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1. Introduction

In Miller and W. Nobauer (1981) a new public-key cryptosystem was
introduced. Similar to the well-known RSA-scheme, the plaintext
alphabet and the code alphabet of this cryptosystem are given by
Z/{n), the ring of residue classes of the integers Z modulo a natural
number n. In contrast to the RSA-scheme, however, n ﬁeed not be
squarefree, but can be an arbitrary positive integer. The encryption
polynomials xKk of the RSA-scheme are replaced by another class of
polynomials, namely by the so-called Dickson-polynomials. We call this
cryptosystem the Dickson-scheme.

Sa far, there is not known very much about the security of the
Dickson-scheme. The goal of this paper is to perform a cryptanalysis
of the Dickson-scheme. We start with some basic facts on Dickson-
polynomials, outline a fast algorithm for the computation of function
values for the Dickson-polynomials and then give a short description
of the Dickson-scheme. Afterwards, several possible cryptanalytic
attacks on the system are discussed and as a consequence requirements
to the key parameters are formulated, which guarantee the system to be
secure from the described attacks.
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2. Some basic facts

Let R be a commutative ring with identity, and let a € R. The Dickson-
polynomial g, (a,x) € Rx] of degree k is given by

fk/2] . . .

K k-1 k-2
g, (a,x) = XZ%;'E:T (T1(-a)T x T,

1=
where [k/2] denotes the greatest integer isk/2.
If R1 is an extension ring of R and if ue R1 is a unit, then the
equation

(1) g la,u+d) =u

+ ()

holds, as can be proved by using Waring's inversion formula (cf. Lidl
and Niederreiter (1983)).

In this paper we restrict ourselves to the case a=1 and write
gk(l.x)=: gk(x). Since for a=1 from (1) the functional equation
gk(x)ogt(x)= gkt(x) follows, the Dickson-polynomials gk(x) are

closed under composition.

In order to use Dickson-polynomials in public-key cryptography,
we put R=12/(n). The plaintext messages m€ Z/(n) are encrypted by
m-g, (m)modn.

roe;
If the factorization of n is given by n= n p11, then in the Dickson-
scheme the number 1) i=1
e ;-1 e -1 e -1
1 2 2 2 2
vin) = [py" (pT-1)y P, (P5-1)seeeu p” (pp-1)]

plays the same role as the number w{n) =[p1-1,p2—1,...,pr-1] for a
squarefree n in the RSA-scheme. For example, whereas the power poly-
nomial x¥ induces @ permutation of Z/(n) for a squarefree n, iff
(k,w(n))= 1, the Dickson-polynomial gk(x) induces a permutation of
Z/(n), n arbitrary, iff (k,v(n))=1 {cf. W. Nobauer (1965)). Another
obvious analogy to the RSA-scheme is given by the following fact:

If the permutation M of Z/(n) is induced by a Dickson-polynomial
gk(X), then m1 is also induced by a Dickson-polynamial, mamely by
gt(x), where kt = 1modv(n) (cf. Lausch, Miller and W. Nobauer (1973)).

1)

By [al....,ar] we denote the least common multiple of the integers P ERRERL I
2) By (al,...,ar) we denote the greatest common divisor of the integers U ERREE L
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Thus, exactly like in the RSA-scheme, the trapdoor information of the
Dickson-scheme consists in the factorization of n: A1l known methods
for computing the inverse of an encryption function x- gk(x)mod n
need the prime factor decomposition of n.

3. A fast evaluation algorithm for Dickson-polynomials

We now give an evaluation algorithm of complexity 0{1d(k)), which
permits to calculate function values of gk(x) (cf. also R. Nobauer
(1985/86)). Given b€ Z/(n), we want to compute gk(b)mod n. For doing
this, we have to solve

1.
(2) Ut s b,
or equivalently
(3) wl-bu+l =0

in some extension ring of Z/(n).

As can be seen easily, the factor ring Ry =Z/(n)[u]/(u2-bu+1) is an
extension ring of Z/(n), and every element s¢€ Ry can be represented
uniquely in the form

s=ajutag, a5, €Z/(n).
Multiplication in Rb can be implemented by using the formula

(4) (aju+ag)(byu+by) = {a;by+agby+arbybju+aghy -ab,.

Obviously, the element u€ R, is a solution of (3). Since u{b-u) =1,

u is always invertible.

