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ABSTRACT 

We develop a simple model of computation under whicb to study the meaning of 

cryptographic protocol and security. We define a protocol as a mathematical object and 

security as a possible property of this object, Having formalized the concept of a secure 

protocol we study its general properties. We back up our contention that the model is 

reasonable by solving wme well known cryptography problems within the framework of 

the model. 

1. Introduction. 

It can be argued that cryptographers have been able to provide satisfactory solutions to only the 

simplest among the problems involving transactions between mutually suspicious parties. In this category 

lie problems like flipping coins [l]. exchange of a single bit [2]  (or a fraction of a bit [31), demonstrating the 

truth of some boolean predicates on the secret keys [41, and the Oblivious Transfer [51 [61. Harder problems 
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which in our opinion have not been completely solved include exchange of secret keys [TI,  certified mail 181. 

contract signing [91, and mental poker [lo] [lll. The published solutions to the latter problems either have 

not been proven secure or use the cryptographic definition of one-way k c t i o n .  Cryptographers use the term 

one-way function to mean a function which has whatever it takes to make its use in cryptographic protocols 

secure. In particular, (cryptographic) one-way functions reveal no partial information about their inverse 

value. Even though one-way functions are  useful theoretical obje&, the actual encryption functions 

available in the literature are not one-way functions in this strong sense. Even the probabilistic encryption 

methods of Blum, Blum, and  Shub [121 [131 have not been shown secure under multiple encryptions of the 

same message or of functionally related messages. I t  is not clear that there exists secure solutions for the 

harder problems mentioned above which assume only the hardness of inverting a n  encryption function. If 

these solutions do exist, it is likely tha t  considerably more powerful theoretical tools will have to he 

developed before they can be found. The development of such tools is the objective of this research. 

In this paper, we define a cryptographic protocol as  a mathematical object and security as  a property of 

this object. Having formalized the concept of a secure protocol, we atudy ita general properties. One of our 

main motivations for this work is the problem of combinations of protocols. It has been implicitly assumed 

in the literature that  if two protocols are  secure then these protocols can be performed sequentially without 

lass of security. This assumption turns out to be false more often than not. For example the seemingly 

harmless act of encrypting the same message uaing Rabin's encryption function under two different 

composite numbers is insecure. "he message can be retrieved in polynomial time &om the two encryptions 

1141. The use of RSA with small exponent has  similar problems [151. In our model we are able to show a 

class of secure protocols which is closed under sequential execution. We call protocols in this class s t rongly 

secure. 

Finally, we provide strongly secure solutions to some of the simpler problems discussed above. 

Solutions to more complex problems typically use these simpler protocols as subroutines. For example the 

coin dipping protocol is used in practically all solutions to the mental poker problem. Our results, while 

leaving open the problem of finding secure solutions to  the harder class of transaction problems, increases 

our confidence in the use of simpler protocols as  subroutines to more complex protoeols. 

2. The Protocol Environment  or Model of Computat ion.  

We think of a protocol as occumng between two Probabilistic Turing Machines (PTM's) A and B which 

operate synchronously. Each PTM has, besides i ts  computation tape, a one-way infinite tape for incoming 

messages. We call this tape the "mailbox" of the machine. The PTM's communicate by writing into each 

others mailbox ( Fig. 1 ). 

We call such a system a CPTM (for Communicating Probabilistic Turing Machines). The mailbox tape 

symbols are digits , unary minus ,  letters, punctuation marks , and an end-af-message marker. 

The P T M s  have the capacity of reading a symbol from its mailbox at the same time as the symbol is 

being written. This convention is not essential to the model and any of the common resolutions of 

concurrent write-read will do. 
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CF'TMs satisfy an "independence condition" which is stated as  follows. 

Independence Condition for CPTMs. 

For all j ,  the conditional distribution of A's (3's) j t h  message given the prior messages between A and B 

is independent of the state of B (A) at the time of the message. 

The Independence Condition holds for CFTMs because all communication in a CPTM occurs via 

mailboxes. 

Figure 1. Communicating Probabilistic Turing Machines. 

Our model will assume that factoring large integers is hard: 

Definition - A Blum Integer is a composite N = P Q  where both P and Q are congruent to 3 mod 4 and the  

length of P is equal to the length of Q.  

