Planning while Executing: a Constraint-based
Approach

R. Barruffi, M. Milano, and P. Torroni

DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy,
Tel: 0039 051 2093086 Fax: 0039 051 2093073

{rbarruffi, mmilano, ptorroni}@deis.unibo.it

Abstract. We propose a planning architecture where the planner and
the executor interact with each other in order to face dynamic changes
of the application domain. According to the deferred planning strategy
proposed in [14], a plan schema is produced off-line by a generative con-
straint based planner and refined at execution time by retrieving up-to-
date information when that available is no longer valid. In this setting,
both planning and execution can be seen as search processes in the space
of partial plans. We exploit the Interactive Constraint Satisfaction frame-
work [12] which represents an extension of the Constraint Satisfaction
paradigm for dealing with incomplete knowledge. Given the uncertainty
of the plan execution in dynamic environments, a backup and recovery
mechanism is necessary in order to allow backtracking at execution time.

1 Introduction

In dynamic and changing environments, a plan produced off-line by a traditional
generative planner can fail during execution due to the fact that the environment,
can change, often in unpredictable ways. In particular, our planner works in
a networked computer system environment and assembles configuration plans.
The information about system services and resources cannot be complete at
planning time due to its vastity and dynamicity. In these cases it is impossible
to produce a complete successful plan at plan generation time and there is need
to sense correct and up-to-date information at execution time in order to refine
the plan. In [14], the authors propose a classification followed by a deep analysis
of the main planning strategies able to integrate execution time sensory data
into the planning process. The strategy we follow is called deferred planning
consisting in delaying until execution the decisions depending on sensing. As a
consequence, there is need for a sensing mechanism for testing the environment,
and a procedure for plan refinement at execution time. We integrate a constraint-
based planner aimed at producing a plan schema with an executor able to refine
the plan before executing it. Both those components are able to sense the real
world by means of a constraint based framework, called Interactive Constraint
Satisfaction Problem (ICSP), proposed in [12]. The main point of this paper is to
describe our architecture and how it implements the deferred planning strategy
by exploiting the ICSP framework.

2 Different Strategies to cope with Dynamicity

The enhanced complexity of traditional planning techniques when applied to
dynamic environments is due to the facts that (i) typically the planner is not
the only agent that causes changes on the system and (i) often changes are not
deterministic. This can lead to a failure of the plan execution, either because
action preconditions are no longer verified at execution time, or because action
effects are not those expected.

In [14], the authors present three different extensions to conventional plan-
ning techniques whose aim is to cope with uncertainty:

— planning for all contingencies, so that once sensing is performed, only the
plan correspondent to the actual contingency will be executed [15, 2];

— making assumptions, so that planning decisions will be based only on the
assumed value of the sensing result [5, 9];

— deferring planning decisions until information depending on sensors is avail-
able [14,5, 8].

The appropriateness of the strategy depends on the application, and, in partic-
ular, on the criticality of mistakes, on the complexity of the domain, and on the
acceptability of suspending execution to do more planning.

Our architecture follows the deferred planning strategy, as it will be described
in the next section. The deferred planning approach aims at avoiding doing use-
less computation at planning time. Some portions of the plan requiring infor-
mation which can be available only at execution time are left incomplete. In
this way the planner could miss some important dependencies between the par-
tial plans it is producing. This is why plan execution can fail and it is strongly
required that the actions contained in partially specified plans are reversible.

3 An ICSP-based Planning Architecture

Our planning architecture is in charge of computing configuration plans in a net-
worked computer system [4, 10]. The domain knowledge is composed by many dif-
ferent types of objects (e.g., machines, users, printers, services, files, processes),
their attributes (e.g., sizes, availability, location) and relations among them (e.g.,
user u is logged on machine m). In this case, there is an enormous amount of
knowledge to consider. In addition, this information can change during the sys-
tem’s life due to actions performed on the objects (e.g., removing or creating
files, connecting or disconnecting machines, adding or deleting users, starting
or killing processes). Thus, it is not convenient, if possible at all, to store all
this information in advance and keep it up-to-date. We developed a planner able
to deal with dynamic and incomplete knowledge. Our solution follows the de-
ferred planning approach described in [14]. However, while in [14] the deferred
decisions are represented by all the goals involving data that must be obtained
through sensing, our planner does not defer until execution all the goals which
require sensing since it is able to sense at planning time. In our approach deferred
decisions are represented by:

— non deterministic variable bindings: since variable domain values represent
alternative resources whose state can change during or after plan construc-
tion, we want to avoid as much as possible to commit to premature choices;

— acquisition of up-to-date information when that sensed at planning time is
no longer valid.

