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Q0. Abstract

A general method, based on the f-divergence (Csiszar) is presented to
obtain divergence bounds on error probability and key equivacation. The
method presented here is applicable for discrete data as well as for
continuous data. As a special case of the f-divergence it is shown that
the upper bound on key equivocation derived by Blom is of the Bhatta-
charyya type. For a pure cipher model using a discrete memoryless mes-
sage source a recursive formula is derived for the srror probability.

A generalization of the B-unicity distance is given, from which it is
shown why the xey equivocation is a poor measure of theoretical securi-
ty in many cases, and why lower bounds on error probability must be con-
sidered instead of upper bounds. I'inally the concept of unicity distance

is generalized in terms of the error probakility and is called the Pe-
Security Distance.

1. Introduction

Cipher systems have given birth to the possibilityv of sending secret
messages via public insecure channels. The secrecy of the messages de-
pends highly on the strength of the cipher svstem used. When evaluating
the theoretical strength of cipher systems, it is assumed that the crypt-
analist behaves rationally, that he or she knows the set of transforma-
tions, the statistics of the nessage and the key scurce. The cryptana-
list tries to estimate the message used and/or the key from the inter-
cepted cryptogram. Shennon [1] used a probabilistic model for the theo-

retical analysis of secrecy systems. This model has been refined recent-
ly by Jirgensen and Matthews [2].
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In Shannon's paper it is pointed out that if the cryptanalist inter-
cepts a cryptogram, he is able to calculate the a posteriori probabili-
ties of the various possible messages and keys which might have produ-
ced this cryptogram. This set of a posteriori probabilities describes
how the cryptanalists knowledge of the message and key gradually be-
comes more precise as more enciphered text is intercepted. Shannon used
as a measure of theoretical strength the equivocation which deals with
a simplified description of the set of a posteriori probabilities. Then
zero equivocation means that one key or message has a propability of one,and
all others zero, corresponding to complete knowledge of the original
key or message. Shannon also noticed that calculating the equivocation
for the simplest type of cipher and language structure induces formulas
which are nearly useless. His observation that the complexity of the
problem suggests a method of approach, since sufficiently complicated
problems can frequently be solved statistically, leads to the introduc-
tion of the famous "random cipher". Hellman [3] has shown that the ran-

dom cipher actually defines a lower bound con the existence of good ci-
phers.

Blom [4] followed another way, by deriving an exponentially tight upper
bound on the key equivocation for a simple substitution cipher (8SC)
whichis computationally more tractable.In Blom [5] an upper bound on
the key eqguivocation for pure ciphers is given which exhibits the same
structure as the bound in [4]. Later on, Dunham (6] derived bounds on
the key appearance eguivocation for an S3C and used the results of Blom
[4] for bounding the message equivocation. Sgarro's paper [7] is based
on an approach in codirg theory, where one estimates error probabili-
ties with respect to optimal coding problems. Sgarro made use of Kull-
back-Leikler divergence and compcsition classes to bound the error pro-
bability. His main results are asymptotic and contain the same relevant
parameters as obtained by Blom [4] and Dunham [6].

2. Bounds with f-divergence

Typical in the approach is the use of information measures. For example,
using Shannon's information measure leads to easy manipulation in a na-
tural and intuitive way between different probability distributions
(pd's). But still the underlying relevant parameter is the error proba=-
bility (Pe). By bounding Pe with information measures, a region is de-
termined in which the actual Pe can be found. The uncertainty in the
value cf Pe is resolved only in limiting cases where the bounds are

tight. An excellent and straightforward wuse of this approach is given
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by Lu [8], who uses Shannon's information measure to obtain the desired

relation and applies the Fano inequality to lower bound Pe.

In the paper we consider the encipher system as a black box. Suppose we
know the pd of the input (messace) and the pd of the output (cryptogram).
Transform the pd of the output to the input under a known key and com-
pare the two pd's by means of Pe. Repeat this for all keys and select
that key for which Pe is minimal. If ties occur then force a decision
according to an arbitrary rule. Whereas determining Pe in a direct man-
ner is quite involved, a much more natural way is to make use of the

concept of distance measures since Pe is actually a distance measure it-
self.

The study of bounds on Pe has been of particular interest in the field
of pattern recognition related to feature selection. Several distance
measures have been used to obtain bounds on Pe, like Kolmogorov's varia-
tional distance, the Bhattacharyya distance, the J-divergence, the (gen-
eralized) DBavesian distance as well as many others. Much effort has been
put into generalizing these measures from two classes with equal a
priori probabilities to classes with non-equal a priori probabilities
and from there to m classes, with m > 2. The compariscn of the various
bounds on Pe has also received much attention. More details can be found
in Kanal [9] and in Chen [10].