Assumption - Factoring Blum Integers is hard: For every poly-time probabilistic Turing Machine M, and 

any polynomial p, the probability that machine M factors a random n-bit Blum Integer is asymptotically less 
1 than ---. 

p ( n )  

3. Protocols Under  the  Assumption that Fac tor ing  Large  Integers  is  Hard. 

We now turn to the study of CPTMs whose parts A and B have computed and interchanged keys N A  
and Ns with the following properties: 

(let N be the key) 

i) The Jacobi symbol f5) = I N 
ii) N has exactly two distinct prime factors. both odd. 
iii) if I is a quadratic residue modulo N , then there 

exists roots x and J of z with opposite Jacubi symbols 

From now on when we refer to a number being a (public) key, we mean a number having properties i- 

iii. Under the assumption that factoring Blum integers is hard, A and B can generate (factored1 keys who% 

factorization can not be computed by the opposite party. We will later show that there exist protocols such 

that the parties to  the CPTM can convince each other that  N A  and N s  are keys without helping each other 

factor the key. Note that  not all numbers satisfying properties i-iii are Blum integers. We choose this 
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definition of public key because we know of no secure protocol by which the parties can convince each other 

that N A  and NB are  Blum integers. On the  other hand these properties are enough to solve the problems 

typically solved by protocols using Blum integers. 

4. Initialization of a CPTM. 

The initial input to both A and B is a positive integer n, called the "security parameter" of the  CFTM. 

The following steps are  then carried on: 

Step 1 - A computes a key NA of length n and writes it on B's mailbox. 
Step 2 - B reads Fr', from its mailbox. 
Step 3 - B computes a key NB of length n and writes it on A's mailbox. 
Step 4 - A reads NB from its mailbox. 

We start counting steps after initialization is completed. i.e. when we say the k-th step we mean the  

k-th click of the common clock after initialization. 

We can not assume tha t  A and B follow the  initialization protocol. However, we will assume N~.h's are  

odd, composite, have length n, and satisfy property i) above. We can uafely assume these properties because 

they are verifiable in polynomial time by a FTM without access to the factorization of NAflB. We will later 

exhibit protocols through which A (B) can prove to B (A) tha t  properties ii) and iii) hold without helping the 

opponent factor N A  WE). 

5. The Definition of Cryptographic  Protocol .  

The concept of cryptographic protocol is used in various ways in the literature. The most common use 
of the term refers to two or more programs or computers with various communication capabilities. An 

alternative definition, proposed in [l6], [17] , [ l8]  and [19] considers a protocol as a sequence of operators on 

messages. We will consider only 2-party protocols in which the parties are mutually distrusting. Our 

definition of cryptographic protocol refers not to the machines executing a communication but to the rules of 

such interaction. We will also ignore the problems of saboteurs or eavesdroppers on communication lines. 

Definition - A protocol Il is a pair [L,t(nj] ( L EN , t(n) a polynomially bounded function of n 

of predicates 

and two sets 

P , A [ m l A ,  . 1 ,m,*,nIB, . . . ,m,-,') 
P,'(rnlA, . . .n,* ,mlB. . . . , r n r B )  for i = 1 ,... L. 

We denote the sequences {P!} , {Pp} by FAT respectively. L and t(n) are called the 'length" of n and 

the "time between messages" of IT respectively . The semantics of this definition is as follows: nlA is the 

state of B's mailbox a t  time :2i - l ) . t (n ) ;  mLE is the state of A 5  mailbox a t  time Zi.t(n). It is the 

responsibility of A to see that  P: is true for all i It is the responsibility of B to see that Pf is true for all i . 

The sequence ( rn f , rn? ,  . . . ,rnf,mf) is called a conversat ion between A and B. The reason we define 

rn?, rn,B as states of mailboxes rather than  as  messages is that the former is always defined whereas the 

latter may not exist if one of the parties does not follow the protocol. As a consequence of this definition we 

may define the probability distribution q,, of !mlA,  . . . , m L A , m l B ,  . . . , r n L B )  for fixed PTM's A and B. 



91 

We will typically leave tcn) unspecified and  argue simply that  all computations necessary between 

messages can be done in probabilistic polynomial time. If A and B are fixed PTMs and II is a protocol we 

denote the ordered triple (ll,A,B) by lT(A,B). 

Let the symbol A stand for logical AND. We define the predicates 

P A ( m I A , .  - - ,mLA,mlB, . . . , r n ~ ~ )  , P B ( r n L A , .  . . ,rnLA,mIB,. . . ,mLB) as h,' and k: respectively. 