Now, for the evaluation of gk(b) just calculate the power uk in the
ring Rb by using the "square- and multiply-technique": That is, first
compute

and then multipliy together the appropriate factors, thus finding
elements 3527 € Z/{(n) with

k
ut=agutag.
Since u™! also satisfies (3), the equation
1 _ 1
< T %1y tip
u
holds, and therefore

1

g (b) = g (u+ 1) =uk

1 1 -
+—k—u -al(u+a)+2ao—alb+2ao.
The number of required steps is 0(1d(k)}).
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We summarize our procedure in the following

Algorithm 1:
Input n,k,b

Compute aj,a; € Z/(n) with u
Comment [use the square-and multiply-techniquel.

k 2
_alu+a0modu -bu+l.

Compute gk(b) a b+—2a0mod n.
End.

4. The Dickson-scheme

Every participant C of the communication network chooses a positive
e .

integer re =T, T odd prime powers pi‘ (if also a power 2% §s chosen,

the following formulas have to be modified stightly}, and an

-1
encryption key kC:= k with (k, p?1 (p%-l)) =1 for i=1,2,...,r.
Then C calculates the numbers
roey el—l 2 er-l 2
nei=n= T p.', v(n)=1[p (p5-1),..., P (p5-1)1, and computes
C i=1 1 1 r 1

a decryption key tc :=t, that is a natural number satisfying the

linear congruence
(5) kte 1l mod v({(n).

The public key of C consists in the parameters n and k, and the secret
key is given by the prime factorization of n and by t.

If A intends to send the secret message m€ Z/(n ) to B, he has to

encrypt m by calculating ¢ = Ikg (m) mod ny and then he sends ¢ to B.
The receiver B decrypts c by calcu]at1ng gtB( )= qtdngm)>E m mod np.

5. Cryptanalysis

Since unlike to B a spy does not know the factorization of Ngs he
cannot compute a decryption key tg in the same way as B does. However,
he might try to use other methods of decryption, especially to do

partial decryption, that is to decrypt certain ciphertexts without
knowing a decryption key tB'

In the following we discuss several procedures of partial decryption.
We show, that in some cases these attacks can be used also for

factoring n. A1l discussed attacks are analogues to well-known attacks
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on the RSA-scheme (cf. Schnorr (1981), Simmoens and Norris (1977),
Berkowitz (1982), Herlestam (1978), Rivest (1978)). For a more
algebraic discussion of superenciphering attacks on variants of the
RSA-scheme see also W. Nobauer (1985). .
In the following we restrict ourselves to the'cryptographica1ly most
important case where n is the product of two distinct odd prime numbers,
that is n =PyPy- We show that the Dickson-scheme is secure from theI
described attacks, if py-1 (i=1,2) contains a large prime factor p;,
if p;+l (1=1,2) contains a large prime factor p?, and if as well the
order of kmod p; as the order of kmodp: (i=1,2) is large. These
requirements are fulfilled, if e.g. for i=1,2

. p;>1080

p;-l=a.pl, a, <10°
(6) { i ivir 3
* 5 * 80
. pytl bipjs b <107, p;>107",

ordp; (k) > 10!
(7) {

ordp? (k) > 10tl.

5.1. Attacks by finding an s with gs(c) =2 modn

5.1.1. Partial decryption

Let c€ Z/(n) be a given ciphertext. Suppose, the cryptanalyst succeeds

in finding a natural number s with gs(c)s 2modn. Let s = Sos where

S
1
S contains all those prime factors of s which divide k, and S,

contains the remaining prime factors. The numbers sy and s, can be
computed without the knowledge of the prime factorization of s, by

using the following

Algorithm 2:

Input k,s.
Initialize s; =135 s; =5, S2
While (s,.k)>1 do sp=sy(s,.k)5 s, :Z?Q;HFT'

End.

Let u; € GF(p?), i=1,2, be solutions of u +é—=c. (Such solutions
always exist.) From g (c)=2modn we obtain gg(c)=2modp, for i=1,2,

and using (1) it follows, that in GF(p%) the equation
1

- 1,.,s - . : : S .
gs(c) -gs(ui-+UT)-u1-+;§ = 2 holds. This is equivalent with uy =1,
) 51852 . 2 2
hence with u, = 1.S1nce(k,pi-1) =1, we have also (sl,p;-1)= 1.

