
Simultaneous Security of Bits in the Discrete Log.

Rent Peralla (*)

Computer Science Division

University of California

Berkeley, California.

ABSTRACT

We show that e log log P simultaneously secure bits can be extracted from

the discrete log function. These bits satisfy tbe next-bit unpredictability condi-

tion of Blum and Micali. Therefore we can construct a cryptographically secure

pseudo random number generator which produces c log log P bits per modular

exponentiation under the assumption that tbe discrete log is hard.

1. Introduction.

Let P = 2'q + 1 (q odd) be an odd prime and a a generator for the multiplicative group

of integers modulo P. The problem of solving ax = @ (mod P) for X is called the dkcrete log

problem. The fastest known algorithm for solving tbe discrete log runs in time

edh In In + '(I). (Coppersmith,) However, certain bits of X (for example the least significant

bit) can be retrieved in polynomial time in log P . It is of theoretical and practical interest to

identify the hard bits of X, as well as groups of bits which are hard simultaneously.

(*) Research u p o n s o d in part by NSF grant MCS82-04508

F. Pichler (Ed.): Advances in Cryptology - EUROCRYPT '85, LNCS 219, pp. 62-72, 1986.
0 Springer-Verlag Berlin Heidelberg 1986

63

We start by defining the concept of a secure single bit with respect to an underlying func-

tion f.

Definition 1 . A boolean predicate B(X) of X is hard with respect to a function f if an oracle

which outputs B(X) on input f(X) can be used to invert f in polynomial time.

We now extend this notion to consider the simultaneous security of several bits. Call a

boolean predicate trivial if it is identically 0 or identically 1.

Deflnltlon 2 . A k-bit predicate Bk(X) is hard with respect to a function f if for every non-

trivial boolean predicate B on k bits, an oracle which outputs B (B, (X)) on input f(X) can be

used to invert f in polynomial time. If B, is a hard predicate then we say that bits B,(X) of X are

weak dmultaneourly Mure.

Blum and Micali (Blum, 1982) showed a hard boolean predicate for the discrete log. Long

and Widgerson (Long, 1983) show that c log log P high order bits of X are weak simultaneously

secure. Long (Long, 1984) shows that c log log P low order bits are also weak simultaneously

secure.

Weak simultaneous security, however, is not the strongest possible notion of security. In

particular, weak simultaneous security of k bits is not enough to use all k bits in a cryptographi-

cally secure pseudo random number generator.

The notion of nexbbit unpredictability came up in the study of pseudo random number gen-

erators. Blum and Micali (Blum, 1982) showed the first pseudo random number generator which

had this property. Yao (Ym, 1982) later showed that pseudo random number generators with this

property pass all polynomial statistical tests for randomness. Below we define th is notion outside

the context of pseudo random number generators. In section 5 we show that nextbi t unpredicta-

bility is stronger than weak simultaneous security in the sense that if k bits of X are nextb i t

unpredictable then they are also weak simultaneously secure.

Dedinitlon a . Let f be a function from 2, to ZN. k bits zl, * * * ,zt of X are nextblt

unpredlctable if for every I (1 5 1 < k) an oracle which on input /(X),zl, ..., q outputs zi+l

on - + 6 fraction of all inputs X, can be used to invert f in probabilistic polynomial time.

(Here, 6 > (l o g N)-' for some constant c)

1
2

The main result in this paper is that if P = 2sq + 1, with q an odd integer, then the

k = c log log P bits immediately following the +th. least significant bit of X are nextb i t

unpredictable in the discrete log. Thus we can extract t log log P bits per modular exponentia-

tion in a pseudo random number generator based on the discrete log:

Let zo be a random number in Z,. Let a be a generator for 2,. Let z, = a''-' (mod P) .

Extracting the c log log P bits immediately following the .s-th. lsb. of zL,zLL-l,...,zo, we obtain the

dhcrete log pseudo random sequence.

Vazirani and Vazirani (Vazirani, 1984) have recently shown that t log log P ~ e c u r e bits can

also be extracted from the z2 mod N generator of Blum, Blurn, and Shub, (Blum, 1982) as well

a5 from other encryption schemes based on factoring.