Protocol 1: Verifying that N A  satisEes property iii : if z is a quadratic residue modulo NA , then tbere 

exists roots I and y o f t  with opposite Jacobi symbols. 

Blum [I] proposed the following protocol : 

For i := 1 to 100 

1. A sends to B a random quadratic residue x ,  mod N A .  
2. B sends to A b, = 1 or - 1 at random. 

3. A sends to B a mot of x, mod NA with Jacobi symbol 6, .  

If NA satisfies property iii , then A will always be able to perform step 3. Otherwise , the probability 

that A can always respond at atep 3 is 5 .2-100. 

In our  formalism this protocol is written as  follows : 

111: Do 100 times the following protocol 

P;' = (mi'CZNA) 

P? = (mfC{ - l . l f i  

Pp = (if Pf then (rnf)' rnf( mod N,)  and (-1 = rnf) 

Pf = ( m i  = "thanks'? 

mt 
N* 

Notice that  this protocol does not tell B how to behave in order to obtain proof that  NA has property iii. 

( Whereas Blum's version explicitly states how the parties should choose their messages). However, we can 

show that there exists a poly-time PTM B which follows the protocol such that, a fkr  the protocol, either A 

has been caught cheating , or the probability tha t  NA satisfies iii is 2 1 - 2-IW. Throughout this paper we 

take the position that a protocol merely allows the parties to behaw so as to achieve the desired g w l ,  it cnnnot 

tbrce them to do so. 

6. Security. 

We must first develop some notation 

Definition - A keygenerator with input n generates a random factored n-bit Blum integer 

DeGnition - A poly-time FTM A k an honest player  for protocol II if: 
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1) its first step is a call to a key generator 
which returns (P,,Q,) 

2! it goes through the initialization process with NA = PA.QA 

31 for all poly-time WM B the probability of 
P A ( m l A , .  . . .mLA,mlB, .  . . ,mLB) is 1. 

Sine FTM’s have limited computational power it is possible that there exists no honest player for a 

particular protoeol. This motivates the  following definition : 

D e w t i o n  - A protocol ll is A-feasible if there exists an honest player A for ll. We define B-feasible 

similarly. A protocol is feasible if it  is A-feasible and B-feasible. 

Definition - We say a protocol is A-secure if there exists a n  honest player A for II such that for ail P O ~ Y -  

time PTM B the probability that  B lactors N A  goes to zero with n. The definition of B-secunty is 

analogous. We say a protocol is secure if it is both A-secure and B-secure. 

We now d e h e  the notion of a simulatable player. This notion is essential for proving security of 

protocols. we want to put in precise terms the intuitive notion that if machine B can simulate the behavior 

of machine A in the protaal , then i t  is not possible for A to have released enough information for B to 

factor As key. 

There are a number of alternative definitions for the notion of simulator. Do we allow a machine 

which ie simulating A to look at  B s  coin-tosses? Precisely what is to be simulated? In [4] (henceforth called 

the GMR model), simulators are  considered which simply attempt to produce a sequence of messages with 

the same probability distribution as the actual conversation between A and B. That is, no attempt is made 

in that model to duplicate the environment in which a conversation between A and B takes place. For 

example. if B sends a random quadratic residue I mod NA to A, and A replies with a random square rOOt Of 

x modulo NA, then i t  is easy to produce conversations with the same probability distribution as the  actual 

conversation between A and B. To do this a machine M simply computes a random number s modulo NA 

and lets x 2  mod NA be the message from B to A and I be the message from A to B. In the GMR model A is 

said to release 0 knowledge to B. On the other hand, we know that A has a chance of a t  least of 

releasing the factorization of N A  in this protocol (this is Rabin’s Oblivious Transfer Protocol 181). This 

awkward problem in the GMR model has  no further consequence since, in that model as  in this one, we are 

really interested in machines A which release no information to any machine B. For example, suppose B’ is 

as B above except that  i t  sends A the factorization of NA if it obtains it. Then it is clear that  there is no 

machine M which simulates A against B unless factoring is in RP. Hence A does release knowledge to B. 
even though it does not release knowledge to B. In the GMR model machine A is said to release 0 

knowledge if for all machines B, it  releases 0 knowledge to B. 