A generalized approach can be given by using the f-divergence, as de-
fined by Csiszar [11]. In this paper we shall usa a slight modification,
which we shall call the normalized average f-divergerce. This divergence
measure is directly related to Pe by its very definition,and it is there-
fore convenient for manipulating in this theoretical context. We shall use
a definition which is sufficient for this paper. More details can be
found in Boekee and van Tilburg [12] and in [13][14].

Before continuing, a short note about the notation. As far as possible
the notation is in agreement with that of Blem in [4][5], with the excep-
tion that the logarithms involved are taken to kase 2. Throughout

this paper we shall use the convention that capital letters denote ran-—
dom variables, boldface letters denote segquences, capital script let-
ters are reserved for sets and lower case letters represent the elements
in a set.

Let g denote an arbitrary {(finite) set with cardinal number |§|. SL is
the class of all sequences s of length L. A seqguence (concatenation of
symbols) s of length L of elements s (not necessarily different) in 8
is indicated by sL.

The cipher model is a set of uniquely reversible transformations ©Of
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T = {t.}q of a set of possible messages 4 = {m N into a set of

jra=t non=1
cryptograms E = {en}§=1’ the transformations having associated probabi-~
lities P = {pj}§=l' J is the cardinal number of the set of keys
J
K= {k,}5_..
¢ j =1

Definition 2.1: The normalized average f-divergence (for short: f-diver-

gence) for isonorm-functions f(x} is given by:

]
I

14

£, - (1:2)
- . _ w0 f 4
§ =Pl = IE - f)

where f is a convex function satisfying:

£ = lim B0 £, = lim £(x),
Kr® x x+0
fO = f_ (isonorm restriction),
fl = £(1)
and L
_ P Lik,/e")
Bo(1;2) = £ _ [ RE L. PK/EL(kz/eL)
E PK/EL(kQ/e )

is the average f-divergence for discrimination of key

k, against k2. By E , we mean the expectation operator.

1 L
=]

. _ 1-x. L _ L, _ L .
If we define f,(x) = x.f{~=) and u” = ule”) = PK/EL(kZ/e ), then it
follows that:

il o £,00) - £,uD)
b (00 - £,(% '

= - L

and hence D, = E [Fla™)].
f EL
Note that Pe = Pe(K/EL) =1~ E I[max(uL,l-uL)] = = L[min(uL,l—uL)},
E™ E

which shows that the f-divergence includes the error probability as a

special case for f(x) = Pe(x) = minf{x,1l-x).

Definition 2.2: The Bhattacharyya distance is given by

B = - log ¢,
where
s o= :(EL/K) = v Vo L (eL/kl).p L (eL/kz)
eLEEL E /K E /K

is the Bhattacharyya coefficient.
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If we take the a pricri probabilities of the keys into account, we

obtain the next definition.

Definition 2.3. THe average Bhattacharyya distance is given by

E=—10951
where
o= E(K/EL) = E L[V@ L(kl/eL);P L(kz/eL)]
E K/E K/E
= 5 /p k., eH.p . (x,,eb
kel 1 kel 2

eLEEL

is the average Bhattacharyya coefficient. o

If the keys are equiprobable it follows that E(K/EL) =k p(EL/K). If we
set f(x) = —xl-a, we find that §(x) = xa.(l—x)l_a. Then the f-diver -

gence becomes

- L
D, = E [flu)]l =& [{u™)7. (1-u7) 1,
f EX E

which is the Chernoff distance Ca(K/EL). For a=% we have

B, = Al -l m e v /el el
E E X/E K/E
which shows that the average Bhattacharyya coefficient is a special

case ¢f this f-divergence.

Similarly we find for f(x) = |1-x*/T|%:
- _ = r
Df—!i %-Mrr
where
r 1/r
- ,"\—‘
Bo=te (e el T o p e,z T
E K/E K/E

is the generalized Matusita distance.

For r=1 we have Kolmogorov's variational distance and for r=2 the usual
Matusita distance.

In the next theorem a class of upper and lower bounds on the f-cdiver-
gence is considered in terms of Pe. A sufficient condition for the vali-
dity of the theorem is to restrict the f-divergence to symmetric func-—

tions,i.e. f(l=-u)=7(ua).
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Theorem 2.1. A class of upper and lower bounds induced by Pe on the

symmetric f-divergence is

Pe < 5f < f{Pe).

Proof: First observe that f(x) 1is a normalized concave function on
[0,%) and [%,1] resp., such that f(x) > min(x,1-x) for x € [0,1] with

equality at least for x € {0,%,1};

i) since min(uL,l—uL) < f(uL) it follows that

Ef =E [f(uL)] > E L[min(uL,l—uL)] = Pe,
E T E

1) B, =k (rwh1 = E rmineta-u)) < fE  min®-a" D
E E E
= f(Pe).
[m]

Remark. The theorem also gives bounds for normalized concave functions

f (x)which do not satisfy the f-divergence. Morecover the symmetric restric-
tion is not used in the proof of the lower bound. So for the Chernoff
bound it holds that Pe < Ca(K/EL).

