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ABSTRACT 

We show that  e log log P simultaneously secure bits can be extracted from 

the discrete log function. These bits satisfy tbe next-bit unpredictability condi- 

tion of Blum and Micali. Therefore we can construct a cryptographically secure 

pseudo random number generator which produces c log log P bits per modular 

exponentiation under the assumption that tbe discrete log is hard. 

1. Introduction. 

Let P = 2'q + 1 (q odd) be an odd prime and a a generator for the multiplicative group 

of integers modulo P. The problem of solving ax = @ (mod P ) for X is called the dkcrete log 

problem. The fastest known algorithm for solving tbe discrete log runs in time 

edh In In + '(I). (Coppersmith, ) However, certain bits of X (for example the least significant 

bit) can be retrieved in polynomial time in log P . It is of theoretical and practical interest to 

identify the hard bits of X, as well as groups of bits which are hard simultaneously. 
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We start by defining the concept of a secure single bit with respect to an underlying func- 

tion f. 

Definition 1 . A boolean predicate B(X) of X is hard with respect to a function f if an oracle 

which outputs B(X) on input f(X) can be used to invert f in polynomial time. 

We now extend this notion to consider the simultaneous security of several bits. Call a 

boolean predicate trivial if it is identically 0 or identically 1. 

Deflnltlon 2 . A k-bit predicate Bk(X) is hard with respect to a function f if for every non- 

trivial boolean predicate B on k bits, an oracle which outputs B (B, (X))  on input f(X) can be 

used to invert f in polynomial time. If B, is a hard predicate then we say that bits B,(X) of X are 

weak dmultaneourly Mure. 

Blum and Micali (Blum, 1982) showed a hard boolean predicate for the discrete log. Long 

and Widgerson (Long, 1983) show that c log log P high order bits of X are weak simultaneously 

secure. Long (Long, 1984) shows that c log log P low order bits are also weak simultaneously 

secure. 

Weak simultaneous security, however, is not the strongest possible notion of security. In 

particular, weak simultaneous security of k bits is not enough to use all k bits in a cryptographi- 

cally secure pseudo random number generator. 

The notion of nexbbit unpredictability came up in the study of pseudo random number gen- 

erators. Blum and Micali (Blum, 1982) showed the first pseudo random number generator which 

had this property. Yao (Ym, 1982) later showed that pseudo random number generators with this 

property pass all polynomial statistical tests for randomness. Below we define th is  notion outside 

the context of pseudo random number generators. In section 5 we show that nextbi t  unpredicta- 

bility is stronger than weak simultaneous security in the sense that if k bits of X are nextb i t  

unpredictable then they are also weak simultaneously secure. 

Dedinitlon a .  Let  f be a function from 2, to ZN. k bits zl, * * * ,zt of X are nextblt 



unpredlctable if for every I (1 5 1 < k) an oracle which on input /(X),zl, ..., q outputs zi+l 

on - + 6 fraction of all inputs X, can be used to invert f in probabilistic polynomial time. 

(Here, 6 > ( l o g  N)-' for some constant c) 

1 
2 

The main result in this paper is that  if P = 2sq + 1, with q an odd integer, then the 

k = c log log P bits immediately following the +th. least significant bit of X are nextb i t  

unpredictable in the discrete log. Thus we can  extract t log log P bits per modular exponentia- 

tion in a pseudo random number generator based on the discrete log: 

Let zo be a random number in Z,. Let a be a generator for 2,. Let z, = a''-' (mod P ) . 

Extracting the c log log P bits immediately following the .s-th. lsb. of zL,zLL-l,...,zo, we obtain the 

dhcrete log pseudo random sequence. 

Vazirani and Vazirani (Vazirani, 1984) have recently shown that t log log P ~ e c u r e  bits can 

also be extracted from the z2 mod N generator of Blum, Blurn, and Shub, (Blum, 1982) as well 

a5 from other encryption schemes based on factoring. 

2. The 9 least slgniflcant blts of X are easy 

In this section we show that the discrete log problem reduces to the problem or computing 

(mod P ) from a$ ' (mod P ) . 

Pohlig Hellman (Pohlig, 1978) first gave an algorithm to compute the discrete log in the s p e  

cial case that P = 2' + 1. In fact, their techniques show that the S least significant bits of X 

can be efficiently computed from ax (mod P ) where P = 2'q + 1. 

We use a slightly different method, introducing the technique of shifting X to  the right by 

computing the square root of ax. This technique will be used throughout this paper. 

Square roots modulo a prime number are computable in probabilistic polynomial time. 

(Rabin, 1980) A quadratic residue modulo P is of the form aZt (mod P ) . Therefore, if 

ax = B (rnod P ) , the least significant bit of X is 0 if and only if B is a quadratic residue. In this 

case the roots of @ are a * (rnod P ) and o * (mod P ) , The Erst of these 
x p-1 x+ 9-lq -+ p X - 

= a2 
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is called the prlnclpal square root of B (with respect to the generator a). 