*
Let o4 be the order of uy in GF(p?) , the multiplicative group of
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6F(p3). As o;[p?-1, there holds

(8) (sl,oi) =1.

S189 . 52
From u, =1 we get oilslsz, hence 01-|s2 by (8), that is u;”=1.
By definition of S, we have (k,sz) = 1. Thus there exists a natural

number k such that kk = 1mods,. Suppose that kk =s,r+ 1.

If m= gil(c)s gt(c) mod n is the plaintext corresponding to c, then the
equation m=g,(c) = g4 (uy +GLJ =u§-+l€ holds in GF(p%) for i=1,2.
i us

Therefore we have 1
t, 1 tkk 1
ggpled = gglg(m)) = gp(m) = gp {uy+—) = uy " + —— =
uy u_tkk
ts,r+t !
2 1 t 1
= u. +— = =y, + -— =n
i u:52r+t 1 Ug

. 2 ] . .
in GF(pi)- By the Chinese remainder theorem we obtain gE(c)=rnmodn.

If we assume that the search for an s such that gs(c)s 2modn is done
by trial and error, and more concretely by testing all s between 1 and
105, we can summarize our attack in the following

Algorithm 3 (Deciphering the cryptogram c€ Z/(n)}:
Input n,k,c.
Initialize s =1.
While s <10° and g (c)#2modn do s =s+l.
If gs(c) #2modn then stop; comment [algorithm unsuccessfull.
e

1s

Compute s =555, where Sq contains all those prime factors
of s which divide k, and S, consists of the
remaining prime factors of s; comment [use
algorithm 2].

Compute a natural number k such that kk = 1mod52.

Decipher ¢ by calculating gE(c)alnmodn.

End.

Now we will show that the Dickson-scheme is secure from attack 5.1.1.,
if the key parameters satisfy (6). For i=1,2, we consider the P;
equations

(9) Z+%=q, qEGF(p;)s

or equivalently, the p; quadratic equations z2—qz+1= 0. Let Mi be the
set of elements of GF(p?), which are solutions of anyone of the
equations (9). In W. Nobauer (1968) it is shown that M, = Kiu Lss
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.-1

2 P; p.+1
where K. = {uEGF(pi) Ty

=1} and L1={u€GF(p§):u Voo-1).
*
?) . If w is a generator

Obviously, K. and L1- are subgroups of GF(p

i

2.* (pi*l)ry
of GF(pi) » then K, = {w :
(pi'l)rz

Li={w :r2=0,1,...,p1.}.

ry= 0,1,...,.p].—2} and

For g #+2, the equations (9) have exactly two solutions u,v€GF(p$),

which are either both elements of K, or of L, (cf. W. Nobauer (1968)).
For q =22, these equations have exactly one soclution u€GF(pi), namely
u=1o0r u=-1 respectively.

The groups Ki and L]. are cyclic, and by (6) the orders of Ki and L]-
are given by |K.| =p1--1=a].p% and by |L;[ =p.+l=b, p: . If u€eK;, then
r.nr'd(u)slt')5 holds if and only if ord(u)la;. If dla,, then the number
of elements u€ K, with ordy (u)=d is given by v(d), and therefore the
number of elements u€K; wi%h ordKi(u)le5 is given by :w(d)=a1..

Thus we have proved d|a;

(10) |{u€K1-:ordK.(u)5105}|=a_,
1
and similarly, we obtain

(11) |[{uel; :ord (u)<10°}| =b
i

For a given ciphertext c€ Z/(n), algorithm 3 is successful, if and
only if there exists an s with 1<s<10", such that gs(c) =2modn, or
equivalently, such that gs(c)EZmod Pss i=1,2. If u€K1.UL1. is a
solution of u+5=c, then g (c)=2modp; holds if and only if

s, L

u®+ s

=2, that is, if and only if u”=1. Using the Chinese remainder
u

3
theorem and the equations (10) and (11), we obtain

[{ce€Z/(n):3 s with 1555105 such that g_(c)=2modn}|s
S

s m |{ceZ/(p;):3s with 1< s< 10° such that gs(c)EZmodpi}]=
i=1

- . 5., .1 . 5 -

= [z {u € K\{£1} s ordy, (u) <107} +5 [{ueL\{zl} :ord (u)<10 H+2] =
i=l i i
2 2

- 1 _ 1 _ 1 10

- [p(a;-2) +5 (b,-2)+2] = s (a;+b,) <107,

Therefore, if (6) holds and if ¢ is uniformly distributed on Z/{n),
then the probability that c can be decrypted by algorithm3 is

10 160 -150
bounded by 10°%/10 = 10 .
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5.1.2. Factoring of n

i

In certain cases, knowing an s such that gs(c) 2mod n not only
allows to decipher c, but also to factorize n.
For the following considerations we put vz(s) := max{e€N : 2%|s} .

