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Burt Kaliski Ronald Rivest and Alan Sherman [Crypto 851 noticed a short cycle in their experiments with weak 

keys in DES. We explain this in term of fined p i n s  (messages which are left unchanged by encipherment). We 

predict similar short cycles using semi-weak keys. We indicate how Rivest el aPs experimental setup can be wed  to 

show that the group Of permutations of message space, generated by DES encryptions, is a large group. 

Notation: Let EpX‘denote the ciphertext resulting from DES-encrypting the cleanex: Xunder tbe key K. Similarly 

let D~Xrepresent decryption. k t  0 denote the key of all 0’s. and 1 the key of all 1’s. Let the input to DES !the 

clearrext) be broken into halves hio, .Ml. On round i, 1 5 i 5 16, we compute some functionfof the 48 key bits Ki 
and the 32 message bits Mi, add this 32-bit quantity to bitwise, and obtain Mi+l. So 

Mi+‘ - Mj-1 + f (K, ,  Mi), and .Mi-l - Mi+, +/(Kc Mi). The ciphertext is the pairlM17. M I 6 .  (Notice the order of 

indices, which is correct) 

The keys 0 and 1 (and two others) are known to be w o k  key3 [Davies, Crypm 821 in the sense that the 48 key 

bits K; entering into the computation on round i are the same for each round i: K, - Kr One consequence of this is 

that ~0 is an involution: E,+ = DG, so &at E:X = X. 

A new consequence of being a weak key is that Eo has 232 fixed points, i.e. messages Y for which EoY = Y. In- 
deed, for some message Y, suppose that .%f8 - M9. (There are 232 such values of Y.) Then 

Continuing, we fhdM6 = M l , ,  .._, M l  = M16, ,%fo = MI,, and Y - (MD. M1) = (M,,, M L 6 )  - &Y. In fact this is the 

only way a fixed point can arise fur  any weak key. 

Now pick a random starting message X .  and alternately apply Eo and El.  Continue until yuu return to the starting 

point X :  (€I%) X = X. In Rivest er oTs experiment, N turned out tu be around z3’. Indeed, suppuse that for some 

I < N, ( € l € ~ )  X - Y and Y is a fvred p i n t  of Eo- Then the oext application of leaves Y unchanged. so that 

G ( E I E o )  X- Y. On the next application of El. we find 

N 

I 

I 

Continuing. for J 5 I ,  (€lEo)ltJX - %(€~€O)‘-~X, and we are just re:rauinlp our s t e p .  This is because both 

4 and arc involutions. We continue until, for some J > I ,  (E1€o)”’X = 2 and Z is another fixed point of Eo. 
(We could also find rued points of El.) We again end up retracing our steps. until we return to the starting value X. 
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The cycle length N is approximately the number of trials we needed to f i d  two fued points (of either €,, or E l . )  

Since these fixed points are plentiful (232 out of 264, or 1 out of 2 ), the expected value of Nis 232, in close agree- 

ment with Rivest ef aPs results. 
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ln a similar veia suppose K is alternating 010101 ... or 101010 ... in each key half (a special case of the "semi- 

weak" keys [Davies]). Let 9 denote the complement of Z. Then we f i d  that E K -  D x ;  there are ?* values Yfor  

which €,yY - Y (namely those for which Ms - 2,); and for a random X we expect to find that EKX - X for 
33 N=2 . 

- N 

Finally, for different starting values Xi, we expect to find different cycle lengths Ni. Consider the subgroup G of 

the group of permutations on message space S M generated by the DES encvptions Ex. K E Z, . Each N; divides the 

size of G. Run either of the above experiments several rimes, finding diferent values 4 corresponding to El€* or to 

€K for one of tbe four alternating semiweak keys K. Each experiment takes a few days. Then the least common 

multiple km(N1, N,, ... , divides the order of the group, and thus provides a lower bound. So the experbenu,  

whicb were designed to detect a smaU group size ( ICl < 2 ?) mj&t be used to show a large group size 
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( I G I  > 2300?). 


