oxyGen: A Language | ndependent Linearization Engine

Nizar Habash

Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20740
phone: +1 (301) 405-6768
fax: +1 (301) 314-9658
habash@umiacs.umd.edu
http://umiacs.umd.edu/labs/CLIP

Abstract

This paper describes a language independent linearization engine ,noxjle system
compiles target language grammars into programs that takedegraphs as inputs and
generate word lattices that can be passed along to the clhtestiraction module of the
generation system Nitrogen. The grammars are written asifigxible and powerful
language, oxyL, that has the power of a programming language but Soonseatural
language realization. This engine have been used successfullyatmgran English
linearization program that is currently used as part of a ChiBegksh machine
translation system.

1 Introduction

This paper describes a language independent realization engine, oxy@isrsystem compiles linearization
grammars into programs that run independently of the grammar andrtipglation engine. The grammars are
written in oxyL, a powerful and flexible natural language grammsacrigion language. The syntax of oxyL is
described in the paper. Currently, the input to the compiled grararadeature graph and the output is a word
lattice to be fed into the statistical extraction module of #reeation engine Nitrogen (Langkilde and Knight
1998a, 1998b 1998c).

2 Research context

The work described in this paper has been developed as part of dimgngtrChinese-English Machine
Translation system at the University of Maryland College&k P@orr et al. 1998), (Traum and Habash 2000).
The focus of this paper is only on the Linearization sub-module of #lizaton module in the generation
component of the MT system. The realization module discussedrigg®lit a hybrid rule-based/statistical
realization engine (Langkilde and Knight 1998a, 1998b 1998c). The systemtzarfsisvo components,
Linearization and Statistical Extraction (Graphl). First, dufedsraph (FG) representation of the sentence to
realize is converted into a word lattice of possible word sequencierings, i.e. linearized. Then, the uni and
bigram statistics are used to determine the most probable set of paths alongitlztiver

Lexical Selection Linearization
CLCS v LC5-AMR v ENGLISH
LCS-AMR NITROGEN
Creation Statistical Estraction
Lexical Choice Realization
(Graph 1)

The particular form of FGs exemplified in this paper is a madlifiersion of Nitrogen’'s Abstract Meaning
Representation for our MT system’s purposes(Dorr et. al 1998). AdRs$abeled directed feature graphs
written using the syntax for the Penman Sentence Plan Language (Penman 1989):

<AMR> ::= (<label> {<role> <value>}+)
<value> ::= <AMR> || <terminal>

(BNF 1)

Every node in an AMR has a label and one or more role-value pRokes, i.e. features, are marked by a
colon prefix except for the default ralimstance which can be represented as a forward slasWalues can be
meaning carrying terminal tokens or AMR nodes. Meaning carrgikgns can be semantic concepts such as
|china] or|love| , syntactic categories such M®r V, or plain surface text strings such“@sce upon a

time” . The roles and concepts of AMRs are a mix of syntactic andnsiensgnificance: there areCS-AG
(lexical conceptual structure agent) and syntactic categarobsasADV. The following is an example AMR for
The United States unilaterally reduced the China textile export quota:

(al/ |reduce|
:CATV
:LCS-AG (a2 / |united states| :CAT N)
:LCS-TH (a3 / |quota]

CATN

:LCS-MOD-THING (a4 / |china] :CAT N)

:LCS-MOD-THING (a5 / [textile| :CAT N)

:LCS-MOD-THING (a6 / |export| :CAT N))

:LCS-MOD-MANNER (a8 / |unilaterally | :CAT ADV))

(AMR 1)

In this example(a4 / |united states| :CAT N) , is the agent of the concgpduce| . And similarly,
N is the category of the concgphited states| . The basic roleinstance or/ is always present in a

non ambiguous AMR. An ambiguous AMR, i.e., a conglomeration of differenR&Kas one or more role-
value pairs using the special ro@R. For example, an variant of the above AMR in which the root congept i
three way ambiguous would look as follows at the top node

(#:OR (#/ |reduce] . . .)
‘OR (#/]cut]...)
‘OR (#/ |decrease| . . .))