1 

More serious drawbacks of the  definitions in the GMR model are that i) i t  does not seem to go beyond 

the obvious statement that  A releases no knowledge if and only if no machine B can put howledge in the 

communication tape affer a mnversation (and hence it does not seem to provide a tool for the construction of 

0-knowledge protocols) ; and ii) it  is not clear whether or not the sequential execution of a polynomial 
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number of 0-knowledge protocols is still 0-knowledge iconcatenation of protocols is a major goal in this 

model). 

We will require that  a simulator for machine A against machine B not only produce a possible 

conversation with the same distribution as conversations between A and B, but that it does so while 
duplicating the interaction that B has wi th  A. It would be tw restrictive to require a simulator to do 

this all the time , since it seems tha t  in tha t  case a sirnulatable machine A could not make use of t h e  

factorization of its key. Thus we relax this condition by requiring that a simulator succeeds in simulating A 

with a constant probability greater than 0. In addition to this we must require that  a simulator realizes 

whether or not it succeeded in simulating A. otherwise simulatable protocols turn out to be 

unconcatenatable. We now formalize these definitions. 

Let Il be a protocol and  B a player. Let A be an honest player which generates a random n-bit Blum 

integer N A  for a key. Recall that  an honest player A will have put rn: in B s  mailbox by time (2i - 1MnL 

Let S be a procedure which, when called by B a t  time (28 - l M n ,  returns a message m?. Let B[Sl be 

machine B except that a t  step (2i - lPt(n) (after initialization) of B, B[S] calls S and sets rnf = m f .  we 
also give B[Sl same extra power as follows: at any time B[S] may return to an earlier configuration a n  re- 

start the computation from there. However, we will require that B[S] run in random polynomial time. we 
also require that S and B satisfy the Independence Condition for CPTMs defined in section 2. Notice tha t  

B[Sl is a poly-time F'TM with input n, N A .  Thus, if NA is a random n-bit Blum integer, the probability tha t  

B[S] can factor N A  is asymptotically 0 by assumption. 

We define on to be the  probability distribution of ( rn f .  . . . , m f , m f , .  . . ,mf) in BE1 with security 

parameter n. Recall that  cp, is the  distribution of conversations between A and B with security parameter n. 

Definition - Let n be a p r o w l  with A a n  honest player. We say S is an A-simulator for n if for n 

sufficiently large, for all players B, and for all pairs (NA,NB) ,  machine B[S] satisfies the following conditions: 

i) the probability p of P A ( Y )  given NAj'J~ is 
a constant greater than  0 and the event P " ( Y )  
is independent of B s  coin tosses. 

ii) S decides PA(x) with error probability 0 for all x. 

iii) a,(x I P A ( Y ) f l A p s )  = cpR(x I NAJB! for all I. 

where Y is a random variable which assumes values Cmf, . . ,m&,mf,  . . . ,mf) in B[Sl. 

Since BE1 can return to earlier configurations we see that the constant p can be made exponentially 

close to 1. For example if p = - for machine B[S] we can define another machine B'[S] which runs BE1 and 

if P"(y, is not true, runs BIS] again. The probability that P A ( Y )  is true for B'[S] is now -. In general. if 

we allow for k trials of B[Sl, the probability of P A ( Y )  is 1 - ( - )'. 

Definition - Let n be a protocol and A a n  honest player far Il. We say A is simulatable if there exists a n  

A-simulator for A. 

1 
2 

3 
4 

1 
2 
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Theorem 1 . Let n be a protocol and A an honest player for il. If A is simulatable and S is a simulator 

for A then for any pair of keys ( N A f l ~ ) ,  the probability that B factors NA given ( N A J V B )  is less than a 

eonstant times the probability that  B[Sl factors N A .  The constant is independent of the keys. 

Proof: Fix A , B , NA , NB.  Let S be an A-simulator for l l (AB).  Let X , Y be random variables which 

assume values (mf ,  . . - ,mf ,mr ,  . ' ,mf) in ll(A,B), and (mf ,  . . ,mf,mf, . . . ,nf) in B[Sl respectively. 

Let E be the event that B factors NA in n. Let E' be the event that B[S1 factors NA. For the remainder of 

the proof all probabilities are conditional on the values of NA,NB.  

Let S i  be the message space and z = ( m f ,  . . . ,rnf,mf'. . . . ,m,B)fQ2'. Recall q , ( x )  = u,,(x/P"iY)) and 

note that the independence condition on S implies that for all x, Prob.(EIX = I) = Prob.(E /Y  = 1 1 .  