In fact, the lower bound stated is a direct upper bound on Pe(K/EL)-

The upper bound in this theorem sometimes cannot be rewritten (explicit-
ly)as a bound on Pe(K/EL). This can be a disadvantage if we are interes-
ted in bounds on Pe(K/EL). However, the lower bound on Pe(K/EL) can

then be computed numerically or indirectly wvia the upper bound.

Example 2.1. Bounds for the average Bhattacharyya coefficient. Because
then f(x) = ¥x.(l-x), we obtain

Pe < 5(X/EY) < VPe.(1-pe)

and

5.0 - V- 435 ) < perrsEh) < T

a

Example 2.2. Bourds for the key equivocation. Because then f(x)=%.hix)=
Y.[~x.log x - (1-x).logl{l-x)], we obtain

Pe < 5.H(K/EY) < %.n(pe),
where

H(K/EY) = £ [h(al)]
E

is Shannon's key eguivocation.
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The next lemma can easily be verified. A proof can be found, e.g.,

in Ito [15]. The lemma is illustrated in fiqure 2.1.
Lemma 2.1. The relation between the bounds is given by

Pe(k/E”) < %.H(X/EY) < 5(x/ED).

a
O.S— ~~~~~~ o ~—
- | .
f g _
(@ - - I S
Ve | N ¥n(u)
_ 7/ | N Pe (u)
// | A\
/ | \
|
T T T T T I T T 1 !
0 0.5 1

-———-'u
Figure 2.1. The basic functions which constitute the measures e, %H
and Pe.
Next p will be determined for the general case, after which we shall

return to the binary case. The model used is that of a pure cipher with
the following assumptions.

. The message and the key are stochastically independent.

. The message source is discrete and memoryless.
(M ) _[1 2 ..... X
% 91 9z -e-rr Gy

. T is the set of all unique invertible transfermations tj of M onto E,

where the index j is the associated key.
J
T = {t.}>_4.
a5y
Note that |K| = J.

- The cryptogram alphabet [ is(not recessarily)identical to M.

E eeses N
Q = g L q )
=1 -1 -1 -1
t E t 1 t. (2 t (N
3 (E) 3 (1) 3 ) 5 )
Definition 2.4. ©Pure cipher (see Blom [16, theorem 3])}.

A cipher is pure if and only if its set of enciphering

transformations T is a coset (left or right} in G and
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the keys are equiprobable. a

Remark. ¢ is the multiplicative group of all invertible transformations
of M onto M.

Following Blom [5], the set of enciphering transformations T forms a

left coset in the group G. When the keys are equiprobable, it follows
that the cipher is pure.

As T is a left coset, we may define

. J
T = tergdan

}J

h € G d R = {r.}3
where g an riiyo

is a subgroup in G.

Recalling Shannon [1], two secrecy systems R and § are similar, if
there exists an invertible transformation A such that R = A.S. This
means that enciphering with R is the same as enciphering with S follow-
ed by the transformation A. It is clear that similarity is an equiva-
lence relation. The problem of finding bounds for a cipher using the
set of transformaticons T is now transformed to a cipher using the set

of transformations R, where R is a subgroup in G.

Thecrem 2.2. The Bhattacharyya coefficient for the j:h transformation
in a pure cipher model T usingan N-ary discrete memory-—

less source with a priori probabilities q5 is given by

N
L
O (L Vg_.q - )
1j n=1 n qrjl(n) !
where
rgl € R, R is the group generating T.

ry is the identity element in XK.

Proof. Because the keys are eguiprobable and independent of the message
source it follows for L=1 zhat

1 -1
pEK(e,ki) =3 . pM(rki(e)),
where N
pM(x) I oa, . i(n-x) .
n=1 -

As stated we compare the pd cf tha message scurce with the inversely
transformed encryption pd which depends on the transformation (key)used.
By noting that kl is associated with the identity transformation, o be-
comes
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(e, k.)

I pgglerky) . Py j

137 e

fter substitution of pEK(e,ki) one easily obtains

Il 1=

2., ==
1 J on=1 r. (n)

Slj for the extension of the cryptogram (L > 1) follows directly from
the weak additivity of the Bhattacharyya distance B.

- L.log p = - log g¥,
so that
- N -
o,z =J « py. = (2 Ya_ . q _ " .
13 13 n=1 n r.l(n)
3 [»]

12 =P =

Substitution in lemma 2.1 and example 2.1 proves the next theorem.

L

For the binary case Elj reduces to p 5(v/4q,3,)

Theorem 2.3. Bounds on the average probability of error (or probability
of incorrect key identification) in a pure cipher model
using a discrete memoryless source with a priori probabili-
ties g, are:

5. (1-/(1-(4q,9) ™)) < Pelk/EY) < 5.H(K/ED) < 5. (Aqa,) .

