The Influence of the Structure and Sizes of Jobs on the
Performance of Co-Allocation

A.1.D. Bucur D.H.J. Epema

Parallel and Distributed Systems Group
Faculty of Information Technology and Systems
Delft University of Technology, P.O. Box 356, 2600 AJ Delitye Netherlands
anca@pds.twi.tudelft.nl epema@pds.twi.tudelft.nl

Abstract

Overthe last decade, much research in the area of schetiargpncentrated on single-cluster systems. Less
attention has been paid to multicluster systems, althdugjhdre gaining more and more importance in practice.
We propose a model for scheduling rigid jobs consisting oftipla components in multicluster systems by pure
space sharing, based on the Distributed ASCI Supercompusarg simulations, we asses the influence of the
structure and sizes of the jobs on the system’s performaneasured in terms of the average response time and
the maximum utilization. We consider three types of requdstal requests, unordered requests and ordered
requests, and compare their effect on the system’s perfarentor two scheduling policies, First Come First
Served, and Fit Processors First Served, which allows thedsder to look further in the queue for jobs that fit.
These types of job requests are differentiated by the céistis they impose on the scheduler and by the form of
co-allocation used. The results show that the performanpeaves with decreasing average job size and when
fewer restrictions are imposed on the scheduler.

1 Introduction

Much work has been done in the area of scheduling in parall@lpciter systems, but most of it is related to
single-cluster systems (i.e., single multiprocessorssamgle clusters of uniprocessors) with identical processo
connected by links of the same speed. Much less researchebasdiedicated to multicluster systems, although
many such systems are in use. We study the performance diooatéon, that is of scheduling jobs that can be
spread on more than one cluster, in multicluster systents asithe Distributed ASCI Supercomputer (DAS) [5],
depending on the structure and size of jobs and on the sahgqdlicy. In particular, we provide a performance
comparison between a single-cluster system and a muligclsgstem of the same total size.

Multiprocessor systems gained popularity during the lasry. The increase in the computational power of the
existing sytems encouraged people to design larger andrlpagallel applications. The sequential solutions to
many problems were replaced by parallel ones in order torbedaster.

Being expensive, large parallel systems are in general editdted, but shared by large numbers of applica-
tions designed by many different users. For this reasonyrealneduling strategies have been developed, giving
solutions for how applications should be structured, hosy hould be chosen for being processed, and how they
should be mapped to the resources.

One of the simplest ways to solve these problems, and yet ofted in practice due to its simplicity, is to allow
only rigid jobs, scheduled by pure space sharing. This mereisat execution, each job requires some number of
processors and is executed on those processors until ifgdetiom. The advantages are that the implementation of
the application is not restricted by the system, so the wserslesign their applications the way they consider the
best performance is obtained, and that each applicatiom&aa exclusive access to and control of the assigned
processors. There is also the economical advantage thpatdhiglers of service can easily and fairly charge the
users for the employed resources.

Compared to single-cluster systems, multicluster systesnsprovide a larger computational power (more
nodes). They can be geographically spread, and insteadadfesrgroups of users with exclusive access to sin-
gle clusters, larger groups of users can share the multizlasnsisting of the total of the initial single clusters.

Of course, the fact that the resources are spread will ethi@ilthe connections between clusters will be slower
than the ones inside the clusters. Another reason for Imgjlaiulticluster systems is that very large single-cluster
systems are hard to manage by single schedulers.

The necessity of dividing the processors into pools in otdesimplify the scheduling decisions is discussed
in the literature [3]. In the case of multiclusters, the digh is natural and is imposed by the architecture of the
system, and not by the scheduler. The nodes cannot be tasatéentical anymore because their relative position
inside the clusters influences the performance of the corgations between them, and this must be taken into
account by the application and the scheduler.

This paper concentrates on real multicluster systems sutieaDAS. We provide a model of the system and
study by simulations the influence of the structure and sfzhe jobs on the performance of the multicluster
system. We also take into account the effect of the scheglpliticy on the system’s performance, being aware
of the modifications the policy brings to the order of the mxtg. The scheduling schemes implemented are
First Come First Served and Fit Processors First Served;haddn look further in the queue for jobs that fit.
The scheduler provides co-allocation, meaning that a jabes& for the simultaneous allocation of processors in
multiple clusters. The performance is measured in termbefitaximal utilization and of the response time as a
function of the system’s utilization.

2 The Model

Our model is a simplification of a real system, a multiclustistributed system called the Distributed ASCI
Supercomputer, the performance of which we intend to et@luepending on the scheduling scheme and on the
structure and the distribution of the requests of the incgnobs.

1 N1 nodes

2 N2 nodes

queue

C NC nodes

processor
clusters

Figure 1: The model of a multicluster system.

2.1 The structure of the system

We model a multicluster distributed system consisting'aflusters of processors, clustenaving N; proces-
sors,i = 1,...,C. The system has a single central scheduler, with one glalmalej(see Figure 1).

We assume that all processors have the same service ratieothidnterarrival times and service times we use
exponential distributions.