Both the planner and the executor are able to sense the real system by means
of a constraint based framework representing an extension of the Constraint
Satisfaction paradigm and called Interactive Constraint Satisfaction Problem
framework [12].

3.1 Preliminaries

Interactive Constraints (ICs) are declarative relations among variables whose
domain (i.e., the set of values the variables can assume) is possibly partially or
completely unknown. An interactive domain is defined as D(X) = [ListUUndef]
where List represents the set of known values for variable X, and Undef is a
domain variable itself representing (intensional) information which is not yet
available for variable X. An Interactive Constraint Satisfaction Problem (ICSP)
is defined on a set of variables ranging on interactive domains. Variables are
linked by ICs that define (possibly partially known) combinations of values that
can appear in a consistent solution. As for traditional Constraint Satisfaction
Problems, a solution to an ICSP is found when all the variables are instantiated
consistently with constraints. For a formal definition of the ICSP framework see
[12]. ICs operational behaviour extends standard constraint propagation with a
data acquisition mechanism devoted to retrieving consistent values for variable
domains. In particular given a binary interactive constraint IC(c¢(X,Y")), its
operational behaviour is the following:

1. If both variables are associated to a partially or completely unknown domain,
the constraint is suspended;

2. else, if both variables range on a completely known domain, the constraint
is propagated as in classical CSPs;

3. else, if one variable (say X) ranges on a fully known domain and the other
(V) is associated to a fully unknown domain a knowledge acquisition step
is performed; this returns either a finite set of consistent values representing
the domain of Y, or an empty set representing failure.

4. else, if X ranges on a fully known domain and Y is associated to a partially
known one, Y domain is pruned from values non consistent with X. If Y
domain becomes empty a new knowledge acquisition step is performed for
Y driven by X.

This is a general framework which can be used in many applications. It is partic-
ularly suited for all the applications that process a large amount of constrained
data provided by a lower level system, see for instance [11,12].

3.2 The Algorithm

According to the deferred planning strategy proposed in [14], a plan schema is
produced off-line by a generative planning process and refined at execution time
by retrieving up-to-date information when that available is no longer valid. In
this setting, both planning and execution represent search processes in the space
of partial plans. More precisely the plan execution can be seen as the second
phase of the same search algorithm aimed both at producing and executing a
plan. The generative phase of the algorithm represents a Partial Order Plan-
ner (POP)[16] interleaving open condition' achievement and conflict resolution
steps. As far as the open condition achievement is concerned, three alternative
cases are possible: (i) the open condition is already satisfied in the initial state,
(i) it can be satisfied by an action already in the plan, (iii) there is need of a
new action in order to satisfy it.

The planning problem is mapped onto an ICSP so that the planner becomes
able to both exploit constraint satisfaction techniques in order to reduce the
search space and deal with incomplete knowledge. The method we propose em-
beds knowledge acquisition activity into the constraint solving mechanism, thus
simplifying the planning process in two points. First of all, there is no need to add
declarative sensing actions to the plan [1, 6, 10], we provide a sensing mechanism
where no further declarative action is needed apart from the causal actions. Sec-
ond, only significant information for the planner is retrieved. As a consequence,
variable domains are significantly smaller than in the standard case.

Open conditions are treated as ICs. Variables appearing in ICs represent
system resources, and domain values represent alternative instances. Variable
domains contain all the known alternative resources; they can be either (i) com-
pletely known, containing objects which can be assigned to the corresponding
variable; (i7) partially known, containing some values already at disposal and
a variable representing intensional future acquisitions; (ii7) totally unknown,
when no information has already been retrieved for the variable. As soon as
an open condition p(X,Y") is selected, the constraint solver will propagate the
corresponding IC(p(X,Y)) to test if there exists at least one value of X and
Y that already satisfies p in the initial state. When variables (X, Y') range
on known domains, traditional constraint propagation is performed in order to
prune inconsistent values from domain, otherwise constraint propagation results
in acquisition of domain values. In order to provide Interactive Constraints with
the capability to sense the system we need to associate them with appropriate
information gathering procedures, working as access modules to the real world.
In our environment such procedures can be represented by simple UNIX sensing
commands as well as by scripts when sensory requests involve setup activities.
It is worth noting that when appropriate sensors are available, Interactive Con-
straint retrieve only information consistent with the context so as to simplify the
task of pruning inconsistent alternatives. For instance, suppose that, during the
planning process, we need to locate a file mydoc in a UNIX system, i.e., we need