Thus, 

Prob. ( E )  

= j p , , (x ) .Prob . (E  I X = 11 

= la ,Ir lP"(Y)) .Prob.(E'  I Y = f) 
T 

= J u . ~ ~ P " ( Y ) ) - P ~ o ~ . ( E '  I (Y = x ) h P A ( Y )  ) 
.I 

= Pr&.(E' I P"(Y)) 

Prob.(E '1 
5- .V P 

The third equality is justified by the fact that  if P A ( Y )  is true then Y = x implies P A ( Y ) .  

Coroh-y 1 . Let n be a protocol and A a n  honest player for n. If A is aimulatable then n is A-secure. 

Simulatability is a strong requirement. It is conceivable that a protocol is secure without being 

simulatable. This motivates the following definition : 

Definition - A protocol n is strongly secure if there exist honest simulatable players A and B for n. 
Strongly secure protocols have the desirable property that they release no partial information about the 

factorization of the player's private keys. This results in strongly secure protocols being "concatenable".That 

is. a polynomial number of strongly secure protcals can be run under the same keys. We now formalize this 

idea. 

Dehition - Let A1,Az be honest players for protocols lllJ12 respectively. The machine A3 = A L ~ A Q  is 
defined by the following rules : 

A3 runs a s  A I  until A l  halts. 
Then A3 r u n s  a s  A2 except that. rather 
than obtaining N A  from the key generator, it skips 
the initialization routine using the keys NA,V, 
known to A I instead 

-44  4-4 
henition - Let n, = ( L l , t ~ ( n ) P  'P '1 and ll, = (L,,t2(n),P ' p  ') be two protocols. 
concatenation n, 5% 112 of l l J I 2  as  follows: 

We define the 
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PA' = pfl for i = I.. . . .L~ 
P,":,, = P;Z for i = I, . . L~ 

P , B ~ , =  p,BIfor i = 1,. . , . L ~  

P,":+, = $2 for i = I, . . . L ~ .  

In other words, concatenation of two protocols is simply the concatenation of the two sequences of predicates. 

Now we are ready to show tha t  simulatable protocols are concatenable. Even though the statement is 

intuitively true, the proof is somewhat technical. 

Figure 2.a) depicts a CFTM composed of a PTM B and an adversary A,IA, where A,&,  are honest 

sirnulatable players for two protocols II,,n, respectively. A machine R ,  (the "restriction of B to HI)  is 

defined h m  machine B in  the following way: RB behaves as B until A, starts executing, a t  which point i t  

halts. Figure 2.b) depicts the same PTM B but with A,,A, replaced by simulators S1S2 respectively. Figure 

2.c) depicts F"M B with adversaries S1 and then A*. The random variables X1,Xz,Yl ,V2,Z~Z~ represent the 

messages between A t - B  , A2-B , S l - B  , S2-B , Sl -B , A z - B  respectively in the given configurations. 

Figure 2 

Theorem 2 .  Let l71,n, be A-secure protocols with honest simulatable players A l e 2 .  Then A3 = A , ( A z  is 

an honest simulatable A-player for n3 = l-I1%II2 . 
ProoT: Honesty of AllA2 follows immediately from the construction of A,IA2. Thus we need only show 

simulatahility. We must show that  for n large enough, for all F'TM B, for all a,b,h"d&'B, 

Prob.(XI = UPZ = b )  = Prob.(VI = a , V 2  = b 1 F 4 ? V I )  APA2(V,)I (*) . 

Let n ,  the size of the public keys, he large enough so that the simulatability conditions hold for both A I  

and A Z  with simulators SI a n d  S, respectively. Fix a ,b f lA ,NB.  From now on all probabilities a re  taken 

conditioning on the values of N A & ~ .  If -PA1(u) or - P A z l b )  then both sides of (*) are zero. Suppose PA'(=)  

and PAZ(bt .  If PAl (a )  and Pmb.!VI = ui = 0 then, by the simulatability conditions, both sides of (*I are  0. 
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Suppose Prob.tV, = a) > 0 

We first show that  Prob.(X, = a J 2  = b )  = Prob.iZ, = a Z Z  = b I PA1(Z l ) ) .  Note that this is implied 

by the 2 equations 

(i) Prob.(Xp = b I X I  = a )  = Prob.(Z2 = b I ZI = a )  

