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Introduction

At Crypto'83, the present author showed that a transmitter and chosen
receiver(s) -- by secretly exchanging some side information -- could pervert an
authentication without secrecy channel to allow them to convert a portion of the
authentication information to a hidden (covert) communications channel [1]. It was
also shown that under quite reasonable conditions even the detecticn of the exis-
tence of this covert channel could be made as difficult as the underlying authenti-
cation algorithm was "cryptosecure”. In view of this open -— but indetectable --
existence, such a covert channel was called a "subliminal®™ channel. The examples
constructed in [1] were more in the nature of existence proofs than of practical
subliminal communications channels. At Eurocrypt'84 [2], however, it was shown how
to use digital signature schemes as a way of realizing practical subliminal channels
and, in particular, subliminal channels were devised using Ong and Schnorr's qua-
dratic approximation scheme [3], Ong, Schnorr and Shamir's quadratic representation
schemes [4] and Ong, Schnorr and Shamir's cubic¢ signature scheme [5] as well as
Gamal's discrete logarithm-based digital signature scheme [6]. Unfortunately, from
the standpoint of providing a secure (and feasible) subliminal channel, all of these
digital signature schemes were cryptanalyzed [7,8) shortly after being proposed. At
Crypto'84, a fourth variant to the earlier digital signature schemes of Ong, Schnorr
and Shamir was presented by Schnorr [9] which was also quickly cryptanalyzed [101].
At the 1985 IEEE Symposium on Security and Privacy, Okamoto and Shiraishi proposed
yet another digital signature scheme based on quadratic inequalities [11] which had
been designed to avoid the cryptanalytic weaknesses that had flawed the schemes of
Schnorr, et al. The cryptanalysis of this scheme by Brickell and Delaurentis is
reported elsewhere in these Proceedings [12]. 1In view of the short-lived nature of
all of these schemes, it has become a high risk venture to propose subliminal chan-
nels based on digital signatures. The motivation for doing so is that digital sig-
natures can be much easier to calculate and verify than full-fledged two-key
ciphers. As a result, the benefits (of a successful implementation) far outweigh
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the risks of perhaps having an insecure digital signature (or subliminal) channel
8lip by undetected. Based on the cumulative experience gained in cryptanalyzing the
8ix digital signature schemes mentioned above, Brickell and Delaurentis propose a
new scheme in their paper that appears to avoid the weaknesses exploited in the
earlier cryptanalyses.

It is an easy matter to adapt the Brickell-DeLaurentis digital signature scheme
to accommodate a subliminal channel, however the resulting channel has a protocol
vweakness, common to all of the subliminal channels thus far devised, that we wish to
avoid. 1In this paper we first point out the nature of this weakness and then pro-
pose a modified form of the Brickell-DelLaurentis digital signature scheme in which a

subliminal channel can be embedded -~ free of the protocol weakness.

The Protocol Weakness (Problem)

The problem is that in all subliminal channels devised thus far, the subliminal
recelver -- by virtue of the side information that must be given to him by the
transmitter to enable him to recover the subliminal communications -- is in a
priviledged position to impersonate the transmitter. In other words, the trans-
mitter and subliminal receiver have to be mutually trusting and trustworthy parties.
There are, of course, some applications in which this is the case, but in general
the transmitter prefers that the ability to receive subliminal communications not be
aynonymous with an ability to forge indetectable signatures in his stead. Since the
same protocol weakness runs through all of subliminal schemes, we illustrate it
using the channel which we proposed at Eurocrypt 84 based on the Ong, Schnorr and
Shamir quadratic representation digital signature scheme [2,4]. In the interest of
both completeness and brevity we summarize the essential points in their scheme for

the three steps: Kkey generation, signature generation and signature verification.

Key Generation

1. Tx chooses a composite n which is computaticnally infeasible to
factor. The factorjization of n is kept secret (if known).
2. Tx chooses a random u, {u,n) = 1, and calculates k = -u—2 (mod n).

u is kept secret.

3. Tx publishes n and k as his authentication key.




35

Signature Generaticn

Given a message m, (m,n) = 1, to be "signed":
1. Tx chooses a random r, (r,n) = 1. r is kept secret.

2. Tx calculates

s, = % [? +r) (mod n)
s, = %—[? - r)} (mod n)

3. The triple (m;s1, 32) is transmitted as the "signed" message.

Authentication of Signature

1. BRx receives (m; 54, 52)
2. BRx calculates
a= s? + ko sg (mod n)

3. The message m is accepted as authentic if and only if

To set up the subliminal channel, in addition to the steps taken by the trans-
mitter in the key generation procedure for the digital signature scheme, the trans-
mitter secretly communicates u to the designated receiver, RxT, for the subliminal
channel. Now, when the transmitter wishes to send a signed message m through the
overt channel and a covert message m* through the subliminal channel, where it is
still desired that both the Rx* and third parties be able to verify the authenticity

of the signature to m, the transmitter generates the signature as follows.

Signature Generation for the 3Subliminal/Signature Channel

*
Given a message m, (m,n) = 1, to be "signed" and a message m ,
*
(m ,n) = 1, to be communicated subliminally:

1. Tx calculates

8y = % (ﬂ; + m*] (mod n)
m
8, = % (m; - m*] (mod n)

m

2. The triple (m; Sys 52) is transmitted as the "signed" message.
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Authentication of the signature by either the subliminal receiver, RxT, or by
third parties 1s unaffected by the presence of the subliminal communication. The
subliminal receiver, however, knowing u can solve for the subliminal message as
follows:

Decoding the Subliminal Message

The subliminal RxT, given (m; s 52) and knowing u, calculates

1’
*
m = ————JE———:T (mod n)

+
S1 SZU

*
Yo recover Lhe covert message m "hidden" by the Tx in the signature

of m.