2. The 9 least slgniflcant blts of X are easy

In this section we show that the discrete log problem reduces to the problem or computing

(mod P) from a$ ' (mod P) .

Pohlig Hellman (Pohlig, 1978) first gave an algorithm to compute the discrete log in the s p e

cial case that P = 2' + 1. In fact, their techniques show that the S least significant bits of X

can be efficiently computed from ax (mod P) where P = 2'q + 1.

We use a slightly different method, introducing the technique of shifting X to the right by

computing the square root of ax. This technique will be used throughout this paper.

Square roots modulo a prime number are computable in probabilistic polynomial time.

(Rabin, 1980) A quadratic residue modulo P is of the form aZt (mod P) . Therefore, if

ax = B (rnod P) , the least significant bit of X is 0 if and only if B is a quadratic residue. In this

case the roots of @ are a * (rnod P) and o * (mod P) , The Erst of these
x p-1 x+ 9-lq -+ p X -

= a2

65

is called the prlnclpal square root of B (with respect to the generator a).

Blum and Micali (Blum, 1982) have shown that if we could compute the principal square

root of B then we would be able to solve the discrete log in polynomial time: If B is a nonresidue

we know that the lsb. of X is 1. We can set this bit to 0 by dividing B by a. Then we divide X by

2 by computing the principal square root. Thus we have shifted X to the right, moving X's 2nd.

lsb. to the Isb. position, where i t can be determined by testing quadratic residuosity. We can

keep shifting until we obtain all bits of X. Thus we have shown the following:

(Blum-Micall) the dlserete log reducem to
the prlnclpal square root problem.

We cannot in general compute the principal square root of X. Notice, however, that if B is a

x + zs"(X -
quadratic residue, then both roots a ' and a * of @have the same quadratic character pro-

vided S > 1 i.e. the 1sb. of the roots are equal. Choose an arbitrary root, set its Isb. to 0, and

again compute a root of the result. This time there are four possible results , but provided S > 2

they all have the same quadratic character. We can in this manner compute the S least significant

bits of X. The computation tree is shown below. Any path down this tree yields the correct bits.

If we can compute thew bits then we can set them to 0. Thus we have shown the following:

the discrete log reducw to solving the
equation a' ' = B (mod P) for T.

Combining the two results we have:

the dhcrete log reduceB to finding the principal
mquare root a'-'' of B = a'' (mod P

66

ax
computation tree for S 2 4.

0 0

Noda at the same level have the same quadratic character.

a. The 8 + 1 6l. Lb. of X k 8 hard bit In the dbvcte I-.

Suppose we have an oracle which on input P,a ,B, outputs the r + 1 st. Isb. of X. Then we

if necessary. Using tbe results of the previous section can set this bit to 0 by dividing by as+

(and the oracle), the diMrete log problem then reduces to finding the principal square root of

,9 = a'r (mod P) But this is easy since the principal quare root

7 = a'-1r (mod P) of B is the unique root which satisfies 7' = 1 (mod P) . To see this recall

where T is even.

*+
that up-' = ugq = 1 (mod P) . Then 7' = a = 1 (mod P) , whereas

(-7)' 6 -1 (mod P) since q is odd.

It will follow from Theorem 1 of the next settion tbat this result bolds even in the c s e

where the oracle is correct in - + c fraction of inputs. This result is included in (Long, 1984)

dong with a proof that almost dl bits of X are hard with respect to oracles which are always

1
2

correct.

67

4. c log log P nexbbit unpredictable bitr

Let z, be the ith. least significant bit of X.

Theorem 1 . Let k = E log log P for some constant c. Then q+,, . . . , z , + ~ are next-bit

unpredictable in the discrete log if we require the oracle to predict correctly on every input.

Prwl: Suppose there exists I , 15 I < k , and an oracle 0 which on input

(P , Q , ~ , Z , + ~ , * . . ,zS+,) outputs z,+~+~. As before, we may assume X = 2'2'. Algorithm I com-

putes X in probabilistic polynomial time. Several operations are performed on the value of X.