(AMR 2)

Since such ambiguity can occur anywhere in an AMR, it presertslierge to writing simple linearization
rules whose application is conditional upon specific AMR role combinatibd#ferent depths. This issue is
addressed later in this paper.

The output of the Linearization module is a word lattice of possilolel wequence renderings. It includes
ambiguous paths resulting from under-specified features, such asehefss, and undetermined relative word
orders, such as that of modifiers. The following is a possible word lattice corresptm@iR 1).

(SEQ (WRD "*start-sentence*" BOS)
(WRD "united states" NOUN)
(WRD "unilaterally" ADJ)

(WRD "reduced" VERB)

(OR (WRD "the" ART) (WRD "a" ART) (WRD "an" AR)

(WRD "china" ADJ)

(OR (SEQ (WRD "export" ADJ) (WRD "textile” ADJ)
(SEQ (WRD "textile” ADJ) (WRD "export” ADJ))

(WRD "quota” NOUN) (WRD "*end-sentence*" EOS))
(WL 1)

Then the statistical extraction module evaluates the differéing papresented in the word lattice using uni and
bigram statistics and returns the following:

united states unilaterally reduced the china texidport quota. [LENGTH 10, SCORE -41.657174]
united states unilaterally reduced a china textdgort quota . [LENGTH 10, SCORE -42.817673]
united states unilaterally reduced the china exjgotttle quota . [LENGTH 10, SCORE -42.867434]
united states unilaterally reduced a china expgotile quota. [LENGTH 10, SCORE -44.027932]
united states unilaterally reduced an china tertigort quota . [LENGTH 10, SCORE -44.746711]
united states unilaterally reduced an china exgeatile quota. [LENGTH 10, SCORE -45.956971]

The focus of this paper is on the implementation techniques of the Linearization modulesafiation
system.

3 Motivation

The Linearization module is basically an implementation of afsetles, a grammar, that governs the relative
word ordering (syntax) and word form (morphology) of a target languadmearization grammar can be
implemented declaratively or procedurally. In the declaratimeraach, the system contains a grammar
description formalism and a linearization engine that interphetgtammar on-line and applies its rules to the
input sentence representation. The advantages of this approachsaility, easy extendibility and language
independence. Its main drawback is slow speed. Nitrogen’s Liagarizmodule is an example of this
approach. It provides rules to decompose an AMR and order the résedtdyl The Nitrogen grammar
description formalism uses a recasting mechanism to transftRsAnto other AMRs. Besides the slowness
inherited from the paradigm of its implementation, Nitrogen’s grammar femmas limited and inflexible:

* Rule application is conditional upon equality of concepts or existencelas¥ at the top level of an
AMR only. This makes it impossible to write a single rulet ikaconditioned upon a combination of
features at different levels. Cascading features is ai@oldt this problem that only increases the size
of the grammar and aggravates the speed problem.

» Recasting operations are limited to adding feature-value pairs aoduoing new nodes. Implementing
a thematic hierarchy ordering in which thematic roles sudmes andtheme are recast as syntactic
roles such asubject andobject cannot be implemented in a single recast operation. Again, cagcadi
of features is the only way to do this. An implementation of thienaérarchies using cascading
features is discussed in (Dorr et al. 1998).

e There is no mechanism to perform range-unbounded or computationally corapisfortmations. For
example, number formatting is a transformation problem that reqadesss to functions such as

multiplication and addition which are not available to the gramn@ne instance of this problem
appeared in our system when translating Chinese numbers represemigti@es units of 10,000. For
example, 80,000 is the concept |8 modified by the concept |10,000|. Multiplyings€ number
concepts and formatting them into English number sequences was neeesbds impossible to do
using recasting without enumerating all combinations!

The procedural approach to Linearization grammars uses a prografangogge to implement the rules of the
grammar. The main advantages of this approach are flexilpityer and speed. Having access to the full
computing power of a programming language opens a lot of possibidtiesficient implementation. It also
frees the linearizer's designer from the restrictions af#dd declarative grammar by providing access to the
operating system, databases, the web, etc. However, a magvaditeaye of this approach is that the linguistic
knowledge is coupled with the programming code. This hard-coding ohgramles makes the system rather
redundant, difficult to understand and debug, non-reusable and language specific.