(ii) Prob.(XI = a )  = Prob.(Z, = a 1 PA’(Z1l ) .  

and 

The first equation holds by the Independence Condition for CPTMs. Equation (iil holds by simulatability 

Now we show that 

Prob.(Z, = a,Zz = b I P A ’ ( Z l ! )  = Prob.tVl = a.V,  = b I PA:(Vl lhPA’(Ve))  

This equation is implied by the two equations 

(**) 

(iiil Prob.(Z, = Q I PA’(Zl)) = Prob.(V,  = a I P A i ( V 1 : M A 2 ( V Z ) l  

(iv) Prob.(Z2 = b I 2,  = a) = Prob.(V, = b I P A 2 [ V 2 ) h V ,  = a). 

Equation (iii) can be shown as follows: 

- Prob.(V1 = aAPA1(V1) 
- 

Prob.(P 
- Prob.(V, = a) - 

Prob.(P A ‘(V,)) 
= Prob.(VI = a I P ~ ~ ( v , ) ) .  

The second equality holds because the  event P A Z ( V z )  is independent of the events ( V ,  = aAPA’(V1)) and 

PA1(V1) by definition of simulatability. The third and fourth equalities hold because we have assumed 

P A Y O ) .  

Equation (iv) holds because Sz is a simulator for A2 and for an machines B. -In. particular, Sz is a 

simulator for A2 executing the protocol against a machine M which is B [ S J  with the condition that  M 
chooses it’s coin tosses randomly and uniformly only among those which yield 2, = a. Machine M is 

depicted in Figures 3.a) and 3.b) playing against A, and S2 respectively. Note that 

Prob.(V2 = b I PAz(V2)AVI = a )  = Pmb.(U2 = b I PAZ(U,)) = Prob.(T2 = b )  = Pmb.(Z,  = b I Z ,  = a). 

Combining equations (*I and (**I completes the proof of the theorem .Q.BD 
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Figure 3. 

Theorem 3 . Protocol 1 is a strongly secure protocol 

ProoE Protoeol 1 is a concatenation of 100 protocols 

n,: Pf = (rn:eZ.vA) 

Pf = ( rn fC{- l , l f i  

Notice tha t  Bob does not use his key, therefore we need only be concerned about the protocol being A- 

secure. By theorem 2, it is enough to display a simulatable algorithm for A in l l .  Let A's algorithm be the  

following: 

message 1: 
Send a random quadratic residue rnfEZNA 

message 2: 
If mf is 1 or -1 then send the  root of m: with 
Jacobi symbol rnf else send "you are  cheating" 

Then the following algorithm is a n  A-simulator: 

message 1: 
Choose a random number ~ € 2 ~ ~  and send mf = x 2  mod .VA 

message 2: 
if rnf is 1 or -1 and the Jacobi symbol of I modulo N A  is rnf 
then send nf = z mod NA. If rnf is not 1 or -1 then flip a fair coin. 
If the outcome is heads send rnf = "you are cheating". If the outcome is 
tails, machine BE] returns to the initial configuration and the simulation 
is repeated. 

The last instruction of machine B(S] may seem intriguing at  first glance. However. it is necessary in 

order to satisfy properties i'l and iii) of a simulator. The problem is the following. if B does not send 

mf = +1 then S has a chance of only of satisfying P A .  Therefore, if S simply responds "You are 1 - 
2 
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cheating" when B sends m f  * i L ,  the conditional probability of a conversation x given that S satisfies P A  

is biased towards those conversations in which B sends rnf t k 1. 

If we consider B's messages as questions to A (or S) then the problem is that  all questions are easily 

answered by A, whereas the probability tha t  S can answer questions may not be the same for all questions. 

Machine B[Sl must incorporate instructions to homogeneize the hardness of replying to B. 

Having said this, verification tha t  B[S] satisfies properties i )  to i i i l  of a simulator is easy and is left to 

the reader. 

7. Strongly Secure Solut ions to Some Cryptographic  Problems. 

In this seetion we provide strongly secure solutions to some well-known cryptographic problems 

Protocol 2 - Coin Flipping Into a Well. 

The purpose of this protocol is for Alice to give Bob a random bit. However, Alice must not know which 

bit she gave him until Bob displays the bit. Bob, on his part, cannot lie about which bit he got. Since we 

have shown that  Protocol 1 is strongly secure we may assume that N A  satisfies property iii of a public key. 