By job we understand a parallel application requiring somlper of processors. A job can simultaneously
ask for processors in more than one cluster (co-allocat\e)will call a task the part of an application which runs
on a single processor. Jobs are rigid, meaning that the msmlb@rocessors requested by and allocated to a job
are fixed, and cannot be changed during its execution. Adstatart and end at the same time, which implies that
all the processors allocated to a job are being simultamgougsupied and released. Preemption is not admitted,
nodes being released only when the tasks running on themVémdlso assume that jobs only request processors
and we do not include in the model any other types of resources

In our simulations we make the simplification that all thestéws have an equal numbat of processors.
Clusters of different sizes would not change the resultsifogntly, but would make them harder to be evaluated.
Besides, factors of another nature, such as the users'rgnete for the larger clusters, would become relevant.
WhenC' = 1, the system is a single-cluster. We compare the performahtiee multicluster system with a
single-cluster system with' N processors.

2.2 The structure of jobs

We consider three cases for the structure of jobs, diffeatatt by the structure of the system and of the job’s
request:

1. Arequest of ajob is represented by a tupl€ofalues(r,, rs, . . ., r¢), each of them uniformly distributed
on the intervaln, ns], with 0 < n; < ny < N. By these values, the job only specifies how many nodes
it needs in separate clusters, but not the precise clustesvthe nodes must be allocated. We will further
call this type of request “unordered request”.

2. The request is again given by a tuplgd¥alues(r,, rs, .. ., r¢), each uniformly distributed on the interval
[n1,ns], With0 < ny < ny < N, but here their positions in the tuple specifies the clustera which the
processors must be allocated. This will be called an “odiszquest”.

3. Here, there is only a single cluster with siZé/, and a request only specifies the single number of processors
it requires. An instance of this case is characterized byistet number and an intervalny, no]. The
distribution of the numbers of processors required by jeliké sum of”' copies of the uniform distribution
on the intervalny, ns]. In this case, the requests are called "total requests". Wadacthis case in order
to compare the ordered and unordered multicluster case® atith a single-cluster case in which the job
sizes have the same distribution.

As long as we do not take into account the characteristidseodipplications (e.g., the amount of communication
between processors), the case of total requests amourtte tame as would a case with a multicluster when
the requests are given as single values and the users do pagemestrictions on the clusters they will receive
processors from. In order to be able to compare the resuitgheose the intervals for the uniform distributions
in such a way as to have equal mean values for the request isizkthree cases. Ordered requests are used in
practice when the user has enough information about therayso take full advantage of the characteristics of
the different clusters, for example of the data availapilitnordered requests (especially the case when grouping
request components on the same cluster is allowed) are atblglapplications like FFT, where tasks in the same
request component share data and need intensive commanjaegtile tasks from different components exchange
little or no information.

We also did simulations for the situation when requests acedered and the scheduler tries to group as many
components as possible on the same cluster. For the valgesare chose the results were not much different from
the case when only distinct clusters are used. However,riargéthis choice can much influence the performance
(see also Section 3).

2.3 The scheduling policies

To observe the contribution of the scheduling scheme toyktem’s performance,apart from the First Come
First Served (FCFS) policy, the Fit Processors First Se(i#FS) policy explained below was implemented as
well.

For ordered and total requests, it is clear when a job fits ersyistem, either the total number of processors
requested are idle, or all job components fit in the clusterg tequest.

When requests are unordered, for both FCFS and FPFS, thiélatgthat checks whether a job fits first orders
the values inside the request, and then tries to schedute ith@ecreasing order of their size. This ensures
the maximum success for the individual job, whatever way laEgment such as First Fit, Best Fit or Worst
Fit, is chosen (if our placement would not succeed, no otherwould—the request cannot be served for that
configuration). Clusters are checked in the same order @aetand the components of the request are placed into
the clusters in decreasing order of their size, in the Fitsngnner.

We do not consider the influence each placement has on thégjtdsing in the queue, although it can affect
performance, especially for the FCFS policy (a placemerraling to Worst Fit could give better results because
it would leave in each cluster as much room as possible fonéxé job). Our focus is on the influence of the
structure and sizes of the requests on the system’s penficarand less on the impact of the scheduling schemes.

FCFS is the simplest scheduling scheme, processors béicgtald to the job at the head of the queue. When the
job at the head of the queue does not fit, the scheduler is lowteal to choose another job, further in the queue.
Because of this restriction, FCFS results in a low maximatessor utilization.

In FPFS the scheduler searches further in the queue, frooh toe@il, and schedules the jobs which fit. It
is similar to the backfilling policy [1], but the duration afljs is not taken into account, so the requirement that
the job at the head of the queue should not be delayed is natoef. In order to avoid starvation (a job is never
scheduled) we introduce counters as aging mechanism. Blaclojints the number of times it was jumped over by
jobs which were behind it in the queue, but were scheduledrbéf. When a job’s counter reaches a chosen limit
MaxJumps, the scheduler is not allowed to overpass thatjpimare. In this way, the effectiveness of scheduling
is preserved. Of course, when MaxJumps is equal to zero, BBE@nes FCFS. FPFS has the potential advantage
of an increased maximal utilization of the system compaodeQFS.