=}

The upper bound on the key equivocation is the same as obtained by Blom
[4] using an SSC-model; however, at the same time we have a lower bound
too. Moreover, for a different cipher model we only have to substitute
the corresponding p in example 2.1, yielding the new upper and lower

bounds. This illustrates the general structure of the bounds.

By a similar argument it can be shown that for the Chernoff bound it
holds that

I L a l1-a a 1-a, L
Pe(K/E7) < C_(K/E} = %.{(q,".q, = +q, -q 7]

4

where 0 < a < 1.
This is a symmetric upper bound, which is minimal Zor a=%; that is, iZ
it coincides with the Bhattacharyya bound. This shows that the Bhatta-

charyya bound is optimal in this context.

Thus far bounds on Pe have been considered. In the next theorem some

recursive properties of Pe are stated.
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Theorem 2.4. For the average probability of error (or probability of
incorrect key identification) in a pure cipher model using
a discrete memoryless source with a priori probabilities
p > g it holds that

1) L is even: Pe(k/E"*!) = pe(x/EM) - %(p-a) ([T, VBT

with Pe(k/E%) = 0.5

ii) L is odd : pe(K/EFTY) = pe(x/E°).
Proof
i) If L is even we have
L+1 . i L+l~1i Lt+l~-i i
L+1 L+1, i L+1-i . oy P a
Pe (K/E ) = = {( . Ypra .min (———— — ., — - —)
: +1-1, L+1- T+1~ T+1l-1 1
leL 1 pqu 1 +pL 1 lql plq l+p lq
L/2 . . L/25 5 N
- F [(Lzl)plqlﬁ-l ﬂl -q. x !“i) . (ir:l)g i pqu i
1=0 i i=0 |l 4
L/2-1 ) .
L L : L, -
= g.Pe (K/E7) + %(L/z)(pq)L/2 +p 2 [(i);lq L]
i=0 -
L
= Pe(R/E") - x(p-q) (7, ba) M2
ii) if L is odd we have
L+l
2 . . :
A1l=-1i . !
Pe(K/ELH) - = {(Lzl)pqu 1/ - iii ‘pq)L,Z
i=0 d ==
Lrl Ll
2 . 2
_ [, i L-i [, L, i L-i L+1 L/2
=gq. = l(i)pq }+q.hz L(i_l)gq }—2L+1 (pq)
i=0 i=1 5
L+1 Lgl
- =Ly L 2 - [ ,L,. i L-1i] L+l L/2
= g.Pe(K/E >+(L+l)(pq) + p-‘zl L(irp @ " %(Eii) pq)
Z L= 2
Since %.(Eii) = {Li1> it follows that Pe(K/ELTlE = Pe(K/EL). o
2 2

An efficient algorithm can be obtained if theorem 2.4 is written in the

following way.
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Pe(0) = 0.5,
A(0) = p - 0.5,
B = 4.p.(l‘P)l

‘ocr L 18 even: Pe(L+2) = Pe(L+1l) = Pe(L) - 1(L)
A(L+2) = A(L).{(1-1/(L+2)).B.

lemark. Although the key equivocation is a simplified description of
‘he set of a posteriori probabilities, it cannot be transformed into

in effective algorithm of the above type for an S5C-model.

‘rom the theorem we may conclude that the behavicur of Pe for small L
.5 determined by |p-g . This is in contrast to the longterm exponential

rehaviour which is characterized by |vp - vql.

. discussion of the relations between the different bounds and the ac-
:ual average error probability is deferred to section 4, where the va-

‘iance of the bound is investigated tooc.

i« Bound extensions of the Bhattacharyva type

‘n section 2 we have considered bounds on Pe for cipher systems usirg
vinary sources. We now turn to the N-ary problem where a general bound
n terms of the f-divergence can be given. Generally speaking this gen-
ralized bourd becomes less tight for increasiag N. However, some parti-
‘ular functions allow better bounds. For this reason this section is
;ompletely devoted to the extension of the Bhattacharyya bound. Further-
wore there exists a general class of distance measures (for instance

:he gereral mean distance [14]) which are inherently based on the N-ary
sroblem. First, a general bound of the Bhattacharvve type 1s derived on
’e(K/EL) as well as on H(K/EL), after which the bound is restricted to
‘he pure cipher model. Finally, the pure cipher bound is applied in the

‘ase of a discrete memoryless source.

. direct extension of the Bhattacharyva bound can pe found by making use

f the following theoresn:

‘heorem 3.1. The upper bounds on the probability oI error in a cipher

model usirngan N-ary sourceare glven by

L ; J g
Pa(K/E”) < %.H{K/E™} < %.log ( = o)y
i=1 j=1 *°
there
Si-E L Ve LG seMe e se?)
J E K/E K/E-
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Proof., i) Kovalevski [17] has proved that
1

< H{X/EY) with T < pe < .

logm + m.(m+1).log(T£l).(Pe(K/EL) - E%l) S ol

For m=1 or ¢ < Pe < % this bound reduces to 2.Pe(K/EL) < H(K/EL). This
holds for Pe > % too,with the implication that the implicit expression
is tighter.

