
Standardizing Hypertext: Where Next for OHP?

David Millard, Hugh Davis and Luc Moreau

Intelligence, Agents, Multimedia,
University of Southampton, Dept. of Electronics and Computer Science,

Southampton, U. K.

Abstract. Over the last six years the Open Hypermedia Systems Work-
ing Group (OHSWG) has been working in a coordinated effort to produce
a protocol which will allow components of an Open Hypermedia System
to talk to one another in a standardised manner. In this paper we reflect
on this work and the knowledge that has come out of it, evaluating the
differant approaches to standardisation in the light of our experiences.
We discuss the problems we encountered and redefine the goals of the ef-
fort to be more realistic, presenting the Fundamental Open Hypermedia
Model (FOHM) as an example of this more realistic approach. Finally we
describe a possible future path that encompasses the research interests
of the OHSWG while still leading ultimately to interoperability.

1 History of the OHP Effort

1.1 Original Proposal

The First Workshop on Open Hypermedia [25] was held at Edinburgh in con-
junction with ECHT’94. This workshop was concerned with the growing class
of hypermedia systems such as Chimera [2], DHM [9], HyperForm [24], Micro-
cosm [5], Multicard [20] and the HB/SP series [21], which clearly separated hy-
pertext structure (links) from the content (documents). The participants in this
workshop were keen to provide hypertext link services which could provide hy-
pertext structure for documents which were displayed using existing desktop
applications such as Word for Windows and Emacs. This workshop lead to the
formation of the Open Hypermedia Systems Working Group (OHSWG), the full
history and rationale behind the work of this group can be viewed on their web
pages [1].

An interesting finding of this first workshop was that although the major area
of interest for the participating research groups was the design and implemen-
tation of link servers, most of their time was being spent on the implementation
of clients; the researchers were spending significant effort producing text and
graphics clients for the link services, either by writing them from scratch or
writing macros to adapt existing desktop applications. A proposal from Antoine
Rizk was that the group could contribute by producing a lightweight message
based protocol that could be used to communicate about simple link service
functions. The rationale was that all link services had an approximately similar
data model and that the operations that the link services could perform were



also similar; all that would be required was a simple ”shim” (protocol converter)
that could convert between the client protocol and the server protocol, and then
it would be possible for groups to share client implementations. The idea was
simple and lead to the production of the first draft of the Open Hypermedia
Protocol (OHP) [6] which was presented at the next workshop in 1996.

What happened next to OHP may well be a familiar story to other groups
who have attempted to produce an application level protocol. The committee
effect started to take hold and the protocol grew; there were discussions about
whether we were going to use a message passing interface or an API; there were
arguments about the on-the-wire protocol to be used, and the group became
confused about aspects of resource location and naming instead of concentrating
on hypertext. Furthermore, the increasing influence of the World Wide Web
throughout this period tended to change original assumptions by producing a
system that was open in very different ways from the OHSWG systems.

However, there were some good outcomes from this stage of the work. The
scope of the project changed from attempting to provide a lightweight com-
munication mechanism for shared clients and heterogeneous link servers, to at-
tempting to create a reference model and implementation for open hypertext
systems. A standardized data model and basic set of operations was agreed and
the groups concerned produced native OHP link servers, and agreed a temporary
on the wire protocol that made possible a significant demonstration at Hypertext
’98, and a paper on the experiences to that stage [18].

1.2 The Hypertext 98 Demonstration

Two systems were developed for a demonstration of interoperability at Hypertext
98 (held in Pittsburgh, USA). One from the University of Arhus, Denmark,
and the other developed at the Multimedia Research Group (MMRG) at the
University of Southampton.

During the development of these systems several problems became evident.
Both with the protocol itself and also, more importantly, with the scope of the
original draft proposal. The original draft was meant as a standard interface
between clients and servers, to allow software reuse. This has increased in scope
dramatically and become an all-encompassing effort to understand the nature
of hypermedia and thus produce standards to provide for it. However it was
soon understood that such a large goal was impossible to realise within a single
protocol and as a result the protocol was split into several domains, each domain
dealing with a particular type of hypermedia.