2.4 The Distributed ASCI Supercomputer

The DAS [5] is a wide-area distributed computer, consisthdour clusters of workstations located at four
Dutch universities, amongst which Delft. One of the clusteontains 128 nodes, the other three contain 24
nodes each. All the nodes are identical Pentium Pro proresEbe clusters are interconnected by ATM links for
wide-area communications, and for local communicatioidimthe clusters Myrinet LANs are used. The operating
system employed is RedHat Linux. The system was designetebddvanced School for Computing and Imaging
(ASCI, in the Netherlands) and is used for research on gheald distributed computing. On single DAS clusters
a local scheduler called prun is used; it allows users toastga number of processors bounded by the cluster's
size, for a time interval which does not exceed an imposeit (kB minutes).

Using the Globus toolkit [10] which we installed in the DASssym, a job can simultaneously and transparently
require processors on distinct clusters. However, thi:fof co-allocation has not been used enough so far to let
us obtain statistics on the sizes of the jobs’ components.

3 The maximal utilization

In the model described in Section 2, it may happen that someepsors are idle while at the same time there
are waiting jobs. Of course, this phenomenon already odnwgimgle clusters, but in multiclusters we can expect
it to occur more often or with a larger fraction of the pro@ssemaining idle. As a consequencep,f is the
traffic intensity such that the system is stable (unstalil&aéfic intensitiesp with p < p,,, (p > ppn), We have
pm < 1. We will call the quantityl — p,,, the (maximal)capacity loss, which we denote by..

In this section we first discuss some important reasons foeaity loss, and then we present a very simple
approximation for the capacity loss in single-cluster ey®. We validate this approximation with simulations
when the job sizes have a uniform or a (truncated) geomeisidlilition. Finally, we assess the capacity loss in
multiclusters with simulations.

3.1 Reasons for capacity loss

The problem of unutilized processor capacity when spacerghes employed for rigid jobs in single clusters
has of course been recognized before. In [8], gang scheflislioroposed as a solution to this problem. However,
for multiclusters such as the DAS, gang scheduling may natyiable solution for technical reasons and because
of the distributed ownership of such systems. Even if theteluschedulers support gang scheduling (and our local
DAS scheduler does not), the separate cluster schedulelsl Wave to synchronize and agree on the number and
size of the time slices, and on the jobs that run in each tilne.dBecause of the wide-area latencies, the context-
switching overhead will be larger than in single clusterdusters in a multicluster may have different systems
administrators or different owners, who want to determoratiemselves how their own systems are used. Setting
aside some number of processors for some amount of timedargonents of) foreign jobs (i.e., space sharing)
does interfere much less with local jobs than gang scheglulin

There are at least three reasons for the phenomenon of gapags. First, it may be due to the job-size
distribution, and, in multiclusters, to the jobs’ struasr For instance, when in a single cluster wittprocessors
all jobs have siz¢(~N + 1)/2], for large values ofV the capacity losg is close to0.5. In multicluster systems
in which ordered requests are used, much higher fractiottseeafapacity may be lost if many jobs have mutually
conflicting requirements in one specific cluster while theydt require many processors in the remaining clusters.

Second, the scheduling policy employed may cause capacisy It is possible that the job at the head of the
gueue does not fit, while some job further down in the queus figevhich means that the capacity loss when
FCFS is employed is larger than when a policy like FPFS is usstéad. In the case of total requests, this only

occurs when not enough processors are idle, while in thes cfaeordered and ordered requests, even when the
total number of idle processors is large enough, a job méynstibe accommodated because its components do
not fit in the separate clusters.

A third reason for having,,, < 1 is that we are considering am-line problem, which means that we take
scheduling decisions without knowing when jobs will arriaethe (near) future and what their sizes and service
times are. We may expect that in multiclusters, having kedgé of the structure of jobs and the sizes of their
components would be even more important to reduce capacsy |

3.2 An approximation of capacity loss in single clusters

We now present a procedure for computing an approximatidhitoa single cluster of sizéy for the FCFS
policy. Subsequently, we simplify this approximation, atbw this simplification to yield good results for dif-
ferent job-size distributions. We assume that there is meekaion between the job sizes (number of processors
requested) and the job service times.

When in a single cluster the traffic intensity approachgs the job queue will be very long. This means that
we can assume that whenever a job leaves the system, newgabge head of the queue can be started until the
next job does not fit. So in fact, we can find an approximatioh by computing the average number of processors
that remain idle when we put jobs one by one on a single cla$tar processors that is initially completely idle
until the next job does not fit. If there was a correlation kew job size and service time—for instance, when
larger jobs run for a longer period of time, as has been obdgdrvsome systems [9]—the mix of the sizes of the
jobs in service would be different from the general job-glimribution, and the approximation would in general
not be valid.