Blum and Micali (Blum, 1982) have shown that if we could compute the principal square 

root of B then we would be able to solve the discrete log in polynomial time: If B is a nonresidue 

we know that the lsb. of X is 1. We can set this bit to 0 by dividing B by a. Then we divide X by 

2 by computing the principal square root. Thus we have shifted X to the right, moving X's 2nd. 

lsb. to  the Isb. position, where i t  can be determined by testing quadratic residuosity. We can 

keep shifting until we obtain all bits of X. Thus we have shown the following: 

(Blum-Micall) the dlserete log reducem to 
the prlnclpal square root problem. 

We cannot in general compute the principal square root of X. Notice, however, that if B is a 

x + zs"( X - 
quadratic residue, then both roots a ' and a * of @have the same quadratic character pro- 

vided S > 1 i.e. the 1sb. of the roots are equal. Choose an arbitrary root, set its Isb. to 0, and 

again compute a root of the result. This time there are four possible results , but provided S > 2 

they all have the same quadratic character. We can in this manner compute the S least significant 

bits of X. The computation tree is shown below. Any path down this tree yields the correct bits. 

If we can compute thew bits then we can set them to 0. Thus we have shown the following: 

the discrete log reducw to solving the 
equation a' ' = B (mod P ) for T. 

Combining the two results we have: 

the dhcrete log reduceB to finding the principal 
mquare root a'-'' of B = a'' (mod P 
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ax 
computation tree for S 2 4. 

0 0 

Noda at the same level have the same quadratic character. 

a. The 8 + 1 6l. Lb. of X k 8 hard bit In the dbvcte I-. 

Suppose we have an oracle which on input P,a ,B,  outputs the r +  1 st. Isb. of X. Then we 

if necessary. Using tbe results of the previous section can set this bit to  0 by dividing by as+ 

(and the oracle), the diMrete log problem then reduces to finding the principal square root of 

,9 = a'r (mod P ) But this is easy since the principal quare root 

7 = a'-1r (mod P ) of B is the unique root which satisfies 7' = 1 (mod P ) . To see this recall 

where T is even. 

*+ 
that up-' = ugq = 1 (mod P ) . Then 7' = a = 1 (mod P ) ,  whereas 

(-7)' 6 -1 (mod P ) since q is odd. 

It will follow from Theorem 1 of the next settion tbat this result bolds even in the c s e  

where the oracle is correct in - + c fraction of inputs. This result is included in (Long, 1984) 

dong with a proof that  almost dl bits of X are hard with respect to oracles which are always 

1 
2 

correct. 
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4. c log log P nexbbit unpredictable bitr 

Let z, be the ith. least significant bit of X. 

Theorem 1 . Let k = E log log P for some constant c. Then q+,, . . . , z , + ~  are next-bit 

unpredictable in the discrete log if we require the oracle to predict correctly on every input. 

Prwl: Suppose there exists I ,  15 I < k , and an oracle 0 which on input 

( P , Q , ~ , Z , + ~ ,  * . . ,zS+,) outputs z,+~+~. As before, we may assume X = 2'2'. Algorithm I com- 

putes X in probabilistic polynomial time. Several operations are performed on the value of X. 

These can be done in polynomial time even when the value of X is not known but ax (mod P ) 

is. The operations art: 

- test whether X equals a particular value. - assignment (Y := X). 
- division by 2 when the S + 1 least significant 

bits of X are known. - setting a particular bit of X to 0 when the 
value of the bit is known. 

Algorithm I - Solve ax = = p for x. 

begin 

Y : = X ;  
for every possible value of z,+~ . . . z,+, do 
begin 
i := 0; 
repeat until Y = 0 or i > log P 

begin 
i : = i  + 1; 
obtain bit 8+ I +  1 of Y from the oracle; 
{ assume this is also the a+ I+  i th. bit of X} 
set the 8+ 1 st. bit of Y to 0 
Y := Y/2 { compute the principal square root of a *  } 

end 

test the value constructed for X in the equation ax = 
if the equation holds then stop - X has been found 

(mod P ) ; 

end 

end. 

Consider the iteration of the for-loop in which the correct value of z,+~ . - - z,+, is 
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assumed. Recall that  to compute the principal square root of ar, where Y = 2'T, all we need 

to know is ys+l. This bit is known correctly in the first iteration or the repeat loop. At each 

iteration of the repeat loop, the s+ 1 st. bit of Y is discarded and the higher order bits are shifted 

to the right by one position. The oracle allows the algorithm to see the bit which is shifted into 

th 8-k 1 th. position. Thus  , at  each iteration , the algorithm knows bits 8+  1 through e +  1 of Y, 

and in particular bit e +  1 of Y .D 

Theorem 2 .  Let k = c log log P for some constant c. Then . . . , Z , + k  are nexbbit 

unpredictable in the discrete log. 

Prooh Algorithm-I computes the discrete log using an oracle which is always correct. Now s u p  

1 1 
pose the oracle is correct on - + f fraction of inputs, with t = - ( u = O( log log P ) ). 