The pmtocDl is ns follows: 

IT2 : P f ( m f )  = ('let's flip a coin into your well'? 

PB(mf)) = (mTCZN,) 

P Q ( m f )  = Cm$€{I , - ln 

P f ( m f )  = ((rnf)' = rnf mod N A )  

Alice's and Bob's algorithms are as follows: 

Alice : 
message 1: 

send mf = 'let's Rip a coin into your well" 

message 2: 
send rnf = +1 or -1 a t  random. 

Bob : 
message 1 : 

choose I at random and send rn f  = x z  mad N A .  

message 2 : 
send rn; = x.  

The value of the coin-flip is ( L 1 . b .  Bob may display the value of the win-flip by displaying the mot of xz 

that he knows. Until he displays the coin-flip at message 2 (in!), Alice has no idea of what the value of the 

coin-flip is. If Alice is honest she can be sure tha t  Bob cannot lie about the bit he got because he knows a t  

most one root x of x2 mod NA (and, of course, -XI. 

N A  

This protoml is simulatable because neither party uses the factorization of their keys. Assuming tha t  

Bob knows a root x , the  probability tha t  the coin-flip is 1 is the same as the probability that the coin-flip is 

-1. If Bob is honest, he can be sure tha t  the coin-flip is unbiased because, from Alice's point of view, the 
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probability that x has Jacobi symbol 1 is the same as  the probability that I has Jacobi symbol -1 

An important observation, which will be used in protocol ll,, is that a simulator S can apriori choose 

the value of the coin-flip provided i t  chooses it a t  random. To do this S sends rn f  = +l at  random. If the 

outcome of the coin-flip is  different from the  one S wants, machine B[S] can simply restart computation at 

the beginning of the protocol execution. In random polynomial time, S can obtain the flip it originally chose. 

Protocol 3 - Generating a r a n d o m  element in ZNA. 

The coin-flipping Protocol 2 can be used n = lNAl times to generate a random element in ZN*. 

Protocol 4 - Verifying t h a t  N A  has exactly 2 prime factors, both odd. 

This problem has been studied extensively by mathematicians. To this date, an efficient algorithm to 

determine the number of distinct prime factors of a composite number (the index of the number) has not 

been found. It is possible that  no such algorithm exists. It is a remarkable achievement of the research on 

interactive proof systems that  a proof that  the index of a composite number can be shown to be 2 by a n  

omnisaent party without releasing any additional information about the composite number. 

The crucial observation for this solution is due to AdIeman 1201. He suggested using the fact that  if A’A 

has more than two prime factors, then at  most - of the numbers in ZhA are quadratic residues. The 

pmtacol uses Protocol 3 to generate M random numbers with Jacobi symbol 1 in ZNA. Having done this, 

Alice reveals a square root of each of the numbers which is a quadratic residue. Bob accepts the number N A  

if Alice reveals a t  least aM square roots. The parameters M and a are chosen so as  to obtain a negligible 

pmbability of error a t  the minimum possible cost M. This solution has a twwsided error probability. It is 
possible for Alice to convince Bob that  N A  has a t  most 2 prime factors when it in fact bas more than 2, and 

it is possible for Alice to be unable to complete the proof even though NA has exactly two prime factors. We 

now derive a n  approximation to the  optimum value of a. 

1 
8 

Let Y be the number of quadratic residues among M random numbers modulo N A .  Let p be the 

probability that a random number in ZNA is a quadratic residue. By the Central Limit Theorem (see any 

probability textbook, for example [21])  the random variable 

z=+  
MpU - p !  

is asymptotically 0!0,1) ( normal with mean zero and standard deviation 1 1 

For M in the hundreds and p C [ L  1 1  , @(0,11 is a good approximation to the distribution of 2. Fmm 
8’4 

now on we compute probabilities under the assumption that 2 has distribution CP(0,l) 

Let c, be the probability that  Bob rejects NA when NA has exactly two prime factors. Let cz be the 

probability that Bob accepts NA when N A  has exactly three prime factors. Then, if NA has exactly two 

prime factors we have 
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Similarly, if N A  has exactly three prime factors we have 

Lemma 1 .  

- 12 - 12 
i -1 

-- 2n 
-2e x Ifx is negative then dt < 

Proof: x < 0 and t d x implies -1' c - x t .  

- M __ -M _. 

