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Abstract

Over the last decade,much research in the area of schedulinghas concentrated on single-cluster systems. Less
attention has been paid to multicluster systems, although they are gaining more and more importance in practice.
We propose a model for scheduling rigid jobs consisting of multiple components in multicluster systems by pure
space sharing, based on the Distributed ASCI Supercomputer. Using simulations, we asses the influence of the
structure and sizes of the jobs on the system’s performance,measured in terms of the average response time and
the maximum utilization. We consider three types of requests, total requests, unordered requests and ordered
requests, and compare their effect on the system’s performance for two scheduling policies, First Come First
Served, and Fit Processors First Served, which allows the scheduler to look further in the queue for jobs that fit.
These types of job requests are differentiated by the restrictions they impose on the scheduler and by the form of
co-allocation used. The results show that the performance improves with decreasing average job size and when
fewer restrictions are imposed on the scheduler.

1 Introduction

Much work has been done in the area of scheduling in parallel computer systems, but most of it is related to
single-cluster systems (i.e., single multiprocessors andsingle clusters of uniprocessors) with identical processors
connected by links of the same speed. Much less research has been dedicated to multicluster systems, although
many such systems are in use. We study the performance of co-allocation, that is of scheduling jobs that can be
spread on more than one cluster, in multicluster systems such as the Distributed ASCI Supercomputer (DAS) [5],
depending on the structure and size of jobs and on the scheduling policy. In particular, we provide a performance
comparison between a single-cluster system and a multicluster system of the same total size.

Multiprocessor systems gained popularity during the last years. The increase in the computational power of the
existing sytems encouraged people to design larger and larger parallel applications. The sequential solutions to
many problems were replaced by parallel ones in order to become faster.

Being expensive, large parallel systems are in general not dedicated, but shared by large numbers of applica-
tions designed by many different users. For this reason, many scheduling strategies have been developed, giving
solutions for how applications should be structured, how they should be chosen for being processed, and how they
should be mapped to the resources.

One of the simplest ways to solve these problems, and yet often used in practice due to its simplicity, is to allow
only rigid jobs, scheduled by pure space sharing. This meansthat at execution, each job requires some number of
processors and is executed on those processors until its completion. The advantages are that the implementation of
the application is not restricted by the system, so the userscan design their applications the way they consider the
best performance is obtained, and that each application canhave exclusive access to and control of the assigned
processors. There is also the economical advantage that theproviders of service can easily and fairly charge the
users for the employed resources.

Compared to single-cluster systems, multicluster systemscan provide a larger computational power (more
nodes). They can be geographically spread, and instead of smaller groups of users with exclusive access to sin-
gle clusters, larger groups of users can share the multicluster consisting of the total of the initial single clusters.



Of course, the fact that the resources are spread will entailthat the connections between clusters will be slower
than the ones inside the clusters. Another reason for building multicluster systems is that very large single-cluster
systems are hard to manage by single schedulers.

The necessity of dividing the processors into pools in orderto simplify the scheduling decisions is discussed
in the literature [3]. In the case of multiclusters, the division is natural and is imposed by the architecture of the
system, and not by the scheduler. The nodes cannot be treatedas identical anymore because their relative position
inside the clusters influences the performance of the communications between them, and this must be taken into
account by the application and the scheduler.

This paper concentrates on real multicluster systems such as the DAS. We provide a model of the system and
study by simulations the influence of the structure and size of the jobs on the performance of the multicluster
system. We also take into account the effect of the scheduling policy on the system’s performance, being aware
of the modifications the policy brings to the order of the requests. The scheduling schemes implemented are
First Come First Served and Fit Processors First Served, which can look further in the queue for jobs that fit.
The scheduler provides co-allocation, meaning that a job can ask for the simultaneous allocation of processors in
multiple clusters. The performance is measured in terms of the maximal utilization and of the response time as a
function of the system’s utilization.

2 The Model

Our model is a simplification of a real system, a multiclusterdistributed system called the Distributed ASCI
Supercomputer, the performance of which we intend to evaluate, depending on the scheduling scheme and on the
structure and the distribution of the requests of the incoming jobs.
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Figure 1: The model of a multicluster system.

2.1 The structure of the system

We model a multicluster distributed system consisting ofC clusters of processors, clusteri havingNi proces-
sors,i = 1; : : : ; C. The system has a single central scheduler, with one global queue (see Figure 1).

We assume that all processors have the same service rate. Forboth interarrival times and service times we use
exponential distributions.