The original OHP protocol was therefore renamed OHP-Navigational (OHP-
Nav) and reduced in scope to deal exclusively with navigational (node/link)
hypermedia. Other domains were envisaged such as Spatial Hypermedia [12]
(OHP-Space) and Taxonomic Hypermedia [22] (OHP-Tax).

The protocol itself had been originally based on the Microcosm message
format [8], a sequence of tag/value pairs. However this proved difficult to parse
so the OHSWG adopted XML as a suitable format [3] and the OHP-Nav message



set and hypermedia objects were all defined as XML elements in a Document
Type Definition (DTD).

1.3 The Hypertext 99 Demonstration

At the OHSWGs meeting at Southampton (OHS 4.5) it was decided that as the
Hypertext 98 demonstration had formed such a positive focus point for the group
a similar demonstration should be attempted for Hypertext 99 in Darmstadt,
Germany. It was also decided that since we had demonstrated interoperability
at Hypertext 98 we should now concentrate on showing some of the features of
the protocol, ironically removing the need to interoperate.

Some of the more successful parts of the Hypertext 98 demonstration were the
collaboration aspects. So the Danish contribution to the Hypertext 99 demon-
stration was an extension of this simple support into a more advanced system
called ‘Construct’. The Southampton contribution was to investigate a definition
of computational links, where opaque computation objects are included in the
hypertext model and can be referenced similarly to other objects. This resulted
in a component based system known as ‘Solent’.

Another system demonstrated at Hypertext ’99 was CAOS [19], a spatial
hypermedia collaborative system. Discussions within the working group turned
to the definition of OHP-Space, starting us thinking about whether the different
domains were actually that different after all.

2 What were the Problems with OHP?

2.1 What were we Trying to Standardize?

It has already been mentioned that the purpose of OHP has changed a great deal
since the protocol first appeared. Initially a basic client-server communication
protocol it has grown to reflect the concerns of a large community of researchers.
Even given that we understood what functionality we were going to standardize
there is still the question of what actually will become standard in the system.
I.e. how will components actually talk to one another? There are two approaches:

1. A programming API : By using a standardised API client source code com-
patibility is preserved, whatever the servers involved, and server source code
remains valid whatever the clients. This requires specifying:
(a) the system calls,
(b) the callbacks to be used,
(c) the data to be exchanged.
Examples would be to use CORBA and its interface definition language IDL,
Microsoft DCOM or a Java component system using Java Beans.
One should note that in this approach the data representation is dependent
on the binding (i.e. the IDL compiler for the chosen language and the chosen
implementation of the communication module).



2. An on-the-wire communication model : This involves defining:
(a) the syntax of the messages (e.g. an XML hierarchy),
(b) a set of requests, associated responses and their syntax,
(c) the data and its syntax,
(d) how to setup the transport medium (e.g. opening socket on a port, etc.).

At one time or another both approaches have been argued for. However the
need to produce communicating systems that actually worked resulted in the
group returning to the on-the-wire approach, even though the API approach
seems cleaner and allows us to concentrate on the hypertext issues rather than
the networking ones. The API approach also preserves source code compatibility.
The implementers just need to implement two APIs, one for the client and
another for the server. If they then find that a new on-the-wire protocol should
be used, they can change their implementation without altering the source code
of the components involved.

However it is still not a perfect solution as it may require recompiling applica-
tions when a different medium is required. This is indeed the case with CORBA
where binary applications are ORB dependent. This does not give a lot of free-
dom to the final user as a binary is typically compiled for a fixed communication
medium.

Recently, Southampton researchers have been experimenting with imple-
menting hypertext functionality on top of agent frameworks; in particular, the
Java-based SoFAR [15], the Southampton Framework for Agent Research, was
the focus of this experiment. SoFAR adopts an abstract communication model,
where agents communicate using “virtual channels”, identified by a startpoint
and an endpoint; the latter is a client-side proxy used to initiate communications
and the former is a server-side entity, extracting messages from the communi-
cation channel and passing them on to agents. Startpoints are specified by an
interface, and agents communicate by activating methods of this interface. Ev-
ery communication module provides its own implementation of the startpoint
and endpoint interfaces, relying on a specific communication mechanism (rmi,
encrypted communications, . . . ).