Theorem 4 .  For all values of a, e " < MQX{E~.EJ c e 75 asymptotically. We can achieve an error 

6 - 1  probability in this range if' we let a = ~ 

20 . 
ProoE Since we seek to minimize Mar{cl,eJ, it is clear that  the optimal value of a is somewhere between 
1 1 8 and -. Thus (4a - 1) < 0. Using the lemma , and substituting in (4u - l)*& and 

4 

- @ a  - 1 ) 6 / f i  for x in (I! and (11) respectively, we get 

,-bW 
Since the parameter b 

dominates the expression for the bound , we would like b to be the same for E ,  and c 2  , i.e. we want 
*' Thus both € 1  and €2 are bounded above by functions of the form a 

(4a - 1)* (8u - 112 f i - 1  1 
14 . Solving for a we get Q = ~ 2o , which makes b zz -01339 > ?.j. Thus -- -- 

6 
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I? r 2  _ _  
A similar argument , involving the !asymptotic1 inequality e 

t < 0 shows that M A X { ~ ~ , E ~ }  is asymptotically greater than e l4 .4LD 

> -- t  e " - 8 )  for 2 > p > 0 and 
-I __ 

We have shown that, even though, this protocol achieves exponentially small probability of error, we 

must use M in the thousands in order to achieve truly negligible probability of error. 

This protocol requires the communication of a very large number of bits. It is expensive in 

communication and computation. This is also the fastest known protaol for this problem. Goldwasser, 

Micali, and Rackoff [41 have an elegant but  expensive 0-knowledge interactive proof by which Bob can prove 

to Alice that he knows a root of a quadratic residue modulo her key. Using this technique a 0-knowledge 

protocol for this problem c a n  be constructed which is essentially a hundred times as expensive as our 

protocol. Protocols for harder problems, e.g. Blum's certified mail protocol, may require the execution of 

this protocol hundreds or thousands of times for different keys. This illustrates the practical need for 

protocols which use a single key. 

It would be straight-forward but  cumbersome t o  write this protocol in our formalism. Instead, we write 

it out in a hybrid notation and argue informally that  it is simulatable. 

II,: Do 3000 times 

i) Execute Protocol ll3 to generate a random number x in ZN,. 

ii) If the Jacobi symbol of x mod N A  is 1 then Alice sends the 
message "non-residue" or a square root of x mod N A .  

Theorem 5 . n, is strongly secure. 

Proof: The reason that  this needs to be proven is that it does not follow immediately from Theorem 2. This 

is because TI, is not a concatenation of strongly secure protocols. However, if Alice follows the 

algorithm given for I I 2  and honestly executes instruction ii) of n, then we can argue that  Alice is 

simulatable. 

We argue informally as follows: A simulator for n3, the protml which generates a random element in 

ZNA, can choose apriori what number is to be generated (see the note on this matter in the description of nd 
provided it chooses it a t  random. Thus S can simulate A as follows: i) S %ips a fair coin to decide whether 

the number generated in the simulation of 113 will have Jacobi symbol 1 or -1. If the number is to have 

Jacobi symbol -1 then S simply generates a random element with Jacobi symbol -1. If the number 1s to have 

Jacobi symbol 1 then S flips a fair coin to decide whether it will choose a quadratic residue o r  a quadratic 

non-residue. Then S generates a random element in rEZN4. If I in step i) of IT, is to be a non-residue then S 

sets x = -rz mod NA. If x is to be a residue then S sets x = r z  mod N A .  The reader can verify that  x, 
chosen in this way, is indeed a random element in ZN,. If x is a quadratic residue then S knows a square 

mot of x and thus can execute step ii) of l-Ir.plD 

Note that the properties of public key N A  are crucial m thls proof. This is because if IV, is a public key 

then -1 modulo N A  is a non-residue with Jacobi symbol 1. If Na was an arbitrary composite then this 

protocol would not be simulatable since there i s  no known effective algorithm to compute a non-residue with 
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Jacobi symbol 1 modulo an arbitrary composite. This completes the proof that Alice and Bob can convince 

each other that NAN8 are valid public keys without helping the opponent factor the key. 

Protocol 5 . The Oblivious Transfer. 

A strongly secure variant of Rabin's Oblivious Transfer, called 'The Probabilistic Channel", has  been 

implemented in [221 based on an earlier work on the Oblivious Transfer [61. 
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