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Abstract

We conaider the following crytographic and coding questions 1in
relation with the use of "write—once" memories (or woms)
-How to prevent anyone from reusing the woum ( immutable codes).
~How to fix the written information in the wom after a given number of
generations (locking codes).
~-How to encode a "credit” in a way that guarantees the user +t generations
or "purchases" in any possible way and makes it impossible to cheat : 1i.e.
writing on the wom necessarily increases the spent amount of money. The
coding will be called "incremental locked”.

These questions were only raised in [5], where the accent was put on
the generation of womcodes possessing an "easy reading-reserved writing”

property.

jons d notations

Let us suppose we have a storage medium, called wom ([1]), consisting
of n binary positions or wits, initially containing a "“0". At some sBtep, a
wit can be irreversibly overwritten with a "1” (e.g. Dby some laser beam in
digital optical disks, or burning microscopic fuses in PROMS).

Por two binary n—-tuples x and y, we say that x covers y, and write
y<«x 1if supp(y)Csupp(x), where for a binary n-tuple z=(Z ,Z ,..., & ),
supp(z) = (i ; z = 1} 18 the support of =z. Then 1z|=|su;_l>p(z:§i is lt':lhe
Hamming weight o% Z. The binary complement of z is denoted by ;

The first problem we address is the following how to construct
codes with maximal rate (or cardinality) and forwarding impossible
updating?
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2, Immutable codes

et F be the binary field. A subset C of Pn igs called immutable (8ee
{6l]) if, for any a and b in C, a<b never holds. Clearly, if such a code is
used to write on a wom, no updating is possible (updating a into b would
imply ac<b). The characterization of maximal immutable codes is a well

known combinatorial problem, solved by Sperner (2].

Proposition. The set S of all the n-tuples of weight [n/2) is a maximal
immutable code (called Sperner code). 'The solution is unique for odd n.

- —_ - N
For even n, there is another soluticn S, where 3={ seFz ; 8€3}.
The rate of these codes, R=(1/n).log(1Si), is approximately
R =1 - (1/2n) log(n).

These Sperner codes are however not very easy to encode ( see e.g. (71).
One way to overcome this 18 to impose Llinearity. 'This will be very
suboptimal, as we now show. Let us say that a 1linear (n,k] code C 1is
intersecting if any two non-zero codewords have intersecting supports, then

one has

Proposition. A linear code C is intersecting iff C\{0} is immutable,
Proof. CA\{D} is not immutable iff there exist two distinct nonzero
elements in C, say a and b, with a ¢ b. Then a + b is in C and has
disjoint support with a, hence C is not intersecting. a]

Intersecting codes are studied in, e.g. (3], and have low rate, namely :

Proposition. PFor n large encugh, intersecting [n,k] codes have rate
R < 0.283 n.

We now propose a slightly suboptimal solution, first introduced 1in ({71,
with a very simple encoding scheme. Let us denote by 2(1i) the writing of
the integer i in base 2, and by 12(i)! the weight of such a writing.

Define the coding of i <« Zk by

1 ——> c(i) = ( 2(1), 2(12(i)) ) (1)
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where the two parts of c¢(i) are written using k and [log(k)l Dbits
regpectively. For example, if k=7, i=98, then 2(i) = 1100010, 12(1)!=3,
2(12(1i)1) = 0Ll and c(98) = (1100010 100).

[n fact, this encoding is systematic, i.e. the information written on the
wom is contained in k fixed positions, say the first ones. Clearly, one

has :

Propogition. The encoding scheme described in (1) gives immutable codes
with rate R = 1 - (1/n) log(n).

Proposition. The encoding scheme of (1) is optimal, 1i.e. yields the

largest possible rate for a systematic immutable code.

Proof. Iet C be systematic with k information bits. Consider the chain
( for inclusion) of k—-tuples (000...0), (100...0}), (1l10...0), ...,
(11l...1). For C to be immutable, thegse k+1 vectors must be appended

different suffixes of size n-k. Hence 2 >k+1. [a]

We thank D. Coopersmith for suggesting this proof.

3. _locking codes

The problem of locking, i.e. of fixing the written information in
the wom after a given number of generations, is closely related to the
previous one. The only difference is that one now has the possibility of
choosing when the written information should become immutable, which is a
slightly stronger assumption. Among the techniques described in paragraph
2, the coding scheme (1) allows 1locking : to that end, take a wom of
k+(logkl wit,

- uge m wits for the updatings,

- to lock the wom when v is written, write 2{ivl) on the remaining wits.

4., Incremental locked codes

The following problem is introduced in [4] : write successively ¢t

messages v ,v ,... ,¥v on a wom, such that
1 2 t
0KV &v .. .&V € v—1. (2)
1 2 t

Such a code is called incremental (IW).
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We consider the problem where any writing on the wom can only
increase the value of the written message. Such a code will be called a
incremental locked womcode (ILW) and can be used to eliminate cheating
possibilities on credit cards. This assumption 1is stronger than the
previous one : now (2) is a necessary and sufficient condition on a set of
t messages for its writing to be possible, whereas it was only sufficient

in the case of IWw.

We shall study in the following an easy way to construct a I[LW : the
knapsack (or coins) scheme. Each wit represents a coin with value a .
i

Thus the spent amount of money corresponds to the sum of "marked” coins

where [ is the set of written wits. We call incremental KX womcodes (IKW)

the corresponding codes. Clearly we have

ik il i
where w , w , w are the minimal lengths of a [KW, L[LW, [W, respectively.

wWe consider the directed graph (treillis) representing all the
possible transitions in the WOM. A vertex is identified with a binary
n-tuple, and there is an edge from x to y iff y>x and ly-xi=l. To every Y
is associated a mesasage a(y) € Z u{w) by means of the interpreting function
a : a{w) means that the state yvis not used (achievable as a coding state)
in the coding process. The incremental code is locked iff for achievable x

and y
yrx ==> a(y) # a(x).

For every set

V=(v ,v ,...,v ), with v v £ ,.. v sv-1
1 2 t 1 2 t

of t messages to be written, we consider the "history"” of writings

(1) (2) (t) (i) = (1) (2) (t)
Y‘(Y Y + e s Y )where Y & , ¥y <y < v <y

and a(Y(i))w_.
1
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Let H be the set of all possible Y. The number of possible V must be
less than the number of possible Y. Thus we obtain

t
Proposition. The parameters of a «<v> /n IW must satisfy

v+t n
( . y S (t+1) .

n
We now define for ye¢ P :

. . (i) (1) (1)
o(x) = inf( 1 | x=y for some Y=(y PP 4 s ), Ye H).

Proposition. If y is a state in the WOM such that &(y)=j, then
Y t-3
n-lyl # w («v—a(y)> )y + 3,
where A stands for i, il, ik in the case of a IW, I[L, [KW respectively.

Indeed, at state j, there are at least t-j generations to write on n—-iyl
wits.

Using this Proposition we can begin to fill up a table of the w}‘ for small
v and t. We start from the first line w(<«v>t)={logz(v)]. The noticeable
points are

ik 3 il 3 il 2 i 2
w (<9> )«6 > 5=w (<95 ) and w (<93 }=5 > 4=w (9> ).

v=1 2 3 4 5 [ 7 8 9 10 11 12
t=
1 o 1 2 2 3 3 3 3 4 4 4 4
2 2 3 3 4 4 4 4,5,5 S
3 3 4 4 5 ] 5,5,6 6 6,6,7
4 L) 5 S 6 6
S S 6 6 7

i t il ik t
Table : values of w («v> ), w (<v> ), w (<v> ) for small v and t.
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5, Construction of incremental K womcodes ( IKW)

As we said before an incremental K womcode is based on a set of coins
P={...,i,...,3,...}, where 1 is a coin with value i1 and IPi=n. The set P
is hereafter refered to as a purse. The coding algorithm obeys the
following rule : "uge first the heaviest remaining coin compatible with
the purchase”. We shall say that a <(s+1)>t/n IKW realizes (s,t). Let us

introduce some notations :

n (P) is the number of coins in P with value j ;

j=1 3 @

i

L (P) =L in_, E(P) = £ (P) ;

i
P/i is the set of coins in P with value at most i ;

i
then IP/il = L n (P) and T (P) = £(P/i) ;
=1 3 i

Q [kl or 9 : a purse with only k coins of value i (then k=1Q i=n (Q )) ;

i i i i 1

D=(d,d, ... ,d ) at-tuple of purchases ; L(D) = 4 .
12 t 3003

In the following, P denotes a purse realizing (s,t), and m=ls/t]+1.

Proposition Kl1. For every integers u<«m, r,

(r)
3 =P uQ [r] realizes (s+ru,t).
73

(k)
Proof. By induction on r. Suppose it is true up to k i.e. P =PuQ (k]
J7

(k+1)
realizes (e+ku,t). Let D be a t-tuple to be spent using P , let jo Dbe

the first j such that 4 »u (if no such jo exists L(D)&(u—1)t<s and we are
b}
done). Set

D' =(d')=(a.,d,...,d -y, ...,4 ).
J 1 2 Jjo t
(k+1)
From our "heavy coin first™ algorithm, realizing D with P amounts to

L . (k)
realizing D* with P' ' hence is possible since £(D)< s+ku. 0
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Proposition K2. The purse P defined recursively by
i

P

Q (t],
1 1

P =P U@ n ] where n is the smallest integer such that E(P )22t,
1 2 2 2 2

N

L]
(]

P uQ (n ] where n
i i

is the smallest integer s.t. E(P )2it,
i-1 i

h

o8

realizes every t-tuple of purchases D=(d , d , ... , 4 ) with E(D)XE(P ).
1 2 t 1