4 oxyGen

The oxyGen approach to implementing the Linearization module is a hiybpi@mentation between the
declarative and procedural paradigms. oxyGen uses a linearizationmgr description language to write
declarative grammar rules which are then compiled into a progiragmlanguage for efficient performance.
oxyGen contains three elements: a linearization grammar déserilginguage (oxyL), an oxyL to Lisp
compiler (oxyCompile) and a run-time support library (oxyRun). Tal@geguage linearization grammars
written in oxyL are compiled off-line into oxyGen Linearizers using oxyCompileiGea.

TL - TL
Linearization oxyCompile || oxyGen
Grammar Linearizer
axyl Lizp Lizp

(Graph 2)

oxyGen Linearizers are Lisp programs that require the oxyRunilofabasic functions in order to execute
(Graph 3). They take AMRSs as input and create word latticésatbgassed on to some Statistical Extraction
unit.

oxyRun
TL
oxyGen qud
Linearizer attice
(Graph 3)

This implementation maximizes the advantages and minimizesghévdintages inherent in the declarative and
procedural paradigms: The separation between the linearizatiomeefoyiyCompile and oxyRun) and the
linearization grammar (oxyL) combines in one system the best@fmorlds: the simplicity and focus of a
declarative grammar with the power and efficiency of a prockdamementation. It also provides language
independence and reusability since needs of the target languagmharaddressed in its specific oxyL

grammar. Secondly, The run-time separation between languagdespedé (compiled oxyL file — oxyGen
Linearizer) and language-independent code (oxyRun) allows for efficgsuiurce-sharing implementation
especially when running multiple linearizers for different langgagt the same time as in multilingual
generation. Finally, oxyGen'’s linearization grammar descriptioguage, oxyL, is as powerful as a regular
programming language but with the focus on linearization needs. §lEscomplished through providing
powerful linearization mechanisms for the most common needs ofaaitiatton grammar and also by allowing
embedding of code in a standard programming language (Lisp) to aloefficient implementation of the
more language specific realization problems (e.g., Chinese numbaatfig). oxyL linearization grammars
are also simple, clear, concise and easily extendible. An exaingiie simplicity of oxyL grammars is that
redundant issues such as the handlingd&® ambiguities are hidden from the linearization grammar designer
and are treated only in the compiler and support library. The folloséntion describes oxyL'’s syntax and the
mechanism of application of oxyL rules.

5 oxyL

In many ways, it is similar to the language Nitrogen graranaae written in; however, it has several special
features that makes it more powerful. First, oxyL lineawratules can be conditionally applied using general
Boolean expressions and embedded if-then-else control flow structurigs allioiws for powerful and compact
linearization grammars. Second, oxyL provides accessibility functibas can return the value of any
descendant of the AMR. Contrast these two features with Nitrogesrsmar’s conditions of application which
are flat if-then structures and use only equality of roles orvalige combinations at the top level of the AMR.
Third, oxyL provides recasting mechanisms that are more powerfulNiieogen’s. For example, a thematic
hierarchy recast in oxyL is implemented in a single rule wiseitegequires as many rules as the number of
hierarchy slots in Nitrogen. Finally, oxyL can embed calls fo flisictions that can be included in the oxyL
file. This feature provides oxyL linearization grammars witbess to all the tools available to a programming
language. The rest of this section will describe oxyL'’s syntax.

51 OxyL Basic Tokens

The function of different tokens in oxyL is marked through their foringus prefix symbol: variables are
prefixed with a dollar sign (e.§form , $tense), role-names are prefixed with a colon (eagient , :cat)

and functions are prefixed with an ampersand (&eg, &ProperNameHash). Some of oxyL’s functions
resemble Lisp functions (e.&eq andeq). However, their implementation is different in oxyGen since
ambiguity has to be handled. S®eq for example is aware of the existence:©0Red AMRs in which
matching one of the possib@ORis enough to return true, whereas bgpis not.

