AUTHORIZED WRITING FOR "WRITE-ONCE" MEMORIES

Philippe Godlewski and Gérard D. Cohen
ENST, Département SYC,
46 rue Barrault, 75013 PARIS, France.

Abstract
Ve describe a method for storing information on a "write-once" memory with the following

feature : reading is easy, whereas writing is difficult, except for the designer.

1. Introduction

Ve start from the following problem, (see [1] for details and terminology) : how to reuse a
"Write-Once" memory. That is, we have a storage medium, called vom , consisting of n binary
positions or wits , initially containing a "O". At some step, a wit can be irreversibly
overwriten with a "1" (e.g. by some laser beam in digital optical disks or burning microscopic
fuses. in PROMS).

Ve consider a coding technique, which we call coset coding ([2], [3]), based on error-
correcting codes, enabling many rewritings on a wom. We denote by C[n,k] a binary linear code
with length n and dimension k. It is used to encode r=n-k bits on a wom as follows : every mes-
sage s€F37* is one-to-one associated with a coset of C, say x+C, having for syndrome s. That is
s=x.H®*=s(x) where B is a generator matrix for C*[n,n-k], the dual of C. To encode s (or
"write" or "update") envolves finding a vector y in x+C (i.e. with syndrome s), and writing it
in the wom. Then writing thriftly (using a minimum number of wits) needs a complete decoding
algorithm in the sense of error-correcting codes. Reading on the wom (or decoding the womcode)
is simply a syndrome computation retrieving s from y. Notice that, whereas the writing pro-
cedure is NP-hard for general codes, see [4], reading only takes 0(n?) mod 2-additions. This
is a desirable feature for many applications, where the most frequent operation is reading, but
updating is exceptionnal. Our method also has a cryptographic flavour, inspired by McEliece
([5]) which we describe now.
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2. An easy reading - reserved writing procedure

A disk designer D proposes a data storing system which enables him to keep "economic" control
on updatings. This "authorized writer" chooses a code possessing a simple complete decoding
scheme vhich allows him easy updating. He keeps secret H’, the parity matrix of the code, and
publishes H, a random permutation of the columns of an equivalent matrix MH’. Then
H=MH' P,
vhere M is a (n-k)x(n-k) invertible matrix, and P a nxn permutation matrix. A guaranteed
number of possible updatings is also made public. Everybody can use H to read in the wom by
syndrome computation. However, anyone, apart from D, willing to write syndrome s is faced
with the following altermative :
- find y, with minimum or upperbounded weight, representing s, by use of B : reputed untract-
able ([4]).
- find any y representing s, hereby losing updating possibilities ; in that case the veight of y
is likely to be large ( ~ (n-k)/2, see section 4).

3. The updating problem
The designer needs a complete decoding algorithm or a maximum likelihood decoding algorithm
(a difference with McEliece scheme). He must solve the following :

Problem :
Given a message s eF§7X
and a set I of written wits I<{1,2,...,n}
Find a vord y with minimum weight satisfying
(i) yH®=s
(ii) I<supp(y).

The updating procedure is depicted in figure 1.

z vector with syndrome s
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decoding

Figure 1 L > y=z-c
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In fact, because of point (ii), D needs a little bit more than a complete decoding, that is, a
kind of weigthed decoding. This does not bring additional complexity for Viterbi type or
treilis decoding ; just consider for instance some metric modification in the treillis when
icT

d(z;,c;) =0 if z;#c;

=@ if z;=c;.

Ve now give a list of block codes with "practical” complete decoding algorithms.

- block codes with k or n-k not too large,

- some high rate BCH codes.

Such codes may not be used isolated in the scheme but can be part of the fellowing construc-
tions :

- product and concatenated codes ([6])},

- block codes constructed from time-varying convolutional codes ([7]).

4. Strategy for the unauthorized writer

Hereafter could be a strategy of the unauthorized writer (UW) :

- Pick any set S of r=n-k columns in the parity-check matrix H.
- Check whether S has full rank r : this is easy, and the ansver is "yes” with probability ~1-2°
("no" means S is the support of a codeword in C, an event of probability ~2%).

- VWrite syndrome s as a linear combination of elements in S.

The average number of wits used in this operation is r/2. More precisely, the probability that
this number would be essentially smaller, that is, Ar, for some fixed \, 0<x<1/2 is

Ar
-r r
2 L (1) ~2

i=0

£ (hy(A)-1)
’

where h,(.) is the binary entropy function. In other words, when r becomes large, the unau-

thorized writer almost surely uses effectively r/2 wits to write s.

Let us now compare this with the situation of the designer (D).
Ve call t(C) the covering radius of C, i.e. the maximal weight of a coset leader, or
equivalently, the greatest possible distance between vectors in F} and C. Then it is clear that
the coset coding procedure uses at most t{C) wits. For most codes, it is known (cf. e.g. [8])
that, for r/n=4y,
t(C) <nh3'(w).

where h3! is the inverse of h; on [0,1/2]. Let us summarize these facts
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F : fraction of the wom
used by coset coding
with Cln,n(1-u)}

F

1/2

()
D)

Finally, ve give a cleverer strategy for UW which gives slightly (but not essentially) better
results :

- Transform H into a equivalent matrix H"=M".H containing as a submatrix a rxr identity
matrix ; M" is an invertible rxr matrix. Let V be the set of the n-r other columns of H".

- For given parameters A and j, compute the Hamming distances between the transformed syndrome
s"=sM"* to be written and the sums of at most j columns of V. Call the algorithm successful if
one of these distances is at most Ar.

- In case of success, take the associated set of columns in V, and add the appropriate columns
from the identity submatrix (at most Ar of them), getting s as a linear combination of at most
Ar+3 columns in H" and then in H.

The number of basic operations to perform is

: ("7 < (a-r).
im0

For X fixed, the probability of success is upperbounded by

(1-hy(A))

~r (1-hatay) JH0m0)3 ;-
: ] ~ (n-r)?2 '

1- [1-2

i.e. goes to zero for A< 1/2 and fixed r/n when r goes to infinity.
For A=(1/2)-6.r %, @ constant, the probability of success is non vanishing, but the average

number of wits written is Ar ~r /2, like with the previous strategy.
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