. J
. L L, ] i L
ii) H(K/E7) = E _(H(K/e") = E |- P (k,/e7).log P (k. /e )}
E" ] EL[ i=1 x/EV * k/EX *
[ J
L., 2
< E log (£ P (k./e7))
- EM i=1 ®/EP % }
r J J
=E log T T Y& _(k/eM.p T(k./eL)}
E i=1 3=1 K/E" * K/E°

J J
< log Z P

i=1 j=1 */
This result has implicitly been proved by Blom [4].

Combining (i) and (ii) yields the theorem.

For the pure cipher model we have

J J
. independence of kevs used: .E 015 = .E O3 ¢
j=1 J=1
. equiprobable keys . Bij = %. for i=j,

which implies the next corcllary.

Corollary 3.1. For the upper bounds on the probability of error in a

pure cipher model usingan N-ary source, we have

)

Pe(X/EV) < ¥H(K/EY) < ¥logl + I_ ¢,
i=2

where

= 0 d T = !
0 J.plj and J bk

i

13
The next corollary ensues from substitutirg p,, (Theorem 2.2} in

corellary 3.l. Because the summation of is taxen over all transfor-

°15
mations in the group R it makes no difference if we write rj(n) instead

-1
f r, .
o] r] (n)
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orgllary 3.2, For the upper bounds on the probability of error in a
pure cipher model T usingan N-ary discrete memoryless

source, we have

N

(s v

'Pe (K/E™) < ¥H(K/EY) < %.log |1 + TSy, ()
1 n=1 3

3

B,

e

here

j € R, R is the group generating T and r; is the identity element.
o
he upper bound on the key eguivocation is the same as obtained by Blom

5]. However, the proof is simplified considerakly and the general struc-—
ure of the bound becomes clear.

. lower bound can be found by using the natural multiplicative exten-
ion of the Bhattacharyya coefficient. A general (non-trivial] upper

ound for this extension does not exist (van Tilburg [18]).

heorem 3.2. A lower bound on the probability of error in a cipher mo-

del usingan N-ary source is given by

oy

) (1 - pe(k/EM ] . re(x/EL)YT 5 (-7l L

J ‘
J
. L - J-1
4)  Pe(XR/ET) > (J-1) . py ’
- J L, 1/3
here p, = E [ I P n{ks/e™) is the multiplicative extension of
E® |3=1 k/E”

‘he average Bhattacharyya coefficient.

'roof. i) Define x = x(e") = max [P (ké/eL) . Then
—_— . L
3j K/E -

J J=-1
= N L,i/J 1/J 1-x, J
oy = E L[.H P L(n./e )L/ J < E L[x / - (=) }

E 3= E

1 r/EV 3 J-t
J=-1 1, J-1
<@ xnMT e L[E‘Xh I o (-pe(x/Efn) VY (Be/ED, S
glld-1] J-1
J-1 J L,J-1
or (J-1) . EJ < (l—Pe(K/EL}) . Pe(K/ET) .

.i) Simplifying the irequality in (i) by making use of

(1-pe) . ped ! < ped7l

mplies ( J )

(o-1) . 5y UM < pe(x/ED) . .
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The prcof of the next lemma is similar to that of theorem 2.2. and
is therefore omitted.

Lemma 3.1. The multiplicative extension of the Bhattacharyya coeffi-
cient in a pure cipher model T usingan N-ary discrete memo-
ryless source with a priori probabilities 4, is given by

_ N J 1/3 L

I PP )

n=1 j=1 J

’

P

where
ry € R, R is the group generating T and °7 = J . BJ.

Substituting lemma 3.1 in theorem 3.1 yields corollary 3.3.

Corollary 3.3. A lower bound on the probability of error in a pure
cipher model 7 usinganh N-ary discrete memoryless source

with a priori probabilities 4, is given by

J
(=) .L
_ N J J-1
et S S S A < pe(k/EY),
(=20 =1 gm0 TR -
J J-1
where

I € R and R is the group generating T.