To find the approximation, le be the number of processors, and #ebe the job-size distribution, which is
a discrete distribution on the s¢t, 2, ..., N'}; F'(n) is the probability that a job's size does not exceedwe
assume” to be non-degenerate, for otherwise, if all jobs are of sigaiswe havel, = (N mod d)/N. Let f be
the density of the job sizes, $¢n) = F(n) — F(n—1),n =1,2,..., N, is the probability that a job is of size
For anN-tuplev = (v1,...,vy) Of jobs of sizesl, 2, ..., N, respectively, we denote yfv) the sum)_ v, n,
which is the total number of processors these jobs requio: st

V={(v1,...,on)|vn >0,n=1,...,N,s(vy,...,on) <N}
be the set ofV-tuples of numbers of jobs that fit ¥ processors, and let
W = {v € V| there exists a with f(n) > 0, such thats(v) + n > N}

be the subset of” of N-tuples of jobs such that an additional job may not fit. Them $bt/ of numbers of
processors that can remain idle is
I={ili=N —s(w),we W}

We are interested in the probabiliti®¢:) that: processors remain idle, for dlke 7. The probabilityP () is made

up of the probability that when adding jobs we reach a leveéV of : processors, and the probability that the next
job is larger than processors. A general expression for these probabilgiéhe first factor in the summation
below is a multinomial coefficient)

P(i) = (1 F(i)- > (o) ~ (H f(n)”") . 1)

w=(v1,...,vN)EW,s(w)=N—1i

The capacity los€ can now be approximated by

L= %ZP(Z')Z’.)

i€l

The reason that this is an approximation rather than an esstt is that we assume that the fractions of time that
i processors are idle fore I, are equal.

Egs. (1) and (2) give a procedure for computing the approxénaf the capacity loss, but for large values of
N and a large number of possible job sizes this procedure estiomsuming. Therefore, we now present a simple
approximation ofL in the case of a single cluster with the FCFS scheduling sehem

The approximation simply consists in assuming thatrltg are proportional to the first factar— F'(¢), in Eq.
(1), which amounts to assuming that the value of the summati¢l) is the same for all ¢ I. The approximated

capacity loss is then given by
1 2 e (L= F(@))

SN Y (L=F@)

Let's now assume that the job size is uniformly distributedtee intervaln;, ns], with0 < ny < ny < N.
Thenwe havd C {0,1,...,ns — 1}. When the intervaln,, ns] is large o is much smaller tha@v, the set/
will not be much different fror{0, 1, ..., n, — 1}, and we assume equality below. A straightforward componati
shows that Eq. (3) can then be written as

L)

1 n3—n?+4+3n? —ny—2m

L= N 3n2 — 3n? 4 3ny + 30y ()
In particular, whem; = 1, Eq. (4) yields .
o —
L=—5 ®)
and so SN g 41
Pm = Y (6)

We have validated the approximation of Eq. (3) with two dif& kinds of simulations. The first kind consists
of filling a single bin of sizeN with items of sizes drawn from the job-size distribution fretorder they are
drawn, until the next job does not fit. All results for simira bin filling reported in this section give averages
for 10, 000 simulation runs. The second kind is by simulating the quegeiodel defined in Section 2 and finding
the utilization when the average response time is at Iedst0 time units (the average service time is putito
time unit; for more on the simulations see Section 4. Of ceusBnulating bin filling is much easier than trying
to simulate a queueing model close to its maximal utilizatitn the latter case, it is very difficult to find out
whether the simulation is still in its transient phase, amagpamming difficulties like running out of space for
datastructures such as job queues may arise.

Average Response Time
(6]
T
e
1

0 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Utilization

Figure 2: The response time for a 32-processor single ¢jusith job requests unifo rmly distributed in [1,16],
for the FCFS policy.(The bars show the 95% confidence inkgyva

In Table 1 we compare the approximation and the two sets aflation results for a cluster &2 processors
and for different uniform job-size distributions. Overalhe results agree very well, except when the interval of
job sizes is rather small and the job sizes are large rel&did@. Figure 2 shows the results of simulating the
queueing model for uniform job sizes ¢h 16] in a 32-processor cluster, wifth% confidence intervals, and may

job size capacity loss
ny | no || approximation| simulation simulation
bin filling | queueing mode
1| 4 0.031 0.031 0.033
1| 5 0.042 0.042 0.044
1|13 0.125 0.124 0.138
1|16 0.156 0.154 0.166
4] 5 0.056 0.049 0.052
4| 13 0.132 0.132 0.145
4| 16 0.163 0.159 0.175
5| 13 0.137 0.137 0.150
5| 16 0.166 0.163 0.178
13| 16 0.212 0.094 0.095

Table 1: The capacity loss in a cluster with processors and with a uniform job-size distribution on titerival
[nl ; nZ] .

capacity loss
q || approximation| simulation
bin filling
0.95 0.272 0.254
0.90 0.215 0.211
0.85 0.163 0.161
0.80 0.122 0.123
0.75 0.093 0.091
0.70 0.073 0.074
0.65 0.058 0.058
0.60 0.047 0.046
0.55 0.038 0.039
0.50 0.031 0.032

Table 2: The capacity loss in a cluster withprocessors and with a (truncated) geometric job-sizeiigton on
the interval[1, 32] with parametey,.

be compared with the entry for;, = 1,n, = 16 in Table 1. In Table 2 we compare the approximation with
only bin-filling simulations when the job sizes have a (traiecl) geometric distribution on the interya) 32] in

a 32-processor cluster. In this distributiofi(n) is proportional toy” for some valug; with 0 < ¢ < 1. This
distribution gives a larger proportion of small jobs, a ptrenon that has been observed in actual systems ([9],
[13]).