Since the subliminal transmitter and receiver share the same piece of secret
information, u, they are clearly interchangeable in terms of their capabilities.
This is also true of the subliminal channel based on the Brickell-DeLaurentls
digital signature scheme. In the next section, we show how to avold this serious
protocol failure in a subliminal channel embecded in a digital signature scheme

similar to the one proposed by Brickell and Delaurentis.

The Secure Subliminal Channel (?)

We borrow from Brickell and DeLaurentis the noticn of basing the cryptosecurity
of a digital signature on the difficulty of extracting approximate kth roots in Zn’
n composite. While n = p2q In their scheme, we require n = p2qr for reasons that
will become apparent later; p,q and r are all appropriately chosen primes p > q and
q > r. Again, in the interest of brevity, we summarize the essential points
involved in signing messages using the modified Brickell-DelLaurentis digital

signature scheme.

Key Generation

n
1. Tx chooses three primes p > q > r sufficiently largs that p°q is

computationally infeasible to factor. p, g and r are kept secret.
2. Tx publishes n = pzqr as his authentication key. The receivers
/3
need to know {or calculate) a bound § = O(nZ/‘). The Tx may

choose to treat & as a redundant part of the key.

3. Both the Tx and Rx(s) know a one-way hashing function on messages,

h(m): m ¢ Zn’ h(m) ¢ Zn and an exponent k 2z 4.
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Signature Generation

Given a message m, m ¢ Zn’ to be "signed":
* *
1. Tx chooses a random x e 2 (Z is the set of integers less
pqr pgr
than pgr and relatively prime to g, p and r).
2. Tx first calculates the one-way hashing function h(m), and then

calculates the signature s of m as follows:

_ [h(m) - xk(mod n)}
Par

b, y = ——E:T (mod p)
kx

c. 8 =X + ypgr

3. The pair (m; s) is transmitted as the "signed" message.

Authentication of Signature

1. RX receives (m; s).
2. Rx calculates the hashing function h(m).

3. The message is accepted as authentic if and only if

(n him) s s(mod n) < n(m) + s

In the Appendix we show that an s (signature) generated according to this
protocol satisfies (1).

This modification of the Brickell-Delaurentis scheme is at least as crypto-
secure as their scheme. If these schemes turn out to be cryptosecure, this modifi-
cation leads to the simplest subliminal channel yet devised. The transmitter
secretly gives to the intended subliminal receiver(s) the prime r. Once this has

been done, subliminal communication takes place as follows.

Signature Generation for the Subliminal/Signature Channel

*
Given a message m e Zn to be "signed"™ and another message m € Zr to
be communicated subliminally:
* *
1. Tx calculates s using m . He chooses a random u ¢ Z and

Pq
calculates

*
which is used instead of a random X ¢ qur to calculate s as

before,
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Any receiver, including the subliminal receiver(s), R%, can authenticate a

*
message exactly as before, but in addition Ri can recover m .

Decoding the Subliminal Message

1. R&, given (m; s) and knowing r calculates

% * *
S =X +ypqr =m + ur + ypgr=m (mod r)

On the other hand, since one needs to know pqr in order to sign messages, a
subliminal receiver -- knowing only r and n = pzqr -- needs to factor qu in order
to recover pqr. It thus appears that this subliminal channel is just as
cryptosecure to a subliminal receiver attempting to impersonate the transmitter as
the Brickell-DeLaurentis scheme is secure to an outsider attack.

Incidentally, if the same message were signed repeatedly, using either this
scheme or in the Brickell-Delaurentis scheme, a random appearing set of signatures

would result.

Appendix

As in the discussion of a secure subliminal channel, let the modulus n be of

the form

n = pzqr p>q>r all primes
d 4 *
and M ¢ nt S € Zn'
Theorem:
k
(1) M < s (mod n) <M+ pgr

if and only if

(2) s = X + ypqr
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W

(3) y = T (mod p)
[

) _— [M—x (mcd n))
par

.
where x € qur' y € Zp and we Z
Proof:

First, assume that (1) holds. We show that (2), (3) and (4) follow.
Given 5 ¢ Zn’ s has a unique representation of the form

S = X + ypar
where
X €Z and y e2
par D

X and y are given by

s = x (moc pqr)
and

respectively. Now form

sk = xk + kxk-1ypqr + p2q2r2 x (higher order terms)

skEE X+ kxk_1ypqr (mod n)

Now since (1) was satisfied by hypothesis

Mg sk(mod n) = xk + kxk+1ypqr <M o+ pgr

we have

k %
M % (mod n) < kxk_1y < M + par x  (mod n)

par pqar




or

and

Replacing y by y =
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k
k-1 M - x (mod n)
kx = | ———————=] =W
y = [ oo ]
W
Y=o

Next, assume that (2), (3) and (4) hold, then

sk = xk + kxk_]ypqr + p2q2r‘2 (HOT)

s =x + kxk_1ypqr (mod n) .

skEE xk + wpgqr {mod n)

and finally,

K K M - xk (mod n)

5 =x + r (mod n
par par ( )

from which (1) is an easy consequence.
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