For large-sized key spaces we have the tight approximation

N J L
1/3 L
T 1 q < Pe(K/E7).
[n=1 j=1 rj‘“)} -

4. The Pe-security distarnce

The f-divergence is defined in a probkabilistic environment and there-
fore easily fits into the probabilistic model of cryptosystems proposed
by Jirgensen and Matthews [2]. In their paper (section 6) they have de-

fined the B-UD as MIN {L§H(K/EL) < B7.
I =
They also propose the (a,8)-security distance: a system is said to be
(

(a,B)-secure at L if Pr{H K/eL) 5_8} < u. In the present section the
B-UD is related to Pe and is not restricted to the key egquivocation
only. To avold confusicn we refer to this generalized 8-UD as the v-UD.
When discussing the results of the SSC-model it is observed that Pe is

a natural (theoretical) security measure, By noting this, Pe is derived
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for a random cipher (RC-model). As a result it is found that at uni-
ity distance Pe highly depends on the size of the key space. Hence
ve conclude that linking the UD to Pe leads to a better and more ade-
juate explanation of the unicity distance. Firally, the concept of

JD is generalized in terms of Pe and is called the Pe~security dis-
tance (Pe-SD). This security distance can be considered as a special
sase of the y-UD and includes the original UD found in an RC~model too.
loreover, it becomes clear that lower bounds are needed to approximate the
?e-SD. For the key equivocation this means that one must make use of
che Fano-inequality, because the key equivocation itself defines an
ipper bound.

[n this section our main concern is the binary case. For this reason
ind to avoid unnecessary notational problems the y-UD is mainly described
for the binary case.

Jdefinition 4.1. The generalized g-unicity distance or, for short, the

y=UD is defined as

L(y) = MIN{L e R |E L[g(uL)] < ¥l
L E

vhere

uL = u(eL) =P

L(kz/eL),
K/E
and g(.) is a normalized function such that g(x) > min(x,1-x) for
x € [0,1] with eguality at least for x € {0,%,1}.

a
dbserve that for g(uL) = f(uL) we have the y-UD for the f-divergence,
vhereas if g(uL) = %.h(uL) the y-UD for the normalized key equivoca-

tion is obtained.

The y-UD not only depends on the measure used, but it depends on the
nodel used (including the source) too. This is illustrated by the

following examples:

Example 4.1. For the y-UD using the key equiveocation we have

L(y) = MIN {L € R" |56 (x/E") < yI.
L

If the key and message sources are independent we find

L(v) =MIN (L e RTIH(EY) - 8D > B(R) - 2.7).
L
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If in addition the message source is memoryless this becomes

+ 2.y
=M . - L1 s
L(y) ]J:‘.JN{L € RT|{L > L(0) (1 H(K))}
with
- _ H(K)
LO) = g5y = aw
Note that H(K/EL) is convex in the sense that H(K/EL) - H(K/EL+1) >
H(K/EMY) - H(R/EYT?) and H(E) - HM) = H(K/E)) - H(XK/E'), so that

L(0) can be found as the point of intersection of the straight line
through H(K/EO) and H(K/El) with the L-axis. This line defines a lower

bound on the key egquivocation. o

Example 4.2. For a random cipher model we have

L(y) = MIN {L e R'|L > L(0) . (1-2y)},
L
with
- _ log K|
L) = [og TR D

L{0) is the original UD for the RC-model obtained by Shannon [1]. Hy (M)
denotes the entropy per symbol in a sequence of L message symbols, i.e.
HL(M) = H(ML)/L. Note that the decrease of L{y) is linear; this is not

necessarily so for other models. o

Now we are able to state the next lemma which is a generalization of
the second part of proposition 7.6 [2] with theassumptions made above.

The proof is similar and is therefore omitted.

Lemma 4.1. If Ly is the y-unicity distance, then for L > L, we have

L
vVar _[gl{u™)]
EL

prig(®) vl 2> — T .
v© + Var L[g(u )] =]
E

Let us consider an §sC-model using a binary memoryless message source
with a priori probabilities p=0.6 and g=0.4. The upper and lower
bounds on Pe (derived in section 2) are applied to this model and il-
lustrated in figure 4.1, in which the exact value of Pe is given too.
The figure shows that p and %H are loose upper bounds for small values
of L; even at UD they are still not tight. This is also demonstrated

by the next example.
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Example 4.3. (see also example 7.2 [2]).

Consider the SSC-model with p=0.7 and L=7 (RC-model: UD=8.4).

For this
model we have p(K/E') = 0.27 and 5.H(K/E') = 0.22.

Although these values are not too high they are still much too optimis-

tic since Pe(K/E’) = 0.126. .

0.5
0.4
Y
0.3 _]
0.2- -
o
" \\ ]5[_
0.1
~~ Pe
i ~~ —— Xxh(Pe)
%(1—/(1-43&)
0.0 H
B T T T T T Z|' 1 T l
o] 10 20 30 UD 40 50

— = L

Figure 4.1. Bounds on the average probability of incorrect key identi-

fication Pe in a memoryless SSC-model with p=0.6.