In addition to general functions, oxyL has a special class of functialted referential functions. These
functions, which are prefixed with at sign (e.g@agent, @this), are used to access values corresponding
to specific roles of the current AMR. For examp@LCS-AGreturns the value corresponding to the role
‘LCS-AG. If the current AMR is (AMR 1) in section LCS-AGreturns(a2 / |united_states|

:cat n) . The instance rold,, is returned using the special referential funct@imst . A referential
function can specify the path from the current AMR’s root to anyevahder it by concatenating the references
along such path. For instance, if the current AMR is (AMRAL)CS-AG.CATreturnsN. If the current AMR
contains multiple instances of the same role as@8-MOD-THING in (AMR 1), the values are combined in
a:OR structure. For example, if the current AMR is (AMR @LCS-TH.LCS-MOD-THING.INST returns

(# :OR |china| :OR |textile| :OR |export|) . Access to the full current AMR is provided
through the self-referential functia@this . For example@this.agent is equal ta@agent.

The last oxyL basic token type is Macros, which are prefixed avithcumflex (e.g”NP-NOM. Macros are
treated like variables except that while variables appear ashe compiled grammar, macros are substituted in
the compiler. The use of macros makes the grammar descripti@naoncise. For example, if a set of role-

value pairs is very commonly used suchl(:&erm NP :Case NOM) , they can be referred to using a single
macro, "NP-NOM.

52 oxyL File

An oxyL file contains the a set of declarations. Some are obligat@nkéd below with an asterisk) for proper
compilation into Lisp code. Others introduce symbols that could be usatually in the grammar rules such
as global variable or special lisp functions. The following is a list of thesard#ohs:

Declaration Function Example

‘Language ° Name of generated grammarLanguage “English”

:SupportCode User-defined Lisp functions :SupportCode (<lisp code>)

:Supportinclude Lisp file to load at runtime | :Supportinclude “support.lisp”

:CLASS Defines a class of roles :CLASS :THETA ((AG :TH :GOAL :SRC)

‘GLOBAL Declares a global variable | :GLOBAL $

‘MACRO Declares a macro :MACRO "NP-ACC (:CAT N :CASE ACC)

:MORPH Defines the morphological:Supportinclude “EnglMorph.lisp”
generation function :MORPH (&Morph @word @morphemes)

‘RULES’ Defines the grammar ‘RULES <Linearization-Grammar>

: Obligatory declarations

All Lisp supporting code introduced througBupportinclude or :SupportCode need all interfacing
functions to be prefixed with afalike oxyL general functions.

A :Class is a "super" role. It is a cover symbol that can be useddceree different classes of roles. For
example,:THETA can be defined to refer to all thematic roles aM@D can refer to all types of modifiers.
Once defined, referential functions can be used for it. Internd#lgs coles and regular roles are processed
differently but that is hidden from the user.

The syntax of the oxyL grammar rules declared usti ES is described in the next section.
5.3 oxyL Target Language Grammar

<GRAMMAR> ::= <RULE>+
<RULE> ::=([== <ASSIGN>]
{?? <COND>
-> <RESULT>}*
[-> <RESULT>])
<ASSIGN> ::= ((<variable> <value>)+)
<COND> :=<Boolean Expression>
<RESULT> ::= <RULE> || <SEQUENCE>
<SEQUENCE>::= ({<AMR>||<RECAST>}+}) || (OR <SEQUENC E> <SEQUENCE>+)
<RECAST> ::= (RAMR> {<RECAST-OP> <RECAST-OP-ARGS>} +)

(BNF 2)

(BNF 2) describes the syntax of an oxyL grammar. A grammaistsrd a set of ordered rules each of which
is considered for application over the current AMR. Each rulehagptional assignment section, introduced
with ==, in which local variables are defined. The second part of ag@e optional condition and result pair
that can be repeated multiple times. Conditions are introduced?®itnd results with> . And finally an
optional result that is treated as the default if all conditiails fA result can be a rule in itself with all of the
described portions or it can be a sequence of AMRs or AMR-returokegms such as variables or functions.
The ability to embed rules within rules and declare local vaiaiith deep scope allows users to limit the size
of the grammar and increase the speed of its application loge@hmThe linear order of AMRSs in the result
specifies the linear order of the surface forms correspondingde t&Rs. The grammar is run recursively
over each one of the different AMRs. This process continues untiln@ values, i.e. surface forms, are
reached. Consider the following oversimplified rule:

(== (($form @form))

?? (&eq $form S)

-> (?? (&eq @voice Passive)
-> (@object (&passivize @inst) “by” @subject)
-> (@subject @inst @object)))

(Rule 1)

Initially, this rule takes the value of the roferm in the current AMR and assigns it to the variahfierm .

