Skip to main content

The Nature of Knowledge in an Abductive Event Calculus Planner

  • Conference paper
  • First Online:
  • 1299 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1937))

Abstract

There are several works whose goal is to specify complete and sound planning systems based on general purpose theorem provers. Some planners implemented in this way can have a close correspondence with existing partialordered planning algorithms. To improve the efficiency of logic-based planners we would like to use some of the results achieved by the AI planning community over the past twenty years in terms of algorithm design. We claim that a knowledge level analysis of problem-solving methods for planning, can help to identify what is the role of each piece of knowledge in a system and provide a common language to map, classify and compare different systems. In this paper we analyze an abductive event calculus planner using a library of problemsolving methods for planning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. N. Barros, J. Hendler, and V. R. Benjamins. Par-KAP: a knowledge acquisition tool for building practical planning systems. In Proceedings of the IJCAI-97, Nagoya, Japan, 1997.

    Google Scholar 

  2. L. N. Barros, A. Valente and V. R. Benjamins. Modeling planning tasks. In Third International Conference on Artificial Intelligence Planning Systems, AIPS-96, pages 11–18, 1996.

    Google Scholar 

  3. V. R. Benjamins, L. N. Barros, and A. Valente. Constructing planners through problem-solving methods. In Knowledge Acquisition Workshop-KAW’96 (Banff), 1996.

    Google Scholar 

  4. B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine, 11:(59–71), 1990.

    Google Scholar 

  5. D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333–377, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Shanahan. An Abductive Event Calculus Planner. To appear. http://www.ics.ee.ic.ac.uk/~mpsha/pubs.html.

  7. K. Eshghi. Abductive planning with event calculus. In Proceedings of the Fifth International Conference on Logic Programming, 562–579, 1988.

    Google Scholar 

  8. L. Missiaen, M. Bruyonooghe, and M. Denecker. Chica, a planning system based on event calculus. The Journal of Logic and Computation, 5(5): 579–602, 1995.

    Article  MATH  Google Scholar 

  9. D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In Proceedings of 9th AAAI, 19991.

    Google Scholar 

  10. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial Intelligence. In Machine Intelligence 4, 1969.

    Google Scholar 

  11. K. Orsvärn. Principles for libraries of task decomposition methods-conclusions from a case-study. In N. Shadbolt, K. O’Hara, and G. Schreiber, editors, Lectures Notes in Artificial Intelligence, 1076, 9 th European Knowledge Acquisition Workshop, EKAW-96, pages 48–65. Springer-Verlag, 1996.

    Google Scholar 

  12. R. Reiter. Knowledge in action: Logical foundations for describing and implementing dynamical systems. Draft of the first eight chapters of the book.

    Google Scholar 

  13. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall International, 1995.

    Google Scholar 

  14. P. E. Santos. Formalizing the common sense of a mobile robot. Mol-1998-02, Institute for Logic, Language and Computation, University of Amsterdam, September 1998.

    Google Scholar 

  15. A. Th. Schreiber, B. J. Wielinga, R. de Hoog, J. M Akkermans, and W. Van de Velde. CommonKADS: A comprehensive methodology for KBS development. IEEE Expert, 9(6): 28–37, December 1994.

    Article  Google Scholar 

  16. M. Shanahan. A Circumscriptive event calculus. Artificial Intelligence, 77:249–284, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Shanahan. Event Calculus planning revised. In Proceedings of European Conference on Planning, pages 390–420. Springer-Verlag Lecture notes in Artificial Intelligence 1348, 1997.

    Google Scholar 

  18. M. Shanahan. Solving the frame problem. The MIT press, 1997.

    Google Scholar 

  19. M. Shanahan. A logical account of the common sense information situation for a mobile robot. Linköping Electronic Articles in Computer and Information Science, 1998. http://www.ep.liu.se/ea/cis/1998/.

  20. A. Tate, J. Hendler, and M. Drummond. A review of AI planning techniques. In J. Allen, J. Hendler, and A. Tate, editors, Readings in Planning, pages 26–49. Kaufmann, San Mateo, CA, 1990.

    Google Scholar 

  21. A. Valente. Knowledge level analysis of planning. SIGART Bulletin, 6(1): 33–41, 1995.

    Article  MathSciNet  Google Scholar 

  22. S. Kambhampati. On the Utility of Systematicity: Understanding Tradeoffs between Redundancy and Commitment in Partial-order Planning. In Proceedings of IJCAI, 1991.

    Google Scholar 

  23. S. Kambhampati. Multi-Contributor Causal Structures for Planning: A Formalization and Evaluation. Artificial Intelligence, Vol. 69, 1994.

    Google Scholar 

  24. A. Tate. Generating Project Networks. In Proceedings of IJCAI-77, pages 888–893, Boston, 1977.

    Google Scholar 

  25. A. Valente, V. R. Benjamins, and L. N. Barros. A library of system-derived problemsolving methods for planning. In International Journal of Human-Computer Studies 48, 417–447. Academic Press Limited, 1998.

    Article  Google Scholar 

  26. R. A. Kowalski and M. J. Sergot. A Logic-Based Calculus of Events. In New Generation Computing. Vol. 4:67–95, 1986.

    Article  Google Scholar 

  27. H. Cottam and N. Shadbolt.Domain and system influences in problem solving models for planning. In N. Shadbolt, K. O’Hara, and G. Schreiber, editors, Lectures Notes in Artificial Intelligence, 1076, 9 th European Knowledge Acquisition Workshop, EKAW-96, pages 354–369. Springer-Verlag, 1996.

    Google Scholar 

  28. R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:(169–203), 1971.

    Google Scholar 

  29. A. Barret and D. S. Weld. Partial-order planning: evaluating possible efficiency gains. Artificial Intelligence, 67:(71–112), 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nunes De Barros, L., Santos, P.E. (2000). The Nature of Knowledge in an Abductive Event Calculus Planner. In: Dieng, R., Corby, O. (eds) Knowledge Engineering and Knowledge Management Methods, Models, and Tools. EKAW 2000. Lecture Notes in Computer Science(), vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39967-4_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-39967-4_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41119-2

  • Online ISBN: 978-3-540-39967-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics