multi-prime moduli is easy,
since Lhe extended function is still 1-to-1. In the ease of Rabin’s function, squaring modulo an
l-prime moduli is a 2'-to-1 Tunction, and dealing with it is more complicated. In this paper, we
demonsirate how these eomplications can be resolved.

Our results have applications in Lhe design of multi-party cryptographic protocols. In par-
ticular, it is uselul in contexts where partial lactorization, but not complete factorization, is
relcased to a subset of the participants, while certain information must still be kept secret. Com-
bining our result with techniques of probabilistic encryption [10,5], arbitrary information can be
encoded so that it still remain totally secure, in such circumstances.

The remaining of this paper is organized as foilows. In section 2 we introduce notations and
terminology. In scction 3 we review previous related results. In section 4 the main result is
proved. In section 5 we mention two applications to the design of multi-party cryptographie

protocols. We conclude by proposing an open problem.

2. Terminology

We begin this section by presenting some number theoretic terminology which will be used
throughout the paper. We proceed by defining a specific class of composite integers which will
constitute the domain of our investigation. We conclude this section by formally defining the

notion of a “factoring bit”.

2.1 Preliminaries
Definition 1: Let NV be a natural number. Zp will denote the ring of integers modulo N, where

addition and multiplication are done modulo N. The length of N will be denoted by n.

Definition 2: Let N be a natural number, and z an inleger, [z]y will denote the remainder of

z modulo N (nolice that for all z, 0 < [z]n < N). Ln(=) will denole Lhe least significant bit of
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[z]n in the ordinary binary expansion.

Definition 3: Let N be an integer. Then a is said to be a quadratic residue modulo N il there
exist an inbeger T such that 22 = @ (mod N). Otherwisc, a is said to be a it quadratic non-residue
modulo N. lel us denote by @Qn the sct of quadratic residues moduio N,

Let N = pyps---pr be a product ol ! distinct odd primes. Note that @ is a quadralic residue

modulo N if and only if ¢ is a quadralic residue modulo each of-the p;’s.

Definition 4: Lel p be an odd prime number, and A an integer relalively prime to p. The
Legendre symbol (%) is defined to be 1 if A is a quadratic residue modulo p, and -1 otherwise.
For N = p1pz---pi1, a product of [ distinct odd primes, and h relatively prime to N, the Jacobdt
symbol (&) is defined to be T]i_, (pi)

Ioven though the definition of the Jacobi symbol uses the factorization of N, it is well known
that (&) be casily computed even if N's factorization is not given. Another fact which is used in
this paper is the multiplicativity of the Jacobi symbol, namely ("’T"') = (—1’\‘7) . (%}) . Tor further

details on thesc properties and their proofs, see [12, ch. 3].

2.2 Blum Integers

When all the prime factors of N = pypa...p; are congruent to 3 (mod 1), the set of quadratic
residues modulo NV has an interesting property. Each quadratic residue has ezactly one square
root which is a quadratic residue itself. In other words, squaring modulo N is a permutation
over @n. Blum was the first to point out the cryptographic significance of this fact [3]. Let
Bl = {N[N =py-p2---pt, p =3 (mod 4}, 1 <1 < !}, and call N € BI Blum Integers.

Definition 5: Let N = p;ps---p; be in B, and q be a quadratic residue modulo N. We denote
by /G the square root of g which is a quadratic residue itself, namely (\/6)2 =gqgand \/TEQN-

We restrict our attention to N € BI, since for each quadratic residue ¢ € Qu, /7 and the
least significant bit of /g are well defined.

2.3 Bit Security for Factoring

Following [6] and [11], we formally define the notion of bit security for factoring. For the
definition, recall that n denotes the length of N.
Definition 6: Let Op be a probabilistic oracle which, given a quadratic residue ¢ (modulo N),
outputs a guess, On{q), for Ln{,/g) (this guess might depend on the inlernal coin tosses of On).
Let ¢ - ) be a function from integers into the interval [0, ). We say that On is a ¢{n)-oracle if
the probability that the oracle is correct, on an input ¢ randomly sclected from the set Qpn, is

at least § + ¢[n).