In the case the value 8form equalsS, a second check on the voice of the current AMR is done. If the voic
is passive, the passive word order is realized. Otherwisactive voice word order is realized. The grammar
is then called recursively over the AMRs @kubject , @object and@inst . The function&passivize

takes the AMR of@inst as input and can return a passive verb AMR that gets processes ¢mammar or a
terminal word sequence.

In addition to AMRs, a linearization sequence can contain AMR repesations. A recast operation is made
out of an AMR followed by one or more pairs of recast operator armhstr@perator arguments. Recast
operations modify AMRs before they are recursively run throughrdmargar. The recast mechanism is very
useful in restructuring the current AMR or any of its components. ekample, the ++ recast operator adds
role-value pairs to an AMR. This is useful in cases such aa@ddse marking roles on the subject and object
AMRs where such case markers are not specified in the origmak semantic, representation. (Rule 1)
described in the previous section could be modified to specify case as follows:

(== (($form @form))
?? (&eq $form S)
-> (?? (&eq @voice Passive)
-> ((@object ++ (:case nom)) (&passivize @inst)
“by” (@subject ++ (:case gen)))

-> ((@subject ++ (:case nom)) @inst (@object ++ (:c ase acc)))))
(Rule2)

The following is a list of oxyL recast operators and their usage formalism andhaiity:
Name OP | Usage Function
Add ++ | (AMR ++:role value ,:role ;:value ;... Add role-value pairs to AMR
Delete -- | (AMR -- (role o:role ;..) Remove all rolgvalue pairs
Replace | && | (AMR && (crole g value o:role ;value ;.) Replace values ofole |,
Simple | << | (AMR << (:new/ :old o:0ld 1..)) " Rename all existg :old , as

Recast ‘new

Hierarchy| <! | (AMR<!(inew o:new ;.../:0ld o old ..))" | Hijerarchically rename available
Recast ;old |, as:new ,

Morph +- | (AMR +- morpheme) Invoke the morphologica
generation function on the
AMR if it is a value, or on its
instance

" The use of here is different from its role as a shorthand ifost

6 Evaluation

In this section, oxyGen is evaluated based on Speed of performancef §iaenmar, Expressiveness of the
grammar description language, Reusability and Readability/WiiyabiThe evaluation context is provided by
comparing an oxyGen Linearization grammar for English to two othpleimentations, one procedural (using
Lisp) and one declarative (using Nitrogen Linearization module)e€lbomparable linearization grammars are
used to calculate speed and size. All three were actuallyrimapted at different stages of development in the
Chinese-English MT system mentioned in section 2.

Speed: Two tests were performed. The first test uses a small corpus of 100 simplecAliiRaverage of 17
particles (label, role or terminal value) per AMR. The second test uses a coRliBsA¥IRs representing
translated Chinese news article sentences. These averaged 463 nod€&Rmdef AMR. The following
table contains the times spent on average per system in milliseconds. Thegléspantation is the fastest
followed by oxyGen. Nitrogen lags behind considerably.

Procedural Declarative
(Lisp) oxyGen (Nitrogen)
Test 1 3.84 ms 37.67 ms 630.56 ms
Test 2 11.50 ms 278.45 ms 17028.00 ms

Size: The following table contains the size of codéiives of code of the three implementations. The oxyGen
code size is the sum of the oxyL grammar (fk®and the Lisp English support functions (62). The
Nitrogen code size is the sum of Nitrogen’s English grammar (i8)%nd an extension grammar to make it
compatible with our system (37éc). Clearly, oxyGen performs the best.