0.037
| // “\\\%h(u[‘)
-, L
p(u™)
0.02 ]
varlg (ul).]
E L
] Pe(u™)
0.014
A
7
0.00 L L A S & A S
0 10 20 30 Ub 40 50

—_— ]
Figure 4.2. The variance of E(uL), %h(uL) and Pe(uh) for a memoryless
SSC~model with p=0.6,
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Inaddition to all this, consider L(y) with vy constant for the different
bounds. Now it becomes clear that the g~UD (and thus the (,8)=SD,
too) is a poor and positively biased estimator of L in Pe(K/EL)=Y;
this in contrast to the lower bounds which are negatively biased and

tighter.

In figure 4.2. the variance of g(uL) is shown for the SSC-model. It

is observed that the variance of H(K/eL) is maximal at UD,which is
found for other values of p too. Moreover, the lengthof the cipher text
at which the variance of Pe(uL) reaches its maximum is always less
than the length obtained by E(uL) and h(uL). This can be explained
from the convex nature of Pez(uL); this in contrast to EZ(uL)nwhich is
a concave function (see also figure 4.3). Besides this, for the norma-
lized functions it holds that Var[g(uL)]f_E[g(uL)] since

Var[g(uL)] < E[qz(uL)] §_E[g(uL)]u This is illustrated by the next
example.

Example 4.4. (see also p. 292 [3] and p. 343 [2]).
Suppose that after intercepting L enciphered symbels it holds that

0 1 - 10710
0, with probability
20 -10
10 10 ’
in which n, is the number of spurious key decipherments. Then ﬁk=1010
and Var(nk) R 1030.
In the worst case P L(k-/eL) =p (k./.eL) for all k. and k. in K,
i L] 1 J
K/E K/E 20
so that the key space must satisfy |K| = 107 +1. For Pe we then obtain
Pe (X/E) ~ 10710 and Var L[Pe(uL)] ~ 10730,
E
Since the real key space may be larger, say for example |K| = 10200
it follows that
Pe(K/EL) ~ 10720 and Var L[Pe(uL)l ~ 107170
E

So, the interpretation of Ek (and H(K/EL) also) depends greatlyon the
size of the key space. For this reason it is necessary to utilize nor-
malized functions. Moreover, the interpretation of the variance be-

comes more realistic too.
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figure 4.4. Lower bounds (Lemma 4.1) on Pr{g(uL) < vifor the different

measures in a memoryless SSC-model with o = 0.6,

figure 4.4. in combination with figure 4.1 tells us that Pe(K/EL) for
a2 given y is more reliable than the other measures. Finally it is ob-
served that in the SSC-model Pe(K/EL) at L=0UD (UD in RC-model) is al-
nost constant for different values of p and is approximately 0.12 even

for UD = 10°.

‘rom the SSC-model it seems that Pe is a good and natural measure of
thecretical security. For this reason we shall briefly pay attention

to its behaviour inan RC-model.



508

The next theorem is a direct consequence of Hellman's definition of

anRC-model and the expected number of spurious key decipherments [3].

Theorem 4.1. The average probability of error (or probability of in-

correct key identification) in a random cipher model is

given by
L, _ 1Kk -1 -L.R -L.R
PeRc(K/E ) = I3 . 2 & 2 I3
where
HL(M)
R = log {Ml . (1 "m—m) .
Proof. There are |K| different and independent keys so that
L Ek =
PeRC(K/E y = TET in which n is the average number of spurious key de-
cipherments. According tc Hellman [3, theorem 1] we have
A = (Kl - 1.27"% yith R = log |4] - B (0). Substitution yields the
theorem. If the key space is sufficiently large we have the nice appro-

ximation 2-L‘R.

=]
In a similar way the other theorems in [3] can be adapted in terms of
Pe too.

Remark. It is important that the assumptions imposed by the RC-model

be reasonable for the real secrecy system including the language used.
For example, not only the uniformly distributed assumption must be
considered but also the effective size of the key space which depends
highly on the language used and on the length of the intercepted text.
For large L the dependence may be negligible,but for small and mode-
rate values one has to face the fact that some of the keys act similany,
i.e. key residue classes must be considered instead of the single keys.
If a key residue class is detected witha small probability of error the
remaining keys in this class are indistinguishable. At best one can
choose a key according to an arkitrary rule. This introduces an extra
error which depends on the size of the residue class. Note that data
compression reduces this extra errcr. So when cne'saim is to protect

the key,data compression must be considered with carec.

L.R. New
follows immediately from theorem 4.1 and the corresponding remark.

At unicity distance it holds that H(K) = the next corollary
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Corollary 4.1. The average probability of error (or probability of
incorrect key identification) in a random cipher model

at unicity distance is given by

up, _ |K|- 1 1
PeRc(K/E ) = ‘Klz ™ TFT .

Note that PeRC(K/EUD) = 0.25 for |K| = 2. For the S3C-model we have

found that at L=UD (UD in RC-model) PeSSC(K/EUD) ~ 0.12,which was

fairly constant even for a UD=10 . This discrepancy is due to the fact
that PeRc(K/EL) is an upper bound on Pe (K/EL) and is tight for

L >> UD.