The probability space in the definition is that of all ¢ € @ and all 9 —1 sequences of internal
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coin tosses, with uniform distribution. Notice that there is no requirements from the oracle il 1t
is fed as input a number in 4 which is not a quadratic residue.
Definition 7: We say that the least-significant bit of \/* is «(n)-secure if Lhere is a probabilistic
polynomial time algorithm that on input N,q € Qn and access to an arhitrary ¢(n)-oracle for
the least significant bit, On, computes /.
Remarks: As is cuslomary, we say that an algorithm is p()lynomi:ﬂ time il ils running time is
polynomial in its input length. In parlicular, the run time will be polynomial in n, Lthe length (in
binary) of the modulus N. In the last definition, the specific polynomial might depend on ().
The same applics to the next definition.
Definition 8: We say that the least-significant bit of \/- 13 ¢(n)-secure even if the factorization of
N i3 partially known if there is a probabilistic polynomial time algorithm that on input N,q €
Qn, some (but not alf) the prime faclors of N and access 1o an arbitrary ((n)-oracle for the least
significant bit, O, computes /3.

We will subsequently replace €(n) by ¢ for notational convenience. However, € will still be a

function of n.

3. Previous Results
In this section, we brieflly review related previous results by Rabin [13], Blum, Blum and Shub
[4], Alexi, Chor, Goldreich and Schnorr [1] and Vazirani and Vazirani {17].

3.1 The Equivalence of Factoring and Extracing Square Roots

Theorem 1 (Rabin): The following problems are probabilistic polynomial time equivalent
1) TFactoring a composite integer N product of two primes.

2) Given N and q € Qn, finding a square root of q.

This Theorem easily extends to.multi-prime integers.

3.2 Reducing Square Root Extraction to a Strange Oracle

Following a sequence of results in [11,2,16,9], Alexi, Chor, Goldreich and Schnorr {1] proved
1/poly(n)-security results for the lcast significant bit of a variant of the squaring modulo N =
pipe function. Their proof can be broken into two paris. First, a special type oracle, called
(¢, g)-oracle is defined {sce below). It is shown that factoring is in polynomial-time given access to
an (g, q)-oracle. Next, it was shown that an (€/2, g)-oracle can be implemented using any c-oracle

for the least significant bit of a particular square root.

Definition 9: Let N € BI and q € QN be a quadratic residue. An (¢, g)-oracle is an oracle that
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on inpul 1 € Zn outpuls Ly(s-/q) with probability at least L+« (lere the probability is taken
over all possible choices of s and the internal coin tosses of the oracle with uniform probability

distribution.)
The following Theorem is implicit in [1}.

Theorem 2 {Alexi, Chor, Goldreich and Schnorr): Therce exists a probabilistic polynomial time
algorithm that on input N = p;py € BI, g € Q@ and access to an arbitrary (¢, g)-oracle, finds
V-

The proofl of Theorem 2 is almost identical to the proof in [!] of equivalence between inverting
the RSA and gucssing its Jeast significant bit. While Theorem 2 deals with two prime composites,
it extends to multi-prime composites. Combining the extended Theorems 1 and 2, we get
Corollary 1: There cxists a probabilistic polynemial time algorithm thal on input N =

p1pe---pr, 4 € @n and access Lo an (e, ¢)-oracle, completely factors M.

IL is [cft Lo be shown that on input N € Bl,q € Qn and access to an e-oracle for Ly (), an

(¢/2,-)-oracle can be implemcented. This will be discussed in the next subscetion.

3.3 Reducing the Strange Oracle to LSB Oracle when N = pyp;

In this subsection we deal with implementing an (e, ¢}-oracle, given access to an e-oracle for
Lx(v/"). The main difficulty lies in the fact that an (¢, g)-oracle must perform well when s ranges
over Zn while the ¢-oracle is guaranteed to perform well only when its input ranges over Qn.

The approach taken in resolving this difficulty is to map the queries to the (¢, g)-oracle into
“queries” and “non-queries” to the e-oracle. “Queries” are answered by invoking the e-oracle,
while “non-queries” are answered by flipping a coin. This requires the ability to distinguish

[?

“queries” from “non-queries”. For N = p,p;, two alternative implementations of this abstract

approach were suggested.

The First Alternative

In (1], 2 slightly different predicate was considered (and shown to be equivalent to factoring).
Instead of Ly (+/%) (the least significant bit of the square root which is a quadratic residue itself},
they considered By (-}, the least significant bit of the square root which has Jacobi Symbol 1 and
is smaller than N /2. In the selting of [1] it is easy to test whether {s-\/glny < N/2 and whether
the Jacobi Symbol (-,—‘:,-) equals 1. Such 8’s are mapped to “queries”.

In the case of two-prime moduli each quadratic residue has a unique square root which satisfies
the two conditions. However, in case the modulus has | > 2 factors, cach quatralic residue has
2t=2 roots which satisly the above two conditions. Thus, the solution of [1] 1o implementing the

(¢, g)-oracle docs not scem to extend to multi-prime moduli.
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The Second Alternative

A diferent method of iimplementing the (¢, q)-oracle was suggested by Vazirani and Vazirani
[17]. They observed that by Blum, Blum and Shub [4], the quadratic residuosily of s modulo a
two-prime composite IV can be determined by using an c-oracle On for the least significant bit.
IT s € Qn then the e-oracle for Ly(s,/g) else a coin is flipped.