These can be done in polynomial time even when the value of X is not known but ax (mod P)

is. The operations art:

- test whether X equals a particular value. - assignment (Y := X).
- division by 2 when the S + 1 least significant

bits of X are known. - setting a particular bit of X to 0 when the
value of the bit is known.

Algorithm I - Solve ax = = p for x.

begin

Y : = X ;
for every possible value of z,+~ . . . z,+, do
begin
i := 0;
repeat until Y = 0 or i > log P

begin
i : = i + 1;
obtain bit 8+ I + 1 of Y from the oracle;
{ assume this is also the a+ I+ i th. bit of X}
set the 8+ 1 st. bit of Y to 0
Y := Y/2 { compute the principal square root of a * }

end

test the value constructed for X in the equation ax =
if the equation holds then stop - X has been found

(mod P) ;

end

end.

Consider the iteration of the for-loop in which the correct value of z,+~ . - - z,+, is

68

assumed. Recall that to compute the principal square root of ar, where Y = 2'T, all we need

to know is ys+l. This bit is known correctly in the first iteration or the repeat loop. At each

iteration of the repeat loop, the s+ 1 st. bit of Y is discarded and the higher order bits are shifted

to the right by one position. The oracle allows the algorithm to see the bit which is shifted into

th 8-k 1 th. position. Thus , at each iteration , the algorithm knows bits 8+ 1 through e + 1 of Y,

and in particular bit e + 1 of Y .D

Theorem 2 . Let k = c log log P for some constant c. Then . . . , Z , + k are nexbbit

unpredictable in the discrete log.

Prooh Algorithm-I computes the discrete log using an oracle which is always correct. Now s u p

1 1
pose the oracle is correct on - + f fraction of inputs, with t = - (u = O(log log P)).

2 2"

We will construct an oracle which is correct with probability exponentially close to 1 for all

X < 7. Note that, in the iteration of the for loop in which the correct value of zs+l . . . z,+l

is assumed, the oracle is queried for monotonically decreasing values of Y. Therefore, for the a l p

rithm to work, we need only etsrt with an initial value of X which is less than 2y+1.

P

P

Note that Algorithm-I always knows the e + 1 least significant bits of X. Therefore, if

then z , + / + ~ can be determined from the e + 1+1 st. bit of X + r provided P x<2u+'
2=+1- 1

0 5 r < p 2"+' , since then X + r < P. This gives us a way of randomizing queries to

the oracle. To determine the a + I + 1 st. bit of X we query the oracle on the s + I+ 1 5t. bit of

X+ r for random values of r in the specified range. We now show that the probability of obtain-

1 36
2 4

ing a correct answer on each such random query is 2 - + -.

2"+1- y + 1 -
L e t S = { X + r / O < r < P 2 Y + ' }. Notice IS1 = P d , and every ele-

P ment of S is less than P provided X < 2u+1.

69

1
2

Let - + Z be the fraction of elements in S for which the oracle is correct. Then the total

number of correct answem of 0 ia less than or equal to the number of correct answers in S plus

the cardinality of the complement of S. Thus

1 1
2 2

P (E - -) < IS l (i - -) ==>

1 3 c Thus the oracle is correct on - + - fraction of all elements in the set S. Therefore, by
2 4

querying the oracle on a polynomial number (in log P) of points we obtain the 8 + I+ 1 st. l e z t

significant bit of X with negligible probability of error.

A problem remains in that we have assumed that X < F . This is solved by randomiz-

ing X i.e. we try to solve the equation a(X+R)mod(P-l)= a = @aR (mod P) for random values

of R (0 < R < P - 1). With probability 2u+L (X+ R) mod (P-1) < -. Alterna-

tively, we could simply try all possible values or the u + 1st. most significant bits of X, setting

these bits to 0 by dividing by the appropiate power of a. Thus our algorithm computes X in pro-

babilistic polynomial time .~

1 P
,

5. Next bit unpredictabllity implies weak simultaneous security

The next theorem shows that next bit unpredictability is a stronger notion than weak simul-

taneous security. Although this result is implied by a fundamental theorem of Yao, (Yao, 1982) it

is included here because it has a straightforward proof.

Theorem 8 .

unpredictable with respect to f then they are also weak simultaneously secure with respect t o 1.

Proof: Suppose bits (z l , . . . ,q) are next-bit unpredictable. Let B be a non-trivial predicate on

Let f be a function from ZN to 2,. If k = c log log N bits are nexbbit

70

(zlr - * ,q). Let 0 be an oracle for B given f(X). Let T be the set of values of (zit . . . ,zt) for

which B(zl , . . - ,zk) = 1. Since B is non trivial , there exists a prefix B = u1 . . . u~ (possibly

the empty string A) for which the number of elements in T with prefix Ti1 is distinct from the

number of elements in T with prefix ii0. Assume, without loss of generality, that T contains

more elements with prefix Ti1 than with prefix 30.

Let 3 = (zl, . . . ,q). We make the simplifying assumption that all values of (zl, . . . , z t)

are equally probable when X is random. Then, if 3 = 8, the probability that 0 outputs z,+, on

input f(X) is > -. We construct an oracle O for zl+l given (j (~) , z ~ , . . . ,zi) as follows: 1
2

0 : 113 = P then output O(f(X)) else output the f l rp of a fair coin.

1
2

next-bit unpredictability assumption we can use 0 (hence 0) to invert f i n polynomial time.

Now we show 0 is correct on a t least - + (log N)-' fraction of all inputs. Thus, by the

Let p be the probability that 0 is correct when X is chosen at random. Then

1 p = Prob.(Z # 3) * ~ + R o b . @ = Z)*Prob.(O(f(X),f) = ZI+, I 2 = 'if)
1
2
1
2

= (1 - T')*- + T'*Prob.(O(f(X),z') = q,, 1 f = 3)

= (1 - T')*- + T'*Prob.(O(f(X)) = zf+l I f = 3) (*)

There are 2k-' elements zlr . . . ,tt with prefix 8, and we know the fraction of these ele-

Therefore 1
2 > -. ment6 for which 0 outputs Zf+1 is

Substituting in (I) we get

1 2tJ-I + 1 P 2 (1 - +)L + 2-'* 2k-i 2
= - + -= - + (logN)-' . ,

2 2' 2

71

Acknowledgementi:

Much of the inspiration for this work comes from a wonderful course in cryptography taught

by Clauss Schnorr at Berkeley in the Fall of 84.

I also wish to thank Manuel Blum and Umesh Vazirani for their constructive criticism and

support.

References

Blum,.L. Blum, M. Blum, and M. Shub, “A Simple Secure Pseudo-Random Number Generator,”

C R Y P T 0 86, 1982.

Blum,.M. Blum and S. Micali, “How to Generate Cryptographically Strong Sequences of Pseudo

Random Bits,” 23rd . FOCS, pp. 112117, 1982.

Coppersmith,.

Coppersmith, “Unpublished Result,” Private Communication fhrough C . P . Schnorr.

Long,.D. Long and A. Widgerson, “How Discreet is the Discrete Log,” 15fh. STOC, 1983

Long,.D. Long, “The Security of Bits in the Discrete Logarithm,” PhD Dissertat ion, Princeton

University, January, 1984.

Pohlig,.

S. Pohlig and M. Hellman, “An Improved Algorithm for Computing Logarithms over GF(p)

and Its Cryptographic Significance.,” IEEE Tranaacfiona on InJormafion Theory, vol. 1, no.

1, January 1978.

Rabin,.

M. Rabin, “Probabilistic Algorithms in Finite Fields,” Siom J. Comp. , vol. 9, pp. 278280,

1980.

Vazirani,.

U. Vazirani and V. Vazirani, “Efficient and Secure Pseudo Random Number Generation,”

Proceeding8 OJ the 25th. F O C S , 1984.

72

Yao,. A. Yao, “Theory and Applications of Trapdoor Functions,” 1982 FOCS, 1982.