S5C

Example 4.5. In anSSC-model using the English language for small

and moderate values of L the effective numberof keys is less than 26!
This is caused by the fact that the average number of different let-
ters that occur in messages of length L is less than 26. This is il-
lustrated in table 4.1. At UD inan RC-model the average number of dif-
ferent letters per message is about 14. Therefore the average probabi-
lity of error becomes

12
26

18

Pepc (K/ED) w ~1.107

This means that on the average 1 key residue class to every 1018

key resi-
due classes will be incorrectly identified from the effective number
of keys induced by the ciphertext of UD length. The actual PeRC(K/EUD)
depends on the size of the key residue class too, which may be rather
large. Nevertheless when we know the key residue class we know the
message too. This explains why it is almost always possible to get a

unique solution at UD. o

As stated in corollary 4.1 the UD in anRC model defines a Pe which de-
pends on the size of the key space (the larger the size of the key
space, the smaller Pe). As a result the meaning of the UD for differ-
ent sizes of the key space is also different, in the sense of Pe. Ac-
tually that is not what one prefers. It is desirable to have a UD for
which the explanaticon is independent of the size of the key space. From
the above arguments it seems that linking the UD to Pe leads to a bet-
ter and more adeguate explanation of the UD. For this reason we will
generalize the concept of UD in terms of Pe and call the new distance
the pPe-security distance (Pe-SD).
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T
Message length Average number
L of different
(Characters) letters per message

5 4.5
10 7.8
15 10.2
20 12.0
25 13.4
30 14.5
40 16.1
50 17.3
75 19.2
100 20.4
200 22.4
300 23.0
400 23.4
500 23.7
700 24.2
1000 24.6
1500 25.2

Table 4.1. The average number of different letters in L letters of

English text. This table was adapted from Meyer and Matyas
[19, table 12.3]

Definition 4.2. The Pe-security distance is defined by

L_(y) = MIN {L €IR+!Pem(K/EL) < i,
L
where

m is the actual cipher model: and

v is a value of Pe.
Remark. Depending on what one' s object is (the key or the message), the
Pe-security distance (for the N-ary case) can be based on Pem(K/EL) or
on Pem(M/EL). From the definition it follows that the Pe-SD depends on
the model "m"

Pe II.Y" .

used (including the source) and the desirable value of

The average performance of the Pe-SD is natural and clear.

Corollary 4.2. The Pe-security distance includes the original unicity

distance in a random cipher model as a special case.

Proof. After substitution of

[ - - !
Peg. (k/EM) = 1K L LR, o, =LK1
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Hp (M)
with R = log IMl . {1 = —————), one easily obtains
log [M]

MIn (L e RY|L > 222 1K[ 3,
1, - R
which is the original UD inan RC-model.

For the SSC-model with redundancy R the Pe-SD characteristics are
given in figure 4.5 for different values of y. Note that Pe at UD is

almost constant, in conformity with the predictions from the RC-mcdel.

If determining Lm(y) in a direct manner is quite involved one can make

use of the lower bounds given in the previous sections.

4
10 7

10

Lol

10

I|||l

Figure 4.5. The Pe-SD characteristics for an S5C using a binary memory-

less source with redundancy K. The dotted line represents
Pe at UD.
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Example 4.6. For a PC-model using a discrete memoryless source with
a priori probabilities p and g we have for the Bhatta-
charyya coefficient

Loc () > MIN {L €1‘R+1% .1 - V1 - (4pq)L) S 3

L

from which it is easily found that

log [1 - (1=27) 2

log (dpq)

1

Loclr) 2

The Pe-SD can be applied in the reverse direction too, i.e. for a
given L the corresponding expected value of y can be found. Using the

same arguments lower bounds on Pe can be considered to determine y.

Example 4.7. Again, consider anSSC using a discrete memoryless source
with p=0.7 and L=7 [2, example 7.2]. Jlirgensen and Matthews stated

that this system is highly insecure even though H[K/E7) ~ 0.44 is fair-
ly large. Since H(K/EL) itself defines an upper bound on Pe(K/EL), one
must make use of Fano's ineguality H(K/EL) < H{Pe] + Pe.log(N-1). From
N=2 and H(K/E’) ~ 0.44 it is found that y > 0.09. Therefore we may

conclude that the system for the given source is indeed insecure.

It is illustrated by the example why the key equivocation itself,
judged as measure of theoretical security, behaves poorly: it is an
upper bound and usually only tight for large L. Although the key egqui-
vocation may be a poor measure of security in many cases, it certain-
ly does not degrade the use of Shannon's information measure in crypt-
analysis. The strength of this measure can be explained by the natural
interpretation and accordingly by the convenient way of manipulating
between different pd's. For example, this has been demonstrated by Lu

{81.
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