The advantage of this method is that the square root which is a quadratic residue itsclf is
well defined also for multi-prime Blum integers. So there is hope of extending this method.

Lel us recall how quadratic residuosity can be tested using an ¢-oracle for Ly (v/).
Theorem 3 (Blum, Blum and Shub): Lel N = p,p, € BI. There exist a probabilistic polynomial
time algorithm that, on input NV, 8 € Zn and access to any ¢-oracie for the least significant bit,
On, determines whether s € Q.

Proof’'s sketch: I (ﬁ) = -1 then answer “s € Qn". We are lefl with the case that (%) ==
1. Consider the following experiment. Randomly sclecl r € Qpn with uniform probability
distribution (this is done by choosing an element in Zx, with uniform probability, and squaring

it). Let b be the oracle’s answer on query [(r - s)%]n. Clearly,
1
8 € Qn implies Pr(b = Ly(r:3)) 2 ) +€.

On the other hand, if s ¢ @n then —7-3 € Q. As is always the case, Ly(r-8) = 1 — Ln(—7'8)
and thus
8 & Qn implies Prb= Ly{r-s)) < % —€.

So the two cases 8 € Qn and 8 € QN can be distinguished (with high probability) by sampling
polynomially many #’s. §

A crucial point in the proof is that for two-prime moduli N = pip2, ¢ € @~ has only two
square roots with Jacobi Symbol +1. Oue of them is /7 and the other is —,/g. This is not the
case when N has more then two prime factors. In fact, g has 27! square roots which have Jacobi

symbol +1. In the next section we show “a way around” this last problem.

4, The Main Result
In this section we implement an (e, g)-oracle, given access an ¢-oracle to On, where IV is a
multi-prime Blum integer. This, in turn, implies that an e-oracle for the least significant bit, On,

enables the complete factorization of N.

Theorem 4: Let N = Mp3ps---p;, M = p;py and N € BI, where the p;'s are distinct odd
primes. Then therc is a probabilistic polynomial time algorithm that on input N, ¢ € @n,
P3, P4, P and access to an arbitrary e-oracle for the least significant bit, On, implements an
{¢/(2" + 1), g)-oracle.
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Proof: Lel Q) = {e: (p—“) = (—‘—)) = —1 and (pi.) =1 forevery 3 <1<t}
Given ¢ € Qp, and access to the ¢-oracle Tor the least significant bit, Oy, we implement an
(271 - ¢, q)-oracle as follows. On query s € Zn, we first compule the Jacobi Symbol (}‘7) and
the Legendre Symbols (PL:), (;’;),..., (;‘l-) IF cither of the above cquals —1 then 8 € Qn U @n»
and we return the oulcomne of an unbiased coin flip. It remains to deal with s € @ {J QY. We

consider two cascs:

e Cascl: The oracle On answers to Ly(84/7) are considerably worse for ¢ € @y, compared to
8 € @. In this case we first use Oy to tost whether s € @n. Our answer to Ln(8,/4) is
On(s®-9) il s € Qn, and a flip of a coin if a € Qy.

o Case II_: The oracle O answers to Ly{s./q) are not considerably worse for 5 € Q'y, compared
to 8 € Q7. In this case, we answer to Ly(s,/g) by On(s?-q). Intuitively, it does not matier
here whether 8 € Q@ or 8 € @'y

To treat the above cases formally, we define the success probabilities of Ox on query [r2]y where

r € Qn (correspondingly r € Q') is randomly chosen. (The probabilities are taken over Cn's

internal coin tosses.) Let
= Pr(ON(rz) = LN(T)) where r is randomly chosen in @n

" = Pr(On(r®) = Ln(r)) . where r is randomly chosen in Q) .

By On’'s definition, f > 1 + ¢, but no a-priori bounds on f/ are known.

With overwhelmingly high probability (say 1 — 27"}, both f and f’ can be approximated
with good accuracy (say ¢/8) by the following polynomial time Monte Carlo experiments: To
approximate f, randomly select many independent r € Q 5 with uniform probability distribution.
(A random r € @ is selected by picking an clement of Zy at random and squaring it modulo N.)
Compare On's answer on [r%]x with the known Ly(r). To approximate f’, randomly select many
independent # € @'y, with uniform probability distribution, and eompare Op's answer on [r%|n
with the known Ly(r). A random r € @'y is selected by picking v’ € Qar and v € @p,p,--p,» 2t
random, setting r = —r’ {mod M) and r = 7" (mod p3ps- - -p1), and computing r by the Chinese
Reminder Theorem.