3.3 Capacity loss in multiclusters

For multiclusters, we have only performed a few bin-fillingnalations for uniform distributions of the size
of job components, for both ordered and unordered requistsnot generally true that a multicluster performs
better with unordered requests than with ordered requiestact, when the different job components of unordered
requests all have to go to distinct clusters, First Fit mayseaa much larger capacity loss than ordered requests
experience because the first cluster fills up more rapidly tha last, until at some point it cannot accommodate
any component of the next job. In all our queueing-model &ions in Section 4 (in which First Fit is used) the
performance with unordered requests is better than witbredrequests, which is in agreement with the results
of the bin-filling simulations shown in Table 3, which pretethe maximal utilization,,, for sets of parameters

job size || maximal utilization
n | iy} @] | U

1| 4] 0.685 0.722

1| 8| 0578 0.608

Table 3: The maximal utilization in a multicluster with clusters of8 processors each with a uniform job-
component-size distribution on the interyal , n,], for ordered (O) and unordered (U) requests (First Fitjmist
clusters). These results are obtained with bin-filling datians.

job size capacity loss
O | U] o]wu
1| 4| 0.031] 0.146| 0.049| 0.198| 0.053
1| 5| 0.042 | 0.172| 0.063| 0.229| 0.067
1] 13| 0.124 || 0.326| 0.177 | 0.411| 0.177
1| 16|| 0.154 | 0.363| 0.219|| 0.444| 0.229
4| 51 0.049 || 0.106| 0.041 || 0.146| 0.029
4| 13| 0.132 || 0.282| 0.181 || 0.363| 0.199
4|16 | 0.159 || 0.329| 0.230|| 0.371| 0.282
5| 13| 0.137 || 0.270| 0.164 | 0.358| 0.158
5|16 || 0.163 || 0.317| 0.242| 0.342| 0.303
13| 16 || 0.094 || 0.094 | 0.094 | 0.094| 0.094

Table 4: The capacity loss in a multicluster withclusters of32 processors each with a uniform job-component-
size distribution on the intervéh,, n,], for ordered (O) and unordered (U) requests (Worst Fitjrdistlusters).
These results are obtained with bin-filling simulations.

that are also used in Section 4.

When we use Worst Fit instead of First Fit for unordered retpiGob components in decreasing order of size
go to distinct clusters in decreasing order of the numberdlefprocessors), we can expect that the performance
for unordered requests is always better than for orderatestg. In Table 4 we present some results of bin-filling
simulations that confirm this expectation.

4 Simulating co-allocation

In order to estimate the performance of multicluster systeuth as the DAS, for different structures and sizes
of requests, we modeled the corresponding queuing systedhstadied their behaviour using simulations. The
simulation programs were implemented using the CSIM sitiarigackage [4]. Simulations were performed for
a single-cluster system with 32 processors and for a mutfier system with 4 clusters of 8 nodes each. We varied
the distribution of the number of processors requestediiy/lpy changing the interval from which it was generated,
in order to study the influence it has on the performance. Bitians were made for job component sizes uniformly
distributed on the intervalg, 4] and[1, 8] for the multicluster system. The sizes of the total requiestise single-
cluster system with 32 processors we use for comparisothaim of 4 numbers uniformly distributed on these
intervals.

In all the simulations, the mean of the service time was naaied constant, equal to 1, and the interarrival time
was varied in order to determine the response time as a eumatithe utilization of the system, and to approximate
the saturation point (see also Section 3.3).

The main goal is to evaluate the performance of the modelrdipg on the structure and distribution of the
requests. We consider the performance to be better whemdosame utilization the average response time is
smaller, and when the maximum utilization is larger.

In Sections 4.1 and 4.2, the scheduling policy used is FQ¥Settion 4.3 the two scheduling policies, FCFS
and FPFS are compared. Section 4.4 presents the simulasohs for a system composed of 4 clusters with 8
processors each, using ordered requests with componestditained from a job-size distribution presented as
being more realistic ifo] and[13].

The response time for requests uniformly distributed in [1,4]

T T T T T T ‘I T
7 unordered requests—--
total requests -~
g 6 1
=
3
c 51 1
[=]
Q.
3 al N
hd
]
[=)
S 3r .
[
>
<
2 - .
1 - T .
0 1 1 1 1 1 1 1 1
0O 01 02 03 04 05 06 07 08 09
Utilization
The response time for requests uniformly distributed in [1,8]
T T T T T T T T
7+ fordé _
unordered requests-—-
{ total requests----
6 / B
[] |
£ /
[[
(4] 5F B “ -
[%2] I .
2 [
2
7] 4 -
o]
o
S
g 3r i
[
>
< 2k i
1 - .
0 1 1 1 1 1 1 1 1

0O 01 02 03 04 05 06 07 08 09
Utilization

Figure 3: The influence of the structure of the requests Hi®RCFS policy.