2 2" 

We will construct an oracle which is correct with probability exponentially close to 1 for all 

X < 7. Note that, in the iteration of the for loop in which the correct value of zs+l . . . z,+l 

is assumed, the oracle is queried for monotonically decreasing values of Y. Therefore, for the a l p  

rithm to work, we need only etsrt with an initial value of X which is less than 2y+1. 

P 

P 

Note that Algorithm-I always knows the e +  1 least significant bits of X. Therefore, if 

then z , + / + ~  can be determined from the e +  1+1 st. bit of X + r provided P x<2u+' 
2=+1- 1 

0 5  r < p 2"+' , since then X + r < P. This gives us a way of randomizing queries to 

the oracle. To  determine the a +  I +  1 st. bit of X we query the oracle on the s +  I+ 1 5t. bit of 

X+ r for random values of r in the specified range. We now show that the probability of obtain- 

1 36 
2 4  

ing a correct answer on each such random query is 2 - + -. 

2"+1- y + 1 -  
L e t S = { X + r  / O < r < P 2 Y + '  }. Notice IS1 = P d ,  and every ele- 

P ment of S is less than P provided X < 2u+1. 
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1 
2 

Let - + Z be the fraction of elements in S for which the oracle is correct. Then the total 

number of correct answem of 0 ia less than or equal to the number of correct answers in S plus 

the cardinality of the complement of S. Thus 

1 1 
2 2 

P ( E -  - ) <  IS l ( i -  - )  ==> 

1 3 c  Thus the oracle is correct on - + - fraction of all elements in the set S. Therefore, by 
2 4  

querying the oracle on a polynomial number (in log P) of points we obtain the 8 +  I+ 1 st. l e z t  

significant bit of X with negligible probability of error. 

A problem remains in that we have assumed that X < F .  This is solved by randomiz- 

ing X i.e. we try to solve the equation a(X+R)mod(P-l)= a = @aR (mod P ) for random values 

of R ( 0 < R < P - 1). With probability 2u+L (X+ R )  mod (P-1) < -. Alterna- 

tively, we could simply try all possible values or the u +  1st. most significant bits of X, setting 

these bits to 0 by dividing by the appropiate power of a. Thus our algorithm computes X in pro- 

babilistic polynomial time .~ 

1 P 
, 

5. Next bit unpredictabllity implies weak simultaneous security 

The next theorem shows that next bit unpredictability is a stronger notion than weak simul- 

taneous security. Although this result is implied by a fundamental theorem of Yao, (Yao, 1982) it 

is included here because it has a straightforward proof. 

Theorem 8 .  

unpredictable with respect to f then they are also weak simultaneously secure with respect t o  1. 

Proof: Suppose bits ( z l ,  . . . ,q) are next-bit unpredictable. Let B be a non-trivial predicate on 

Let  f be a function from ZN to 2,. If k = c log log N bits are nexbbit 
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(zlr - * ,q). Let  0 be an oracle for B given f(X). Let T be the set of values of (zit . . . ,zt) for 

which B(zl ,  . . - ,zk) = 1. Since B is non trivial , there exists a prefix B = u1 . . . u~ (possibly 

the empty string A) for which the number of elements in T with prefix Ti1 is distinct from the 

number of elements in T with prefix ii0. Assume, without loss of generality, that T contains 

more elements with prefix Ti1 than with prefix 30. 

Let 3 = (zl, . . . ,q). We make the simplifying assumption that all values of (zl, . . . , z t )  

are equally probable when X is random. Then, if 3 = 8, the probability that 0 outputs z,+, on 

input f(X) is > -. We construct an oracle O for zl+l given ( j ( ~ ) , z ~ ,  . . . ,zi) as follows: 1 
2 

0 : 113 = P then output O(f(X)) else output the f l rp  of a fair coin. 

1 
2 

next-bit unpredictability assumption we can use 0 ( hence 0 ) to invert f i n  polynomial time. 

Now we show 0 is correct on a t  least - + (log N)-' fraction of all inputs. Thus, by the 

Let p be the probability that  0 is correct when X is chosen at  random. Then 

1 p = Prob.(Z # 3 ) * ~  + R o b . @  = Z)*Prob.(O(f(X),f) = ZI+, I 2 = 'if) 
1 
2 
1 
2 

= (1 - T')*- + T'*Prob.(O(f(X),z') = q,, 1 f = 3 )  

= (1 - T')*- + T'*Prob.(O(f(X)) = zf+l I f = 3 )  ( * )  

There are 2k-' elements zlr . . . ,tt with prefix 8, and we know the fraction of these ele- 

Therefore 1 
2 > -. ment6 for which 0 outputs Zf+1 is 

Substituting in (I) we get 

1 2tJ-I + 1  P 2 (1 - +)L + 2-'* 2k-i 2 
= - +  -= -  + (logN)-' . ,  

2 2' 2 
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