Let us denote the above approximations by f and f’ respectively (i.e. |f—]'| < €/8 and If’—f_"| <

¢/8 with overwhelming high probability). We now consider two cases
Case I: f’ < 3‘-6/2.
In this case we will use Op to test whether s € Qn. To do that, randomly select r € @ with

uniform probability distribution. Let b be the oracle's answer on query [(r-8)*]n. If 8 € @ then
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Pr(b= Ln(r-s)) = f, while if s € Q' then Pr(b = Ly(r-s)) = f'. Since |J = J'| > ¢/4 (with
overwhelming probability), the two eases can be dislinguished by a Mente-Carlo experiment.
If we have decided that s € Q@ then we query the oracle on 8%¢ and return whatever it has

answered (i.c. we return On{s%g)). Otherwise, we flip an unbiased coin and return its outecome.

Case I /' > f — /2.
In this casc we will not try to test whether s € Qn or 8 € Qly, but rather query On on 3%
and return On(s2q). Here f* > 1 with overwhelming probability.

Probability Analysss

We now analyze the probability that the answer to Ly (s./q) produced by the above procedure
is correct. The probability space is that of all choices of 38 € Zx and all inlernal coin tosses with
uniform distribution.

The event & € Qn {J @)y occurs with probability 1 — 2. 27! and is always delected. In this
case the above procedure is correel with probability exactly one half.

The event s € @ |J @~ occurs wilh probability 2747, In Case I, the answer is correct with
probability %(% + f) > -.l;+§ (up to the overwhelmingly small error term of the approximations).
In Case 1l, the answer is correct with probability %(f +f 2 %-{-% (with the same qualification).
The overall probability that our procedure is correct is therefore bounded below by

1

—_ T
le2

+

D
L]

Thus, we have implemented an (e/{2! + 1), q)-oracle )i

The proof of Theorem 4 shows how to implement an (¢/2', g)-oracle given an ¢-oracle for the least
significant bit Zx(-), where N has | prime factors. Thus, when I = O(logn) the advantage of
the new oracle is polynomially {in n) related to the advantage of the original one. Combining

Corollary 1 and Theorem 4, we get

Corollary 2: Let N, M € BT such that M divides N. Suppose that M has two prime factors
and N has | = O(log n) distinct prime factors, where n is the length of N. Then the following
two tasks (1) and (2) are computational equivalent, and both are polynomial-time reducible to
(3).

1} Factoring M.

2) Given M, p3, p4,..., Pt (2 partial factorization of N = Mpsps---p) and ¢ € Qn, guess

Ln(y/q) wilh success probability exceeding 1 + p—od—(n—).

3) Let1< k<!, Ni, Ng,..., N such that N = N|Na---N; and M divides N;. Given Ny,

Na,..., Nk and g € @, guess Ly (+/g) with success probability exceeding § + ;Zt';_(T)'
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5. Applications to Protocols Design

Chor, Goldwasser, Micali, and Awerbuch [7] suggested to use a composite number N product
of { = 2" 41 primes in order to “verifiably share” a sceret bit among many players, £ of which
can be untrusty. They suggested two implementations of this scheme: One is based on the RSA,
while the other is based on modular squaring. The sccurity of the sccond implementation relies
on the result of Lthis paper. A brief deseription of the scheme lollows.

The sceret is the least significant bit of /g, where ¢ € QN is a quadratic residue modulo N,
Alter establishing the sceret, the dealer distributes “picces” of it Lo every participant (one piece
per participant). A random split of N corresponds to one picce of the secret bit. Since N has
2¢+1 prime faclors, it cannol be Lotally factored wilh only £ pieces. By our result, it is infeasible
for ¢t participants Lo guess the secret Ly(\/q) with any non-negligible advantage. On the other
hand, with overwhelmingly high probability, 3¢ pieces yield the complete faclorization of N and

allow the recovery of the sccret bit.

6. An Open Problem

A crucial condition for proof of Corollary 2, is thal the number of prime factors is logarithmic
in the length of the modulus. The reason being that the inverting algorithm nceds answers for
random elementls in Z, while the ¢c-oracle for least significant bit answers only on ¢ € @ . Thus,
only a 2~ fraction of the queries are answered, where { is the number of primes in V. Getting
around this difficulty will require either a different inverting algorithm or a better analysis of

what happens when the oracle is asked on ¢ € Zy — Q.
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