1 An open condition is indifferently represented by a precondition or a final goal con-
junct still to be satisfied.

to propagate the interactive constraint inDirectory(mydoc, Location). Suppose,
also, that the file mydoc is initially contained in three different directories dirl,
dir2 and dir3. If variable Location has an unknown domain, an acquisition step
is performed and those three values are retrieved (through the find Unix sens-
ing command), otherwise the domain is pruned from not consistent values (e.g
dird).

If a constraint fails (i.e., a variable domain becomes empty), it means that
the corresponding precondition is not satisfied in the initial state (i.e., there is
need of an action in order to achieve it). On the other hand, when more than
one value are left in a variable domain after all possible propagation, it means
that all those values satisfy that constraint in the initial state. In a traditional
CS_based approach, there is need for a non deterministic labelling step in order
to find a final solution. In our architecture, the labelling step takes place at plan
execution time so that at the end of the generative phase variables might be
associated with a domain containing more than one value.

Given the plan schema produced by the generative phase, the executor selects
the first action to be executed. An interactive constraint propagation activity
checks the satisfability of its preconditions in the real world. If precondition vari-
ables are already instantiated, the interaction with the underlying system results
in a consistency check, while if those variables are associated to a domain, the
domain can be pruned in order to remove values which are no longer consistent
with the current state of the system. Value removal can trigger constraint propa-
gation which, in turn, removes values from other variable domains, thus reducing
the execution search space. If, after propagation, a domain is empty, meaning
that values retrieved at planning time no longer verify the correspondent precon-
dition p, a backtracking step is performed in order to select an alternative action
or partial plan which satisfies p. When all the variables of the action range on
non empty domains, necessary non deterministic labelling steps are performed
and the action is executed. The same reasoning applies until all the actions are
successfully executed.

3.3 An Example

Let us consider a network where a monitoring application ensures that certain
processes are up and running (i.e. that their status is on). Once the status of
the system is recognized as faulty, the planner is activated in order to provide a
recovery plan.

Let us suppose that one of those processes, called Trigger, is off, and that
for activating it the planner generates the plan P; of actions shown in Figure
1. Note that some domains are partially known, others are still completely un-
known. TriggerStart is the daemon process in charge of activating the Trigger
process, and its code is contained in the executable file TMAboot. When activating
TriggerStart, TMAboot must be located in a directory (X) corresponding to the
so-called runlevel (I) of the process. For instance, if TriggerStart is to be acti-
vated at runlevel ’>3’, TMAboot must be in a directory called ’>/sbin/r13’. The
runlevel is a parameter of the machine which is set at boot-time. In particular, in

x** plan to be executed: *%x

killProcess (TriggerStart)
copy (TMAboot, D1, X); X:: [Undef] D1:: [/sbin/rll, /sbin/rl2, Undef]
onTriggerStart (I, X); X:: [Undef] I:: [3, Undef]

Fig. 1. Plan to be executed.

order to achieve the goal of having processes TriggerStart and Trigger on, P
suggests that process TriggerStart is killed, that file TMAboot is copied from
directory D1 to directory X and that process TriggerStart is activated from
the directory X corresponding to the runlevel I. At planning time only relevant