Suppose that a cryptanalyst succeeds in finding an even s such that

go(c)=2modn. Let u, €GF(p 2) i=1,2, be a solution of u, +GL’=C'
i

Then we have u? =1 for i=1,2.
s/27
Let j:=max {re{0,1,...,vy(s)} DU =1, i=1,2}=

=max {re€ {D,l,...,vz(s)} 1 g r(c)s 2 modn }.
s/2

Since the equation x2 =1 has just the two solutions 1 and -1 in the

*®
cyclic group GF(p?) , i=1,2, one of the following four cases holds:

(1) j=V2(S)

j+1 j+l
(1) d<vy(s), uffPT = 1, w3 =
o /29t 2I+1
(iii) J <v2(s), ul/ = -1, ;/ = 1
) . 2J+l 2J+1
(iv) J <v2(s), ui/ =-1, g/ =-1.

Case (i) is equivalent to g (c)=2modn, case (iv)

s/ZVZ(S)

equivalent to g j+1(c) =-2modn, and in these cases our procedure
s/2

does not provide the factorization of n.

If case (ii1) holds, then g {c) =2mod Py and ¢ J.H(c)#— 2 mod Pos
s/2

s/2j+1

and therefore (g (c)-2,n) =py- Similarly, in case (iii) there

s/2‘5+1

holds (g (¢c)-2,n) =p,-

s/2 j+1
If we assume that searching for an s such that g (c)=2modn is done
by testing all even s between 1 and 10 , We can summar1ze the attack
in the following

Algorithm 4:
Input n,c.

Initialize s =2.

While s < 10° and gs(c)éZmodn do s =s+2.

If g(c) #2modn then goto 10.

Compute vz(s).

Compute j=max {re€ {O,l,...,vz(s)}: g {c)=2mod n}.
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1 j=v2(s) goto 10; comment [case (i)].

m

lse if g j+1(°) =-2modn goto 10; comment [case (iv)].
 s/2

compute d= (g
s/

10 Comment [algorithm unsuccessfull.

m
p—
(%]
(]

-2,n); comment [d is a non-
. trivial factor of nl.

Ji+1(¢)

Since algorithm 4 is successful only with ciphertexts ¢ which can be
decrypted by algorithm 3, this algorithm does not represent a real
threat to the Dickson-scheme: If condition (6) holds and if ¢ is
uniformly distributed on Z/(n), then the probability that algorithm 4
provides a nontrivial factor of n is bounded by 10'150.

5.2 Factoring by means of fixed points

Let s be an odd natural number, and Tet c#*2mecdn be a fixed point of

gS(x)mod n. Clearly ¢ is also a fixed point of gs(x)mod Pi for i=1,2.

Let uj €GF(p$) be a solution of ui+ui=c, i=1,2. Then we have

i

g, (u; +uii)=u§+% = Uy +U'1?’ hence (u?ﬂ-l)(u?'l-l) =0, and therefore
i

one of the equations u§+1 =1 or u?l =1 holds. Clearly, u?”:l is

equivalent to gs_,_l(c)sZmod Pi» and u?_1=l is equivalent to

gs_l(c)EZmod Py~

If ui+1=1 and u§'1 =1, but not u§+1=1,

or ui'l =1 and u§+1= 1, but not u§'1= 1,

then (gs+l(c)-2,n)€{p1,p2}, and a factor of n is found. However, if

s+l s+1 s-1

u;" =1 and u; =1 or uj s-1_

=1 and us , then we have found an even

number s with gg(c)s 2mod n, and therefore attack 5.1.2. can be
applied.

A special case of this attack is given, when s=k. Then ¢ is a fixed
point of the enciphering polynomial gk(x)mod n.