Proof. By induction. Por any fixed 3, 0¢j<i-1, step P -=>» P is
j J+1

achieved by applying Proposition K1 with p=j+l1, r=n ’ s=gt and therefore

i+

m=Jj+1, a

Remark. The construction in Proposition K2 also works without assuming the
n  minimal. By stopping at some level k, we obtain purses P for which the
fgllowing also holds

L(P/3)*jt, ¥ J s.t. 1<j<k
or equivalently

£(P/3)*3t, ¥ J s.t. JtIE(P) (*)
But (*) is at the same time a necessary condition for a purse P to realize
(Ek(P),t) because every t—tuple D with £(D)<£k(P) and Mix di < j must be
realized with P/j. This shows

Corollary. FPor given s and t, a necessary and sufficient condition for a
purse P with Z(P/m)»s, m=|8/tj+l, to realize (s,t) is that the m-1
following t-tuples of purchases be realizable :

(j.3.,...3) for 1Kj«<m.

optimality of the proposed construction

Now we want to prove that the purse defined by Proposition K2 is optimal
in the <class of IKW. Por fixed t, a purse P is said saturated if P
realizes (L(P),t). We firat show that we can restrict ourselves to
saturated purses. A8 before, P Adenotes a purse realizing (s,t), with
m=[8/t]+1.
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Proposition. For any P realizing (s,t), there exists a saturated PO such
that L(P°)=s and IPOiI<iPI.

Proof. We first show that P/m realizes (s,t) : Consider D=(d ), £(D)=s
and d &{m—1,m}. Such a set of purchases uses coins with valuelat most m,
hence é( P/m)»s. Then apply Corollary, which shows that P/j realizes
(L(P/j),t) if 1<j<m. ’

Define m' by

Z(P/(m'~-1)) < 8 €« £&(P/m').

It is clear that m'<sm. The purse P'= Q l':k] v (P/(m'-1)) realizes {(£(P"').t)
by proposition Kl1. Choose k s.t. B(P'n)’<s<£(P' y4m'. If the left-hand side
inequality is achieved then Po=P' is a desired purse. 1f not, consider
Po=P'u{j}, J=s~L(P'), then P¢ realizes (s,t), again by proposition K1, and
L(Po)=s. After straightforward counting, we get

iPOi=ip/m' |l - (E(P/m')-s8)/m')] < IP/m’| < IPI

We have transformed P into a saturated P° with fewer coins, o

Let now f(8,t) be the minimum number of coins for a purse realizing (s.t) :

i
f(8.t) = w («(8+1)> ). Then we have :

Propogsition. The purse P defined by Proposition K2 is optimal. That is,
i
E(E(P ), t)=IP ).
i i

Proof. By induction on i. Suppose it is true up to i-1. We first recall
that P is obtained from P by possibly adding coins with value i. Then
aettingls.r-E(P_), 8= 8 al}\gls%s_, we have s'—s=ki for some integer X.
Let P be g.n optimal sa%;:.:ated purs; realizing (s8',t) ; therefore P=P/1i (see
previous proof). From P we can construct, as before, a saturated P©o
realizing (s,t) Dby suppressing heaviest coins (with value at most i) and

possibly adding a "cheapened" extra one.

Ipol € 1Pl ~ |(8'-8)/i).
Now if (PI=f(8',t)<IP I, then £(8,t)<IP | and we get a contradiction. o
i i-
6 As totical results
For womcodes, the asymptotical behavior is studied in [11]. Focusing

on the case when t is fixed and v goes to infinity, one has
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t
w(«v> ) = f(t) logz(vVv),
with £(2) = 1.29 and f(t) = t/logz(t) for t large.

Clearly, an incremental womcode realizing (v+1,t) 1is also a «<(vHl)/t>
womcode. Hence, for fixed t

i t t b

w (<> ) 2 w(e(vHl)/t> ) = f(t) logza((v+l)/t) = w(cv> ).

i
That is, w = w (cf. [41).

From the previous section, we know that recursive purses yield incremental

K womcodes with
(i+1)t > I(P;) # it
and maximum coin of value (i+l).

Por fixed t and 1 going to infinity, the average increase of EI(P ),
i

E(Z(P ) = &P )) is equal to t, or
i+l 1

E( P I — P 1) = 1.
i+ii/td i

In others words, the purse P realizing (s =it,t) has j coins, with
i i
i
i = Lt/k =+t (i) = t In(s /t).
k=1 i
Finally, since these codes are optimal

ik
w =~ t (In{v) + O(1)).
il X

The asymptotical behavior of w is 8till unknown. It would be interesting
to estimate

il ik
R = lim sup w /W,
for fixed t and v going to infinity, and to prove that
R < 1.,

Let us summarize what we know about w,
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t large t=2 =3
10 coding wo = t logz v 2 logz v 3 logz v
ik
incremental K womcodes w = t log v 1.38 logz v 2.07 logz Vv
e
i :
vomcodes w =W =t log v 1.29 logz v 1.55 logav
t
(incremental or not)

We thank our graduate students Beveraggi, Assaraf and ULuguern for their

helpful comments.
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