This modular organisation of the system preserves binary code compatibility
of applications. Indeed, applications do not have to be recompiled when new
communication modules are introduced. When an application starts a commu-
nication with a startpoint, for which the code is not loaded in memory, SoFAR
and the JVM are able to load the required implementation dynamically. This
property requires the language and/or the operating system to be able to load
binary code dynamically. In the absence of such a facility, SoFAR would revert
to a source code compatibility: it would require applications to be recompiled
for every new communication module, in a similar fashion to the CORBA/IDL
model.

As the on-the-wire communication model is typically adopted for Internet
protocols (normally ASCII and socket based), there is a simple argument that
says that since it works for the World Wide Web and the Internet it can work
for OHP to! Unfortunately this approach has several disadvantages:



1. Writing efficient socket communications is a very difficult task, involving
threads, polling, etc. It is very easy to produce inefficient communication
systems.

2. Such libraries have to be rewritten for every application. This results in
the risk of a bad implementation, where data is not properly formatted or
parsed. The CORBA approach with a stub compiler avoids this problem by
generating code automatically.

3. It becomes extremely difficult to deal with non-protocol data and requests,
such as routing information for mobile agents, garbage collection or session
management.

The DLS approach [4] is an instance of the on-the-wire protocol standardisa-
tion, except that the DLS does not specify but reuses off-the-shelve protocols or
communications medium, such as sockets, http, XML, LDAP, SoFAR or tuple
space.

Both approaches to interoperability have their advantages and disadvantages.
On the wire protocol has the “taste” of the Internet community and a simplicity
that is very appealing, while the programming API allows further techniques to
be transparently added (mobility, etc.). In both cases, a data model has to be
adopted. The data model specifies the type of data and its associated meaning (in
terms of protocol primitives) exchanged during communications. The data model
does not specify the syntax of data (this depends on the approach: ontologies in
SoFar, or XML over sockets).

Remark. The data model does not force components to adopt such a represen-
tation internally: it simply requires them to exchange such data. Once defined
the data primitives can serve as a guide to specify requests.

Without precluding any approach, API or on-the-wire, is the need to specify
a powerful data model that supports all of the hypertext features that need to
be standardised.

2.2 A Communications Infrastructure

Even given a data model and some communication medium, there remains the
need for some type of infrastructure over which that model can be discussed by
a variety of components. This infrastructure is different from the network and
itself may run independently over different lower network protocols (sockets, rmi,
etc.). In effect it is a framework in which components can discover each other
and exchange data.

In OHP this is represented by the message headers and bodies (although not
the requests themselves). Using this basic framework, OHP allows a component
to send multiple requests in a single message and track messages around the
system. It was also reasoned that in any complex system total semantic under-
standing by all components was unobtainable. To avoid the problems this would
cause it was at one time argued that performatives [7] [11] should be added to



the OHP header. Performatives describe the overall intention of message in con-
cise clear terms that all components of the system can understand (e.g. this is
an information message or this is a request). In this way if the component does
not understand the content of the message it can still reason about the intention
and make decisions about the message as a result (even if that is just to forward
the message somewhere else).

In an effort to keep the OHP definitions as simple as possible performatives
were never formally added. However we have never lost the belief that they are
useful. In fact we now believe that disagreements within the group regarding
performatives were a symptom of a much larger and fundamental problem. In
the OHP specification no clean separation was made between the communication
infrastructure and the definition of the hypermedia model and its operations. As
a result we failed to notice that many of the problems we faced were not ours to
solve in the first place!

2.3 Is OHP too Large in Scope?

One of the noticeable things about the whole OHP effort is the way that the
scope of the original proposal has increased out of all proportion compared to
its original intent. The OHP has grown from a simple protocol that would allow
standardized clients to talk to any OHS into a mammoth undertaking that in-
volves all of the components of a system and which includes multiple domains
of hypertext and many levels of functionality (e.g. computations and collab-
oration). Much effort has since been directed into breaking this huge problem
domain into manageable chunks, creating OHP-Nav, OHP-Space, OHP-Tax and
a whole host of associated protocols. The problems we have faced would seem
to indicate that the scope of the protocol should be dramatically reduced.