4.1 The influence of the structure of the requests

Figure 3 compares the average response time for the thres tfprequests, for two different distribution
intervals of their component sizes. As expected, the casetalfrequests gives the best results from the point of
view of the maximal utilization of the system and of the resgmtime, because whenever the number of requested
processors does not exceed the number of idle ones, it wpbissible to accept the job for service. Less good
results are given by the case with unordered requests., Isithuse of the fact that it gives more freedom to
the scheduler than the one with ordered requests, its pesfose is better than in the ordered case, in all our
simulations. When requests are ordered the results aredrst tecause the user imposes both the number of
nodes received from distinct clusters and the actual alfsteach of those numbers. It causes a lower maximum
utilization and a larger average of the response time. Becatithe low utilization, the system becomes saturated
faster and gets instable for a lower utilization than in teocases. However, in general there are situations when
unordered requests determine a lower maximal utilizatian tordered requests (see Section 3.3). The saturation
point can be estimated in the graphs by the fast growth ofélpanse time depending on the utilization, as the
maximum utilization is being reached.

4.2 The influence of the size of the requests

We may expect that the distribution intervals of the reqsess influence the probability of having multiple
jobs served simultaneously. When the upper limit of theritistion interval is decreased, the average size of the
requests decreases which means that more jobs can be sienultly admitted for service. As Figure 3 and Figure
4 show, this has a positive impact on the maximum utilizatifthe system, and on the average response time.

Figure 3 shows that for each type of requests, smaller régires generate a decrease in the response time. For

8 T T T T T LI T
an ordered requests ih [14}-- |
(] - -
E 6
g
o
o
3 ab N
4
[
(=]
g 3F R
[
>
<
2 - .
l - - .
0 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 038
Utilization
8 T T T T T T T
an total requests in [1 4}--- 1
(] - -
E 6
g
o
o
3 ab N
4
[
(=)
g 3F R
[}
>
<
2 - .
l - .
0 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08
Utilization

Figure 4: The influence of the size of the requests for the H&HiBy.

the distributionin1, 8], the mean value of the job components sizes is larger th&ohide cluster’s size, which
makes the probability to have more jobs served simultarigensall, especially in the ordered case. Then, on
average there is little more than one job in service at a tivhéch allows a comparison with the M/M/1 queueing
model. For the ordered requests case with job componeesisid , 8], the system behaves like a single processor,
as Figure 5 indicates. The simulation results prove the ewisgn to be accurate, the maximum throughput being
similar to that of the M/M/1 system.

Figure 4 compares the results for the two distributionszésin the cases of ordered and total requests.

4.3 The impact of the scheduling policy

Another factor which influences the performance of the systethe scheduling policy. As expected, FPFS
improves the maximal utilization and the response time @eghto FCFS, because it can schedule jobs in an
order different from the arrival order. Figure 6 also sholat the influence on performance of the distribution of
jobs sizes and of the structure of the requests observed®EHRs maintained for the FPFS scheme.

For FPFS, increasing the maximum number of times a job canrhpgd over, MaxJumps, improves the per-
formance up to a point. When this number is too large, theopedince of individual jobs is negatively influenced,
and even the effectiveness of the scheme can be affected(ivgps— oc) would cause starvation, being the same
as FPFS without a counter). At the other extreme, for Maxas@pve return to FCFS. We performed simulations
with different values for Maxjumps, and finally chose Maxymequal to 7. Table 5 show the sensitivity of the
response time to the value of MaxJumps for different valdéseoutilization, in the case of total requests.

It can be noticed that for low utilizations, far from the gatiion point, improvements given by the scheduling
scheme or the distribution and the structure of the requstsery small if any. The differences show only for

T T T T T
7 / E
ordered requests in{1,8}--

/
/
{

Average Response Time
SN
T
1

0 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Utilization

Figure 5: A comparison between a multicluster with ordeexfliests in [1,8] and a M/M/1 system.

MaxJumps utilization
0.62 0.78

0 1.91246 4.8845
1 1.80850 3.8588
3 1.80102 3.3412
7 1.70349 2.9125
12 1.69023 2.8249
20 1.68996 27771

Table 5: The response time in a single cluster with 32 Proceg5PFS policy) as a function of MaxJumps.

heavy traffic, when the arrival rate is reasonably high amdjab queue is long. For a low arrival rate, under all
circumstances we obtain the same results because jobs samied immediately upon arrival.

4.4 Arealistic job-size distribution

The simulations described in this section use a distriludfdhe job sizes that favours small jobs and jobs whose
requests’ components are powers of 2. Jobs whose compaarenpewers of 2 are generated with probability
p = 0.7 . The probability distribution on [1,8] in this case is themalization of ¢, 3¢%, ¢, 3¢*, ..., 3¢"), where
N = 8 andgq = 0.90. With probabilityl — p a job with components uniformly distributed jh, 4] is generat
ed. Figure 7 shows the variation of the response time for dhgosed distribut ion together with the confidence
intervals, for a confidence level 65%.