As there is not known any systematic algorithm for the search for
fixed points of gs(x) modn, only trial and error methods can be used.
Therefore, the Dickson-scheme is secure from attack 5.2., if the
number fix(n,s) of fixed points of gg(x)modn is small. By the Chinese
remainder theorem fix(n,s) = .nlfix(pi,S), and according to R. N@bauer

]:
(1985) fix(p;,s) = %[(s-l,pi—l) +(s+l,py-1) + (s-1,ps+1) + (s+l,py#1) 1 - 2.
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If the key parameters satisfy (6), then
fix (pi.S) =%— [(s—l,a].)(s-l,p;)+ (s+1,a1.)(s+1,p1f)+(s-l,bi)(s—l,p’;‘)+
+ (s+1,bi)(s+1,p}‘)1-2.

If for i=1,2

Y pids-1. piks+1, piks-1, piks+1,

we have fix(pi,s) < 105, and consequently fix{n,s) <1012. In this case,
the probability that a uniformly distributed c€ Z(n) is a fixed point

of gg(x) modn s bounded by 1012/10160 10'148, and the task of
finding any fixed point is computationally infeasible.

(12)

Let us assume that the number s itself is chosen according to a

uniform distribution on M={1,2,...,r}, where r is a large positive

100

integer, e.g. r =10 In the following we write [x] for the greatest

integer which is less or equal than the rea] number x. There are
exactly (== ]+1 numbers s €M such that Py |s 1, namely the numbers
p1
1, 1+P;. 1+2P;, eees 1t L———]p . Similarly, there are exactly
i

[E{}]+1 numbers s €M such that p:|s—1, there are exactly [r+1

] numbers

P; pi
s €M sucht that p;|s+l, and there are exactly [r+1] numbers s € M such
Py
that p?[s+1. Since p; > 1080, we obtain
AR S WP R T (—5l+l,
P~ P 10
i i
(T < (D41 s (pled,
Py i 10

and the same inequalities hold also with p; instead of p;. Therefore,
an upper bound for the number of elements s eM with

p%[s-l or p;15+l or P?[S'l or p?|s+l
is given by 4([—J%U]+l). Consequently, a lower bound for the
10

probability that a uniformly distributed s €M satisfies (12), is given

by
4r 4 4
(r- -4)/r = 1 a1 i
1050 10 r

Therefore, a uniformly distributed s€ {1,2,...r} satisfies (12)
almost certainly.

1)

We write af'b for "a does not divide b".
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Altogether we obtain: If the key parameters satisfy (6), then the
task of finding an s€ N and a c€ Z/(n) such that ¢ is a fixed point
of gs(x)modn is computationally infeasible.

5.3 Superenciphering

Let ce Z/(n) be a given ciphertext. We consider gk(c), gE(c), gi(c),...,
where g'l;(x) denotes the function gk(x) iterated r times. Since Z/(n)
is finite, there are two exponents r and s such that g[(c) s gi(C) mod n.
This implies the existence of a positive integer t such that
gE(c)scmod n, or equivalently, gkt(c) =cmodn. If m denotes the

plaintext corresponding to ¢, it follows from cagk(m) mod n that

g:“(m) = gk(m) mod n. Hence gi(m) =mmod n, and therefore

gﬁ'l(c)smmod n, and the plaintext is obtained.

Sometimes superciphering also yields the factorization of n. Namely,

from g:(c)acmod n follows (c)=cmodn. That means, ¢ is a fixed

gkt

point of ¢ t(x)mod n. Since kt is odd, attack 5.2. can be applied.
k

Superenciphering is only successful if there exists a small t - say

tlelo - such that ¢ is a fixed point of g t(x)mod n. Thus the
k

Dickson-scheme is secure from superenciphering, if for all tle10

the mapping x =» g t(x)mod n has only a small number of fixed points.
k

Let us assume that the conditions (6) and (7) are satisfied. Then all
t between 1 and 100 fulfil k¥4 x1modp; and k'4:lmodp}. Hence

t, 1 t ' t ' t x
) -7 [(k 'laa]‘pi)+ (k +lsa.ip]')+(k -1,b1p1)+

fix(pi,k
+ (kt+1,bip§)]- 2 <
6
< a1.+b1.-2<10 ,
. t 12
and therefore fix(n,k )< 10",

This yields
10

[{c€Z/(n): 3t with 1sts<l0 and

1010
g (c)=cmodn}| <T— fix(n,k%) <1010 10'% = 1072,
k -1

Therefore, if the conditions (6) and (7) hold, then the fraction of

ciphertexts c€ Z/(n) which can be decrypted by superenciphering is

bounded by 1022,10160 - 19-138,
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