2.4 Is OHP too Small in Scope?

Considering the size of the task now before us this may seem like a ridiculous
question. However the goals of the protocol have been moving since its inception
and perhaps it is time we re-examined exactly what they are. When OHP was
conceived the OHS architecture considered was a client/server one, ideal for
intra-LAN systems. As technology has moved on, and we move into an age of
distributed information and intelligent agents, it is possible that by increasing
that scope we actually ‘offload’ some of the bigger difficulties to the places where
they belong. It is not the job of the OHSWG to create distributed computing
environments, any more than it is to create a language for exchanging knowledge.

In other words, by accepting that the scope of OHP is actually the massively
distributed management and navigation of knowledge we no longer have to deal
with any of the communication infrastructure issues mentioned above. Instead
we have to build OHP on top of existing networks and prototype frameworks that
support the dynamic exchange of knowledge between distributed components.



In effect OHP would become a semantic language that could be implemented
via a variety of syntactical languages over existing communication infrastruc-
tures.

3 Where does FOHM fit in?

The Fundamental Open Hypermedia Model (FOHM) [13] is an abstract data
model that supports arbitary associational information and can be used to rep-
resent Spatial, Navigational and potentially Taxonomic structure. The relation-
ship between these domains is defined formally and interoperability is achieved
by mapping from one domain to FOHM and then back to a different domain.

3.1 Where does FOHM come from?

One of the components in the Solent system used for the second demonstration
at Hypertext ’99 was one that allowed the storage of arbitrary XML [16]. This
component was very versatile and totally reusable as it understands nothing of
the data structures it stored, only the structure of the XML itself, effectively an
element tree. The problem with this approach was that the storage component
was extremely slow as a result, taking a much longer time to retrieve a structure
via pattern matching than a database would with structures it really understood
(and had presumably indexed).

As a result of this experience, when we noticed that there was a great deal
of overlap between the various domains of hypertext we decided to find the
highest level of structure that worked across them all. Each domain could then
be represented in that structure and cross-domain interoperability would be
achieved.

3.2 What is FOHM in relation to OHP?

FOHM is an attempt to concentrate firmly on hypertext data structures and
is based on the OHP-Nav data model, although it inherits none of the OHP
protocol definition itself (headers, application requests, etc.). It is at this data
model level that we believe the efforts of the OHSWG should be focused in the
future.

Although we do not suggest that FOHM replaces the OHP model we do think
that OHP could benefit from the lessons that FOHM teaches. That a powerful
generic structure that models all the major domains is not only possible, but
it results in a versatile hypertext environment that is greater than any single
domain.

4 Where next for OHP?

Before we can move forward with OHP we have to acknowledge the success
we have already had with the protocol. It has managed to get a wide group of



researchers to discuss the technology of hypertext on a common level and forms
a basis for discussion only rivaled by the Dexter model [10]. We now have a well
defined model for Navigational hypertext and are beginning to understand how
this relates to other domains, such as Spatial and Taxonomic Hypertext. We also
have a much greater understanding of the way our different systems are built
and crucially can begin to understand the infrastructure that we require before
true interoperability is possible.

As a result of these efforts the OHSWG is now in the position to finalise
the existing OHP draft. This would provide a milestone by which other efforts
could be judged, but we believe that it would still be a mistake. One which risks
knocking OHP into obsolescence. Instead the question is how can we begin to
incrementally move the effort forward again using the data model as a base?

In this paper we have argued that the most successful part of OHP has
been the definition of an abstract data model and have explained how FOHM
extends this model formally, providing a core data model and set of operations.
Although this core can already be implemented by binding it to an appropriate
infrastructure, it still needs to be extended to include the notion of perspective
from Taxonomic hypertext as well as investigating other concerns, such as the
interaction of the model with existing multi-user and security systems

It would be useful to produce several example bindings for different infras-
tructures. At a basic level the core data model makes this a trivial task, but
that doesn’t mean that all implementations are trivial! There is still room for
interesting work on the distribution and architecture of implementations and the
consequences that they might have for the model. Also there are other imple-
mentation concerns that remain beyond the scope of the model, for example the
problems associated with naming [17].