Procedural Declarative
(Lisp) oxyGen (Nitrogen)
Size 763loc 252loc 2030loc

Expressiveness. Lisp and oxyGen are equally expressive in the sense of their accessibilityptatomal
tools as described earlier. Whereas Nitrogen falls behind.

Reusability: Both Nitrogen and oxyGen are language independent, an advantage over any procedural
implementation.

Readability/Writability: All three approaches need a certain amount of training. However, oxyGen’s simple
syntax is an advantage over lisp (for linearization purposes, that is). Its cqopactul rules are an
advantage over Nitrogen’s simple rule mechanisms.

Overall: oxyGen has the best overall performance of the three systems.

Procedural Declarative

(Lisp) oxyGen (Nitrogen)
Speed + 0 -
Size 0 + -
Expressiveness + + -
Reusability - + +
Readability/ - + -
Writability

7 Future Work

This project is still in its initial phases and more worktib sBeeded. As far as the oxyL language definition
and the runtime library support oxyRun, more tools and function libraresneeded such as meta-level
functions that return information about the current AMR, e.g., itsuntker its parent AMR, the number of
theta roles or modifiers in it, its total depth, etc. Such infoonatian be very helpful for sentence planning
purposes. Other function libraries can be created to handle generaspraific domains such as time/date
formatting, newspaper titles, etc. As for oxyCompile, more debudgimlg and error handling routines are
needed to make the system more robust and user-friendly. Indeperafetityy engine itself, more oxyL
grammars for other languages are needed to test the systiemdilality. Arabic and Spanish generation are
especially under consideration since we currently have all trdedeesources given our LCS-Based Machine
Translation paradigm.

A possible extension to the oxyGen suite could be to allow different fopuiats yet still using the same
common engine. Other possible input formats besides Penman sentemiegpitaclude NMSU F-Structures,

XML and CycL. Such an endeavor would require a higher level of siparmbetween the compiler and the
input format which has to be specified to the compiler through some input language defiaitiomag.

Another area for possible future work is to use of oxyGen as palLBf applications besides machine
translation such as text summarization.

8 Conclusion

| have presented a language independent linearization engine thatesotapjet language grammars into
programs that take abstract meaning representations as inplgraeretg word lattice that can be passed along
to a statistical extraction module. The grammars areaenrising a flexible and powerful language, oxyL, that
has the power of a programming language but focuses on natural larrgadigation. This approach was
evaluated to be more efficient than other purely declarative or procedural approache

9 Acknowledgements

This work has been supported by NSA Contract MDA904-96-C-1250 and NSFBTABE Award IRI-
9629108. | would like to thank members of the CLIP lab for helpful coatiers and advice and especially
Bonnie Dorr, Philip Resnik, David Traum and Amy Weinberg. | would Akeoto thank Kevin Knight and
Irene Langkilde for making the Nitrogen system available amgl Wwith understanding the Nitrogen grammar
formalism.

10 References

Dorr, Bonnie and Nizar Habash and David Traum. A Thematic Hierarchy fordgffiGeneration from Lexical
Conceptual Structure. Froceedings of the third Conference of the Assaciation for Machine Translation in the
Americas (AMTA), pages 333--343, Langhorne, PA. 1998.

Knight, Kevin and Vasileios Hatzivassiloglou. Two-Level, ManyhBaBeneration. IrProceedings of ACL-91,
pages 143--151, 1991.

Langkilde, Irene and Kevin KnightGenerating Word Lattices from Abstract Meaning Representation.
Technical Report, Information Science Institute, University of Southern Ga#fdr998a.

Langkilde, Irene and Kevin Knight. Generation that Exploits CorpuseBe&&mtistical Knowledgeln
Proceedings of COLING-ACL '98, pages 704--710, 1998b.

Langkilde, Irene and Kevin Knight. The Practical Value of N-GramGeneration. Ininternational Natural
Language Generation Workshop, 1998c.

PenmanThe Penman Documentation. Technical report, USC/Information Sciences Institute. 1989.

Traum, David and Nizar Habash. Generation from Lexical Conceptuedt@ies. In Proceedings of Workshop
on Applied Interlinguas, NAACL/ANLP2000, Seattle Washington, 2000.