5 Related work

The problem of scheduling rigid jobs by pure space sharirayritultiprocessor system was also the subject of
[1]. It was pointed out that although more complex schedigichemes are presented in the literature, scheduling
schemes for rigid jobs using pure space sharing are stithitapt since these are the schemes implemented on most
existing multiprocessor systems. The authors implemeateticompared scheduling strategies such as FCFS,
FPFS, FPFS with job sorting (both decreasing and incregsamgl backfilling. In order to avoid starvation in
FPFS and its variations, a time limit is used rather than ta&imal number of times a job can be overtaken.
Simulation results were combined with performance anslged experiments in order to verify the effectiveness
and the practicality of the schemes. The performance wdgsathin terms of processor utilization and stability,
using queueing models and the one-dimensional bin-pagkiolglem. As a result of the simulations, the mean
response time and the utilization were represented as sidaraf the system’s load. It was concluded that the
most effective and the most practical from the schemes sedlgre FPFS and Fit Processors Most Processors
First Served (FPMPFS). Backfilling can improve performaasavell, but it requires a-priori knowledge of the

The response time for requests uniformly distributed in [1,4]

T T T T T T T

6 =

ordered requests, FPFS--
total requests, FCFS---

5| total requests; FPFS-

Average Response Time

0 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08
Utilization

The response time for requests uniformly distributedin [1,8]
T T T T T T T

6 SIS, §]
ordered requests, FPFS--
total requests, FCFS -

5l total requests, FPFS

Average Response Time

0 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08
Utilization

Figure 6: The influence of the scheduling policy.

execution times of jobs, which makes it less practical. Tedggmance of the scheduling schemes proved to be
sensitive to the distribution of the number of processagsiested by a job.

In[13], the optimizations of sorting the job queue accogdimincreasing numbers of processors requested, and
of backfilling, are studied with trace-driven simulatioie traces were derived from the logs of three supercom-
puter installations, amongst which an SP2, and showedvaatarge numbers of short jobs and of jobs with sizes
that are small or powers @f On the SP2, for a sorted job queue, increasing the Maximuowéable Skipping
Count (MASC), a parameter with the same meaning as our Mgaguima large value (simulations were presented
with MASC=10, 100, 1000) yielded a considerable decrease of the average turnatouad This contrasts with
our result that the performance of FPFS in a single clusteois/ery sensitive to increasing MaxJumps beyond
7. However, on the Paragon, the sensitivity to the MASC washramsaller than on the SP2, so this sensitivity is
very dependent on the job mix.

The influence of splitting the processors into groups on tlidopmance of the system was also studied in
[3]. A technique for operating system schedulers calledgssor pool-based scheduling, designed to assign the
processes of parallel applications in multiprogrammedrestrmemory NUMA multiprocessors, is presented and
evaluated. Itis assumed that a job starts as a single praabshat it may grow by starting additional processes.
Different policies for the initial placement of the jobs aftit the placement of its additional processes when it
expands were studied. Since it was assumed that the numperaafssors required by each job is not known when
the application starts, the best strategy for initial plaeat was found to be Worst Fit, because it leaves the largest
room for the growth of jobs inside the pool. The author noteat tvhen the number of processors required is
known by the time of the arrival, the problem of choosing Wihicocessors to allocate is similar to a bin-packing
problem with multiple bins. He studied the importance oflaggtion parallelism in determining the pool size, and
also the influence of the architectural configuration. Theailts show that although application parallelism should

T T T T T T
10} % -
@ L % i
g °
=
3
g b
@ 6 - N
4
4
o} 3
I
g
z 4t 4 i
g
<
&
2 - -
®
&
oo ©
0 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7

Utilization

Figure 7: The response time for a multicluster with ordeegfliests and with job sizes generated from a distribu-
tion that favours small values and powers of 2.

be considered, the optimal pool size is a function of theesys architecture.

Whereas we approach the problem of the maximal utilizatiemfa more theoretical perspective, in [11] a study
of the utilizations as observed in existing supercompuitistallations is presented. Experience with a large range
of machines over more than a decade shows that employing F&lasis in a10% — 60% utilization, that more
sophisticated policies such as backfilling give an improsenof about 5 percentage points, and that reducing the
maximal job size allowed increases utilization.

Finally, let us briefly mention some of the other research ihaeing performed in the context of the DAS.
Whereas the research presented in this paper is at the iogesgstems level, the other research on the DAS is
done at the level of the run-time system [12] and of the apfibois [2]. In [12], a library is presented which
optimizes the collective communication primitives of MPHCa widely used version of MPI, in order to achieve
fast communications in wide-area systems. Because debeobmmunication algorithms are usually designed
for LANS, they do not take into account the high latencies aferarea links, which negatively influence their
performance. The authors designed algorithms which are-aida optimal in that an operation includes only one
wide-area latency, and every data item is sent at most omessaeach wide-area link. They modified 14 collective
operations of MPI and obtained substantial performanceaugments over MPICH. As an example, in the case
of the MPI_Bcast primitive, the completion time was redutze80% for 32 processors divided into 4 clusters and
a message size of one byte. This was obtained by sending #sageonly once to each cluster over the wide-area
links, and then broadcasting it inside each cluster on tétddaal links.

In [2], several nontrivial algorithms on a multilevel comnication structure (LAN clusters connected by a
WAN, such as the DAS) were analyzed and several optimiza&ohniques were used to improve their perfor-
mance. The optimizations either reduced interclusteficraf masked the effect of intercluster communications
and caused a significant improvement. The authors concltidgdnany medium-grain applications could be
optimized to run well on a multilevel, wide-area cluster. eQof the optimized applications solves the Traveling
Salesman Problem. It was improved by replacing the dynarai& @istribution through a centralized queue with
a static distribution over the clusters, each of them haitsxgwn local queue. For 32 processors divided into 4
clusters, the speedup was 24, compared to 15 for the unaetirsblution.

6 Conclusions

We have proposed a model for scheduling rigid jobs in mulsitdr systems, based on our DAS system, and
assessed its performance for different structures and sizebs in terms of average response time as a function
of utilization.

We simulated two scheduling schemes, First Come First 8emd Fit Processor First Served, and three types

of requests. As expected, for both scheduling schemes,virage response time is smaller and the maximum
utilization is larger when the requests are more flexiblee Bhst performance was obtained for total requests,
when only the total number of processors needed is provated when the problem is similar to a single bin-
packing problem. For unordered requests, when the numberecessors to be allocated in separate clusters is
specified, the problem is similar to a set of related bin-paghroblems, and because there are more restrictions,
the performance decreases. It can be improved by changingdlicy from FCFS to FPFS, because then the
scheduler gets freedom to look further in the queue for jobiekfit, but it will still be below the total requests
case. In all our simulations, ordered requests, when thet ekesters from which to satisfy the components of the
requests are provided, cause even larger response tindegnaven lower maximum utilization.

Decreasing the maximal size of the requests improves tlierpgnce of the system. This fact is again related
to the bin-packing problem, because it is easier to schesinédl jobs than large ones.

We derived an approximation for the maximal utilization ingde-cluster systems and checked its validity
against simulation results.

We plan future work on the effect of communication on the penfance of multicluster systems (and of the
applications), in comparison with single-cluster systdmesause inter-cluster communication is much slower than
communication inside the same cluster (in [2] a factor of B@Meen these communication speeds was reported).
We also intend to do simulations and performance measutserasing traces from real multicluster systems in-
stead of theoretical distributions.

References

[1] K.Aida, H.Kasahara and S.Narita. Job Scheduling Sch@amdé’ure Space Sharing Among Rigid Jobs. In
Job Scheduling Strategies for Parallel Processing, Ledtlates in Computer Science 1459, pages 98-121.
Springer-Verlag, 1998.

[2] H.E.Bal, A.Plaat, M.G.Bakker, P.Dozy and R.F.H.Hofm&@ptimizing Parallel Applications for Wide-Area
Clusters. In Proceedings of the 12th International PdrBHiecessing Symposium (IPPS’98), pages 784-790,
Orlando, Fl., April 1998

[3] T.B.Brecht. An Experimental Evaluation of ProcessooPBased Scheduling for Shared-Memory NUMA
multiprocessors. In Job Scheduling Strategies for ParBHecessing, Lecture Notes in Computer Science
1291, pages 139-165. Springer-Verlag, 1997.

[4] The CSIM18 Simulation Engine, User's Guide. Mesquitét®are, Inc.
[5] The Distributed ASCI Supercomputer’s site. Http://wwswvu.nl/das/.

[6] D.G.Feitelson and L.Rudolph. Toward Convergence in Sohedulers for Parallel Supercomputers. In Job
Scheduling Strategies for Parallel Processing, Lectuteo Computer Science 1162, pages 1-26. Springer-
Verlag, 1996.

[7] D.G.Feitelson and L.Rudolph. Theory and Practice inafalrJob Scheduling. In Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Scié2&d., pages 1-34. Springer-Verlag, 1997

[8] D.G.Feitelson and M.A.Jette. Improved Utilization afksponsiveness with Gang Scheduling. In Job
Scheduling Strategies for Parallel Processing, LecturtedNon Computer Science 1291, pages 238-261.
Springer-Verlag, 1997.

[9] D.G.Feitelson. Packing Schemes for Gang SchedulingomScheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science 1162, pages 89-110.d&wrVerlag, 1996.

[10] The Globus site. Http://www.globus.org.

[11] J.Patton Jones and B.Nitzberg. Scheduling for Pdi@llpercomputing: A Historical Perspective of Achiev-
able Utilization. In Job Scheduling Strategies for Paldecessing, Lecture Notes in Computer Science
1659, pages 1-16. Springer-Verlag, 1999.

[12] T.Kielmann, R.F.H.Hofman, H.E.Bal, A.Plaat and R.&BRoedjang. MagPle: MPI's Collective Communica-
tion Operations for Clustered Wide Area Systems. In ACM SIGR Symposium on Principles and Practice
of Parallel Programming (PPoPP’99), pages 131-140, Ad|dda., May 1999.

[13] J.Subhlok, T.Gross and T.Suzuoka. Impact of Job Mix guirBizations for Space Sharing Schedulers. In
Supercomputing '96, 1996.