***** executing plan... ****%x

now checking preconditions...
---> condition status(TriggerStart, on) succeeded
...preconditions checked.
now doing labelling on preconditions...
labelling killProcess (TriggerStart)
...labelling on preconditions done.
now executing action 1: killProcess(TriggerStart)...
---> action killProcess (TriggerStart) succeeded
now checking preconditions...
---> condition inDirectory (TMAboot, D1l) succeeded
...preconditions checked.
now doing labelling on preconditions...
labelling copy (TMAboot, D1, X)
...labelling on preconditions done.
now executing action 2: copy(TMAboot, /sbin/rll, X)...
---> action copy (TMAboot, /sbin/rll, /sbin/rl3) succeeded
now checking preconditions...
---> condition status(TriggerStart, off) succeeded
---> condition inDirectory (TMAboot, /sbin/rl3) succeeded
---> condition configDir (/sbin/rl3, I) succeeded
...preconditions checked.
now doing labelling on preconditions...
labelling onTriggerStart(I, /sbin/rl3)
...labelling on preconditions done.
now executing action 3: onTriggerStart(3, /sbin/rl3)...
---> action onTriggerStart(3, /sbin/rl3) succeeded

x*x%%x _ .plan executed **%*

Fig. 2. Output messages generated during the execution of the plan: case 1.

facts are retrieved from the world: in particular, the planner knows that the
machine is on at runlevel 3, that four directories (’>/sbin/r10’, ’/sbin/r11’,
’/sbin/rl2’, ’/sbin/rl3’) exist and that they correspond to four different
runlevels, that process TriggerStart is on and that process Trigger is off.
Finally it knows that a copy of the file TMAboot is contained in two different
directories (’/sbin/rl1’, ’/sbin/r12’). If the world does not change the ex-

now checking preconditions...
---> condition inDirectory (TMAboot, D1l) succeeded
...preconditions checked.
now doing labelling on preconditions...
labelling copy (TMAboot, D1, X)
...labelling on preconditions done.
now executing action 2: copy(TMAboot, /sbin/rl2, X)...
---> action copy (TMAboot, /sbin/rl2, /sbin/rl3) succeeded

Fig. 3. Output messages generated during the execution of action copy: case 2.

ecutor will instantiate variable D1 either to ’/sbin/r1l1’ or to ’/sbin/rl2’,
variable X to ’/sbin/r13’ and I to 3. The output messages generated by the
execution module are those of Figure 2. We can recognize different steps in the
execution of each action: a first phase where the executor checks if the pre-
conditions of the current action hold, a labelling phase where domains, if any,
are labelled and eventually an execution phase, which modifies the state of the
world.

If the actions are successfully performed, the world is led to a final state with
all the relevant processes on. Now, let us suppose that before executing action
copy (TMAboot, D1, X) some external agent in the world deletes file TMAboot
from ’/sbin/r11’. The actual world contains only one instance of such file,
in directory ’/sbin/r12’. Therefore the executor cannot label the plan in the
same way as before (i.e., copy(TMAboot, /sbin/rll, /sbin/rl3)). What it
does, after checking in the world the domain of D1, is to choose one of the do-
main values which are actually left (i.e., >/sbin/r12’). The execution proceeds
as in the first case, with the only difference that the file is copied from a different
source (’/sbin/r12’). See Figure 3.

4 Non-Monotonic Changes

Up to now, we have considered that values acquired during plan construction
can be no longer available during plan execution. However, a more complex
situation occurs when some new values are available during plan execution and
have not been retrieved during plan construction. Standard CSPs do not deal
with value insertion in variable domains since it implies reconsidering previously
deleted values which can be supported by the newly inserted value. The ICSP
framework can cope with non monotonic changes of variable domains thanks to
the open domains data structure.

An open domain is represented by a set of known values and a variable rep-
resenting the unknown domain parts, i.e., potential future acquisitions. Thus, if,
during plan execution, the entire set of known values (those acquired during plan
construction), is deleted because of precondition verification, a new acquisition
can start aimed at retrieving new consistent values. If no values are available,
backtracking is performed in order to explore the execution of other branches

in the search space of partial plans. If the overall process fails (and only in this
case), a re-planning is performed.

Dynamic Constraint Satisfaction (DCS) [13] has been proposed in order to

deal with non monotonic changes. DCP solvers maintain proper data structures
so as to tackle modifications of the constraint store. Thanks to the ICSP frame-
work we do not need to store additional information for restoring the constraint
store consistency as done by DCS approaches. On the other hand, our method
makes the propagation we perform less powerful than that performed by dy-
namic approaches. In fact, if we consider a constraint between variables X and Y,
the variable inserted in the domain of variable X represents a potential support
for values in the domain of variable Y, which cannot be pruned until the domain
of X becomes closed.
Example. Given the example above let us consider a third case. If the domain
initially retrieved for D1 is completely wiped and an instance of file TMAboot
is put in another directory, let us say ’/sbin/rl0’, it is necessary to perform
more acquisition via the undefined part of the D1 domain. In particular, the con-
straints active on D1 can shape from the new world setting the correct domain
for it at execution time and let the plan be once more successfully executed.
Figure 4 shows the output generated by the execution of action copy.

now checking preconditions...
---> condition inDirectory (TMAboot, /sbin/rl0) succeeded
...preconditions checked.
now doing labelling on preconditions...
labelling 2
labelling copy (TMAboot, /sbin/rl0, X)
...labelling on preconditions done.
now executing action 2: copy(TMAboot, /sbin/rl0, X)...
---> action copy (TMAboot, /sbin/rl0, /sbin/rl3) succeeded

Fig. 4. Output messages generated during the execution of action copy: case 3.

5 Conclusion

This paper describes an approach to deferred planning, which represents one
of the main planning strategy to plan in presence of dynamic environments.
The idea is to delay some planning decisions regarding sensory data, as much
as possible, in order to reduce the gap between the world as it is observed at
planning time and the world the executor performs on. We exploit the Interactive
Constraint Satisfaction framework [12], which represents an extension of the CS
framework based on Interactive Constraints, in order to interact with the real
world. Sensing is performed both at planning and at execution time.

The implementation of this architecture has been carried out by using the
finite domain library of ECL!PS® [3] properly extended to cope with the in-

teractive framework. EC'L!PS® is a Constraint Logic Programming (CLP) [7]
system merging all the features and advantages of Logic Programming and Con-
straint Satisfaction techniques. CLP on Finite Domains, CLP(FD), can be used
to represent planning problems as CSPs.

A repair mechanism is currently under development in order to cope with
failures and backtracking steps over already executed actions. The repair mech-
anism supports all cases in which the executor realises that the effects of the
action are not those expected.

6 Acknowledgments

Authors’ work has been partially supported by Hewlett Packard Laboratories
of Bristol-UK (Internet Business Management Department) and CNR (Project
40%).

References

1. N. Ashish, C.A. Knoblock, and A. Levy. Information gathering plans with sensing
actions. In Proceedings of the 4th European Conference on Planning, 1997.
2. D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gath-
ering and contingent execution. In Proceedings of AIPS-94, 1994.
3. ECRC. ECL'PS® User Manual Release 3.3, 1992.
4. O. Etzioni, H. Levy, R. Segal, and C. Thekkath. Os agents: Using ai techniques in
the operating system environment. Technical report, Univ. of Washington, 1993.
5. K. Golden. Planning and Knowledge Representation for Softbots. PhD thesis,
University of Washington, 1997.
6. K. Golden and D. Weld. Representing sensing actions: The middle ground revisited.
In Proceedings of 5th Int. Conf. on Knowledge Representation and Reasoning, 1996.
7. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.
8. C.A. Knoblock. Planning, executiong, sensing, and replanning for information
gathering. In Proc. 14th IJCAI 1995.
9. N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic least-
commitment planning. In Proceedings of AAAI-94, 1994.
10. C.T. Kwock and D.S. Weld. Planning to gather information. Technical report,
Department of Computer Science and Engineering University of Washington, 1996.
11. E. Lamma, M. Milano, R. Cucchiara, and P. Mello. An interactive constraint based
system for selective attention in visual search. Proceedings of the ISMIS’97, 1997.
12. E. Lamma, M. Milano, P. Mello, R. Cucchiara, M. Gavanelli, and M. Piccardi.
Constraint propagation and value acquisition: why we should do it interactively.
Proceedings of the IJCAI 1999.
13. S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In
Proceedings of AAAI-90, 1990.
14. D. Olawsky and M. Gini. Deferred planning and sensor use. In Proceedings DA RPA
Workshop on Innovative Approaches to Planning, Scheduling, and Control, 1990.
15. M. Peot and D. Smith. Conditional nonlinear planning. In J. Hendler, editor,
Proc. 1st AIPS, pages 189-197, San Mateo, CA, 1992. Kaufmann.
16. D.S. Weld. An introduction to least commitment planning. AI Magazine, 15:27-61,
1994.