Finally it is entirely appropriate to build other structures based on the core
to deal with other hypertext issues, such as the provision for collaboration [23]
and computation [14] within the system.

We may be building hypermedia systems but the navigation of hyperspace
is much more then point and click, it involves a true understanding of how
information spaces work, how they can be represented in different ways and how
individual hyperwebs can be manipulated in a global information network. Above
all else the goal of the OHP effort should be to increase that understanding.

References

1. Open Hypermedia Systems Working Group (OHSWG) home page.
http://www.ohswg.org.

2. Anderson, K. M., Taylor, R. N., and Whitehead, E. J. Chimera: Hyper-
text for heterogeneous software environments. In ECHT ’94. Proceedings of the
ACM European conference on Hypermedia technology, Sept. 18-23, 1994, Edin-
burgh, Scotland, UK (1994), pp. 94–197.

3. Bray, T., Paoli, J., and Sperberg-McQueen, C. M. Extensible markup lan-
guage (XML). Tech. rep., World-wide Web Consortium (W3C) Recommendation,
Feb. 1998.



4. Carr, L. A., De Roure, D. C., Hall, W., and Hill, G. J. The distributed
link service: A tool for publishers, authors and readers. World Wide Web Journal
1, 1 (1995), 647–656.

5. Davis, H. C., Knight, S., and Hall, W. Light hypermedia link services: A study
of third party application integration. In ECHT ’94. Proceedings of the ACM Euro-
pean conference on Hypermedia technology, Sept. 18-23, 1994, Edinburgh, Scotland,
UK (1994), pp. 41–50.

6. Davis, H. C., Rizk, A., and Lewis, A. J. OHP: A draft proposal for a standard
open hypermedia protocol. In Proceedings of the 2nd Workshop on Open Hyper-
media Systems, ACM Hypertext ’96, Washington, D.C., March 16-20. Available
as Report No. ICS-TR-96-10 from the Dept. of Information and Computer Sci-
ence, University of California, Irvine (1996), U. K. Wiil and S. Demeyer, Eds.,
pp. 27–53.

7. FIPA. Fipa 97 specification, part 2: Agent communication language. Tech. rep.,
Foundation for Intelligent Physical Agents, Geneva, Switzerland, Nov. 1997.

8. Fountain, A. M., Hall, W., Heath, I., and Davis, H. C. MICROCOSM: An
Open Model for Hypermedia With Dynamic Linking. In Hypertext: Concepts,
Systems and Applications (Proceedings of ECHT’90) (1990), A. Rizk, N. Streitz,
and J. André, Eds., Cambridge University Press, pp. 298–311.

9. Grønbæk, K., and Trigg, R. H. Design issues for a dexter-based hypermedia
system. Communications of the ACM 37, 3 (Feb. 1994), 40–49.

10. Halasz, F., and Schwartz, M. The dexter hypertext reference model. Commu-
nications of the ACM 37, 2 (1994), 30–39.

11. Labrou, Y., and Finin, T. A proposal for a new KQML specification. Tech. Rep.
TR CS-97-03, Computer Science and Electrical Engineering Department, Univer-
sity of Maryland Baltimore County, Baltimore, MD 21250, Feb. 1997.

12. Marshall, C. C., and Shipman, F. M. Spatial hypertext: Designing for change.
Communications of the ACM 38 (1995), 88–97.

13. Millard, D. E., Moreau, L., Davis, H. C., and Reich, S. FOHM: A funda-
mental open hypertext model for investigating interoperability between hypertext
domains. In Proceedings of the ’00 ACM Conference on Hypertext, May 30 - June
3, San Antio, TX (June 2000).

14. Millard, D. E., Reich, S., and Davis, H. C. Dynamic service discovery and
invocation in OHP. In Proceedings of the 5th Workshop on Open Hypermedia
Systems, ACM Hypertext ’99 Conference, Darmstadt, Germany, February 21-25.
Available as Report No. CS-99-01 from the Dept. of Computer Science, 6700 Aal-
borg University Esbjerg, Denmark (1999), U. K. Wiil, Ed., pp. 38–42.

15. Moreau, L., Gibbins, N., DeRoure, D., El-Beltagy, S., Hall, W., Hughes,

G., Joyce, D., Kim, S., Michaelides, D., Millard, D., Reich, S., Tansley,

R., and Weal, M. SoFAR with DIM agents. An agent framework for distributed
information management. In The Fifth International Conference and Exhibition
on The Practical Application of Intelligent Agents and Multi-Agents, April 10 - 12,
2000, Manchester, UK (Apr. 2000).

16. Reich, S., Griffiths, J. P., Millard, D. E., and Davis, H. C. Solent —
a platform for distributed open hypermedia applications. In Database and Ex-
pert Systems Applications. 10th Intl. Conference, DEXA 99, Florence, Italy (Ber-
lin/Heidelberg/New York, Aug. 1999), T. Bench-Capon, G. Soda, and A. M. Tjoa,
Eds., vol. 1677 of LNCS, Springer, pp. 802–811.

17. Reich, S., Millard, D. E., and Davis, H. C. Naming in OHP. In Proceedings of
the 5th Workshop on Open Hypermedia Systems, ACM Hypertext ’99 Conference,



Darmstadt, Germany, February 21-25. Available as Report No. CS-99-01 from the
Dept. of Computer Science, 6700 Aalborg University Esbjerg, Denmark (1999),
U. K. Wiil, Ed., pp. 43–47.

18. Reich, S., Wiil, U. K., Nürnberg, P. J., Davis, H. C., Grønbæk, K., Ander-

son, K. M., Millard, D. E., and Haake, J. M. Addressing interoperability in
open hypermedia: The design of the open hypermedia protocol. New Review of
Hypermedia and Multimedia (1999). Accepted for publication.

19. Reinert, O., Bucka-Lassen, D., Pedersen, C. A., and Nürnberg, P. J.

CAOS: A collaborative and open spatial structure service component with incre-
mental spatial parsing. In Proceedings of the ’99 ACM Conference on Hypertext,
February 21-25, 1999, Darmstadt, Germany (Feb. 1999), pp. 49–50.

20. Rizk, A., and Sauter, L. Multicard: An open hypermedia system. In ECHT
’92. Proceedings of the ACM conference on Hypertext, November 30-December 4,
1992, Milan, Italy (1992), pp. 4–10.

21. Schnase, J. L., Leggett, J. L., Hicks, D. L., Nuernberg, P. J., and

Sánchez, J. A. Open architectures for integrated, hypermedia-based informa-
tion systems. In HICSS 94 — 37th Annual Hawaii International Conference on
System Science. (1994).

22. van Dyke Parunak, H. Don’t link me in: Set-based hypermedia for taxonomic
reasoning. In Proceedings of the ’91 ACM Conference on Hypertext, Dec. 15-18,
1991, San Antonio, TX (1991), pp. 233–242.

23. Wang, W., and Haake, J. M. Implementation issues on ohs-based workflow
services. In Proceedings of the 5th Workshop on Open Hypermedia Systems, ACM
Hypertext ’99 Conference, Darmstadt, Germany, February 21-25. Available as Re-
port No. CS-99-01 from the Dept. of Computer Science, 6700 Aalborg University
Esbjerg, Denmark (1999), pp. 52–56.

24. Wiil, U. K., and Leggett, J. J. HyperForm: using extensibility to develop
dynamic, open and distributed hypertext systems. In ECHT ’92. Proceedings of
the ACM conference on Hypertext, November 30-December 4, 1992, Milan, Italy
(1992), pp. 251–261.

25. Wiil, U. K., and Østerbye, K., Eds. Proceedings of the ECHT ’94 Workshop on
Open Hypermedia Systems (1994). Technical Report R-94-2038, Dept. of Computer
Science, Aalborg University.

This article was processed using the LATEX macro package with LLNCS style