By job we understand a parallel application requiring some number of processors. A job can simultaneously
ask for processors in more than one cluster (co-allocation). We will call a task the part of an application which runs
on a single processor. Jobs are rigid, meaning that the numbers of processors requested by and allocated to a job
are fixed, and cannot be changed during its execution. All tasks start and end at the same time, which implies that
all the processors allocated to a job are being simultaneously occupied and released. Preemption is not admitted,
nodes being released only when the tasks running on them end.We also assume that jobs only request processors
and we do not include in the model any other types of resources.



In our simulations we make the simplification that all the clusters have an equal numberN of processors.
Clusters of different sizes would not change the results significantly, but would make them harder to be evaluated.
Besides, factors of another nature, such as the users’ preference for the larger clusters, would become relevant.
WhenC = 1, the system is a single-cluster. We compare the performanceof the multicluster system with a
single-cluster system withCN processors.

2.2 The structure of jobs

We consider three cases for the structure of jobs, differentiated by the structure of the system and of the job’s
request:

1. A request of a job is represented by a tuple ofC values(r1; r2; : : : ; rC), each of them uniformly distributed
on the interval[n1; n2], with 0 < n1 � n2 � N . By these values, the job only specifies how many nodes
it needs in separate clusters, but not the precise clusters where the nodes must be allocated. We will further
call this type of request “unordered request”.

2. The request is again given by a tuple ofC values(r1; r2; : : : ; rC), each uniformly distributed on the interval[n1; n2], with 0 < n1 � n2 � N , but here their positions in the tuple specifies the clustersfrom which the
processors must be allocated. This will be called an “ordered request”.

3. Here, there is only a single cluster with sizeCN , and a request only specifies the single number of processors
it requires. An instance of this case is characterized by a cluster numberC and an interval[n1; n2]. The
distribution of the numbers of processors required by jobs is the sum ofC copies of the uniform distribution
on the interval[n1; n2]. In this case, the requests are called "total requests". We include this case in order
to compare the ordered and unordered multicluster cases above with a single-cluster case in which the job
sizes have the same distribution.

As long as we do not take into account the characteristics of the applications (e.g., the amount of communication
between processors), the case of total requests amounts to the same as would a case with a multicluster when
the requests are given as single values and the users do not impose restrictions on the clusters they will receive
processors from. In order to be able to compare the results, we choose the intervals for the uniform distributions
in such a way as to have equal mean values for the request sizes, in all three cases. Ordered requests are used in
practice when the user has enough information about the system, to take full advantage of the characteristics of
the different clusters, for example of the data availability. Unordered requests (especially the case when grouping
request components on the same cluster is allowed) are modeled by applications like FFT, where tasks in the same
request component share data and need intensive communication, while tasks from different components exchange
little or no information.

We also did simulations for the situation when requests are unordered and the scheduler tries to group as many
components as possible on the same cluster. For the value ranges we chose the results were not much different from
the case when only distinct clusters are used. However, in general this choice can much influence the performance
(see also Section 3).

2.3 The scheduling policies

To observe the contribution of the scheduling scheme to the system’s performance,apart from the First Come
First Served (FCFS) policy, the Fit Processors First Served(FPFS) policy explained below was implemented as
well.

For ordered and total requests, it is clear when a job fits on the system, either the total number of processors
requested are idle, or all job components fit in the clusters they request.

When requests are unordered, for both FCFS and FPFS, the algorithm that checks whether a job fits first orders
the values inside the request, and then tries to schedule them in decreasing order of their size. This ensures
the maximum success for the individual job, whatever way of placement such as First Fit, Best Fit or Worst
Fit, is chosen (if our placement would not succeed, no other one would—the request cannot be served for that
configuration). Clusters are checked in the same order each time and the components of the request are placed into
the clusters in decreasing order of their size, in the First Fit manner.

We do not consider the influence each placement has on the jobsfollowing in the queue, although it can affect
performance, especially for the FCFS policy (a placement according to Worst Fit could give better results because
it would leave in each cluster as much room as possible for thenext job). Our focus is on the influence of the
structure and sizes of the requests on the system’s performance and less on the impact of the scheduling schemes.



FCFS is the simplest scheduling scheme, processors being allocated to the job at the head of the queue. When the
job at the head of the queue does not fit, the scheduler is not allowed to choose another job, further in the queue.
Because of this restriction, FCFS results in a low maximal processor utilization.

In FPFS the scheduler searches further in the queue, from head to tail, and schedules the jobs which fit. It
is similar to the backfilling policy [1], but the duration of jobs is not taken into account, so the requirement that
the job at the head of the queue should not be delayed is not enforced. In order to avoid starvation (a job is never
scheduled) we introduce counters as aging mechanism. Each job counts the number of times it was jumped over by
jobs which were behind it in the queue, but were scheduled before it. When a job’s counter reaches a chosen limit
MaxJumps, the scheduler is not allowed to overpass that job anymore. In this way, the effectiveness of scheduling
is preserved. Of course, when MaxJumps is equal to zero, FPFSbecomes FCFS. FPFS has the potential advantage
of an increased maximal utilization of the system compared to FCFS.

2.4 The Distributed ASCI Supercomputer

The DAS [5] is a wide-area distributed computer, consistingof four clusters of workstations located at four
Dutch universities, amongst which Delft. One of the clusters contains 128 nodes, the other three contain 24
nodes each. All the nodes are identical Pentium Pro processors. The clusters are interconnected by ATM links for
wide-area communications, and for local communication inside the clusters Myrinet LANs are used. The operating
system employed is RedHat Linux. The system was designed by the Advanced School for Computing and Imaging
(ASCI, in the Netherlands) and is used for research on parallel and distributed computing. On single DAS clusters
a local scheduler called prun is used; it allows users to request a number of processors bounded by the cluster’s
size, for a time interval which does not exceed an imposed limit (15 minutes).

Using the Globus toolkit [10] which we installed in the DAS system, a job can simultaneously and transparently
require processors on distinct clusters. However, this form of co-allocation has not been used enough so far to let
us obtain statistics on the sizes of the jobs’ components.

3 The maximal utilization

In the model described in Section 2, it may happen that some processors are idle while at the same time there
are waiting jobs. Of course, this phenomenon already occursin single clusters, but in multiclusters we can expect
it to occur more often or with a larger fraction of the processors remaining idle. As a consequence, if�m is the
traffic intensity such that the system is stable (unstable) at traffic intensities� with � < �m (� > �m), we have�m < 1. We will call the quantity1� �m the (maximal)capacity loss, which we denote byL.

In this section we first discuss some important reasons for capacity loss, and then we present a very simple
approximation for the capacity loss in single-cluster systems. We validate this approximation with simulations
when the job sizes have a uniform or a (truncated) geometric distribution. Finally, we assess the capacity loss in
multiclusters with simulations.

3.1 Reasons for capacity loss

The problem of unutilized processor capacity when space sharing is employed for rigid jobs in single clusters
has of course been recognized before. In [8], gang scheduling is proposed as a solution to this problem. However,
for multiclusters such as the DAS, gang scheduling may not bea viable solution for technical reasons and because
of the distributed ownership of such systems. Even if the cluster schedulers support gang scheduling (and our local
DAS scheduler does not), the separate cluster schedulers would have to synchronize and agree on the number and
size of the time slices, and on the jobs that run in each time slice. Because of the wide-area latencies, the context-
switching overhead will be larger than in single clusters. Clusters in a multicluster may have different systems
administrators or different owners, who want to determine for themselves how their own systems are used. Setting
aside some number of processors for some amount of time for (components of) foreign jobs (i.e., space sharing)
does interfere much less with local jobs than gang scheduling.

There are at least three reasons for the phenomenon of capacity loss. First, it may be due to the job-size
distribution, and, in multiclusters, to the jobs’ structures. For instance, when in a single cluster withN processors
all jobs have sized(N + 1)=2e, for large values ofN the capacity lossL is close to0:5. In multicluster systems
in which ordered requests are used, much higher fractions ofthe capacity may be lost if many jobs have mutually
conflicting requirements in one specific cluster while they do not require many processors in the remaining clusters.

Second, the scheduling policy employed may cause capacity loss. It is possible that the job at the head of the
queue does not fit, while some job further down in the queue does fit, which means that the capacity loss when
FCFS is employed is larger than when a policy like FPFS is usedinstead. In the case of total requests, this only



occurs when not enough processors are idle, while in the cases of unordered and ordered requests, even when the
total number of idle processors is large enough, a job may still not be accommodated because its components do
not fit in the separate clusters.

A third reason for having�m < 1 is that we are considering anon-line problem, which means that we take
scheduling decisions without knowing when jobs will arrivein the (near) future and what their sizes and service
times are. We may expect that in multiclusters, having knowledge of the structure of jobs and the sizes of their
components would be even more important to reduce capacity loss.

3.2 An approximation of capacity loss in single clusters

We now present a procedure for computing an approximation toL in a single cluster of sizeN for the FCFS
policy. Subsequently, we simplify this approximation, andshow this simplification to yield good results for dif-
ferent job-size distributions. We assume that there is no correlation between the job sizes (number of processors
requested) and the job service times.

When in a single cluster the traffic intensity approaches�m, the job queue will be very long. This means that
we can assume that whenever a job leaves the system, new jobs from the head of the queue can be started until the
next job does not fit. So in fact, we can find an approximation toL by computing the average number of processors
that remain idle when we put jobs one by one on a single clusterof N processors that is initially completely idle
until the next job does not fit. If there was a correlation between job size and service time—for instance, when
larger jobs run for a longer period of time, as has been observed in some systems [9]—the mix of the sizes of the
jobs in service would be different from the general job-sizedistribution, and the approximation would in general
not be valid.

To find the approximation, letN be the number of processors, and letF be the job-size distribution, which is
a discrete distribution on the setf1; 2; : : : ; Ng; F (n) is the probability that a job’s size does not exceedn. We
assumeF to be non-degenerate, for otherwise, if all jobs are of size sayd, we haveL = (N mod d)=N . Let f be
the density of the job sizes, sof(n) = F (n)�F (n� 1); n = 1; 2; : : : ; N , is the probability that a job is of sizen.
For anN -tuplev = (v1; : : : ; vN ) of jobs of sizes1; 2; : : :; N , respectively, we denote bys(v) the sum

Pn vnn,
which is the total number of processors these jobs require. Now letV = f(v1; : : : ; vN )jvn � 0; n = 1; : : : ; N; s(v1; : : : ; vN ) � Ng
be the set ofN -tuples of numbers of jobs that fit onN processors, and letW = fv 2 V j there exists an with f(n) > 0; such thats(v) + n > Ng
be the subset ofV of N -tuples of jobs such that an additional job may not fit. Then the setI of numbers of
processors that can remain idle is I = fiji = N � s(w); w 2Wg:
We are interested in the probabilitiesP (i) thati processors remain idle, for alli 2 I. The probabilityP (i) is made
up of the probability that when adding jobs we reach a level ofN � i processors, and the probability that the next
job is larger thani processors. A general expression for these probabilities is (the first factor in the summation
below is a multinomial coefficient)P (i) = (1 � F (i)) � Xw=(v1;:::;vN )2W;s(w)=N�i� Pn vnv1; : : : ; vN � � NYn=1 f(n)vn! : (1)

The capacity lossL can now be approximated byL = 1N Xi2I P (i)i: (2)

The reason that this is an approximation rather than an exactresult is that we assume that the fractions of time thati processors are idle fori 2 I, are equal.
Eqs. (1) and (2) give a procedure for computing the approximation of the capacity loss, but for large values ofN and a large number of possible job sizes this procedure is time-consuming. Therefore, we now present a simple

approximation ofL in the case of a single cluster with the FCFS scheduling scheme.



The approximation simply consists in assuming that theP (i) are proportional to the first factor,1�F (i), in Eq.
(1), which amounts to assuming that the value of the summation in (1) is the same for alli 2 I. The approximated
capacity loss is then given by L = 1N �Pi2I(1 � F (i))iPi2I (1� F (i)) : (3)

Let’s now assume that the job size is uniformly distributed on the interval[n1; n2], with 0 < n1 < n2 � N .
Then we haveI � f0; 1; : : : ; n2 � 1g. When the interval[n1; n2] is large orn2 is much smaller thanN , the setI
will not be much different fromf0; 1; : : : ; n2� 1g, and we assume equality below. A straightforward computation
shows that Eq. (3) can then be written asL = 1N � n32 � n31 + 3n21 � n2 � 2n13n22 � 3n21 + 3n2 + 3n1 : (4)

In particular, whenn1 = 1, Eq. (4) yields L = n2 � 13N ; (5)

and so �m = 3N � n2 + 13N : (6)

We have validated the approximation of Eq. (3) with two different kinds of simulations. The first kind consists
of filling a single bin of sizeN with items of sizes drawn from the job-size distribution in the order they are
drawn, until the next job does not fit. All results for simulating bin filling reported in this section give averages
for 10; 000 simulation runs. The second kind is by simulating the queueing model defined in Section 2 and finding
the utilization when the average response time is at least1; 500 time units (the average service time is put to1
time unit; for more on the simulations see Section 4. Of course, simulating bin filling is much easier than trying
to simulate a queueing model close to its maximal utilization. In the latter case, it is very difficult to find out
whether the simulation is still in its transient phase, and programming difficulties like running out of space for
datastructures such as job queues may arise.
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Figure 2: The response time for a 32-processor single cluster, with job requests unifo rmly distributed in [1,16],
for the FCFS policy.(The bars show the 95% confidence intervals)

In Table 1 we compare the approximation and the two sets of simulation results for a cluster of32 processors
and for different uniform job-size distributions. Overall, the results agree very well, except when the interval of
job sizes is rather small and the job sizes are large relativeto 32. Figure 2 shows the results of simulating the
queueing model for uniform job sizes on[1; 16] in a 32-processor cluster, with95% confidence intervals, and may



job size capacity lossn1 n2 approximation simulation simulation
bin filling queueing model

1 4 0.031 0.031 0.033
1 5 0.042 0.042 0.044
1 13 0.125 0.124 0.138
1 16 0.156 0.154 0.166
4 5 0.056 0.049 0.052
4 13 0.132 0.132 0.145
4 16 0.163 0.159 0.175
5 13 0.137 0.137 0.150
5 16 0.166 0.163 0.178

13 16 0.212 0.094 0.095

Table 1: The capacity loss in a cluster with32 processors and with a uniform job-size distribution on the interval[n1; n2].
capacity lossq approximation simulation

bin filling

0.95 0.272 0.254
0.90 0.215 0.211
0.85 0.163 0.161
0.80 0.122 0.123
0.75 0.093 0.091
0.70 0.073 0.074
0.65 0.058 0.058
0.60 0.047 0.046
0.55 0.038 0.039
0.50 0.031 0.032

Table 2: The capacity loss in a cluster with32 processors and with a (truncated) geometric job-size distribution on
the interval[1; 32]with parameterq.
be compared with the entry forn1 = 1; n2 = 16 in Table 1. In Table 2 we compare the approximation with
only bin-filling simulations when the job sizes have a (truncated) geometric distribution on the interval[1; 32] in
a 32-processor cluster. In this distribution,f(n) is proportional toqn for some valueq with 0 < q < 1. This
distribution gives a larger proportion of small jobs, a phenomenon that has been observed in actual systems ([9],
[13]).

3.3 Capacity loss in multiclusters

For multiclusters, we have only performed a few bin-filling simulations for uniform distributions of the size
of job components, for both ordered and unordered requests.It is not generally true that a multicluster performs
better with unordered requests than with ordered requests.In fact, when the different job components of unordered
requests all have to go to distinct clusters, First Fit may cause a much larger capacity loss than ordered requests
experience because the first cluster fills up more rapidly than the last, until at some point it cannot accommodate
any component of the next job. In all our queueing-model simulations in Section 4 (in which First Fit is used) the
performance with unordered requests is better than with ordered requests, which is in agreement with the results
of the bin-filling simulations shown in Table 3, which presents the maximal utilization�m for sets of parameters



job size maximal utilizationn1 n2 O U

1 4 0.685 0.722
1 8 0.578 0.608

Table 3: The maximal utilization in a multicluster with4 clusters of8 processors each with a uniform job-
component-size distribution on the interval[n1; n2], for ordered (O) and unordered (U) requests (First Fit, distinct
clusters). These results are obtained with bin-filling simulations.

job size capacity lossn1 n2 C = 1 C = 4 C = 10
O U O U

1 4 0.031 0.146 0.049 0.198 0.053
1 5 0.042 0.172 0.063 0.229 0.067
1 13 0.124 0.326 0.177 0.411 0.177
1 16 0.154 0.363 0.219 0.444 0.229
4 5 0.049 0.106 0.041 0.146 0.029
4 13 0.132 0.282 0.181 0.363 0.199
4 16 0.159 0.329 0.230 0.371 0.282
5 13 0.137 0.270 0.164 0.358 0.158
5 16 0.163 0.317 0.242 0.342 0.303

13 16 0.094 0.094 0.094 0.094 0.094

Table 4: The capacity loss in a multicluster withC clusters of32 processors each with a uniform job-component-
size distribution on the interval[n1; n2], for ordered (O) and unordered (U) requests (Worst Fit, distinct clusters).
These results are obtained with bin-filling simulations.

that are also used in Section 4.
When we use Worst Fit instead of First Fit for unordered requests (job components in decreasing order of size

go to distinct clusters in decreasing order of the numbers ofidle processors), we can expect that the performance
for unordered requests is always better than for ordered requests. In Table 4 we present some results of bin-filling
simulations that confirm this expectation.

4 Simulating co-allocation

In order to estimate the performance of multicluster systems such as the DAS, for different structures and sizes
of requests, we modeled the corresponding queuing systems and studied their behaviour using simulations. The
simulation programs were implemented using the CSIM simulation package [4]. Simulations were performed for
a single-cluster system with 32 processors and for a multicluster system with 4 clusters of 8 nodes each. We varied
the distributionof the number of processors requested by jobs by changing the interval from which it was generated,
in order to study the influence it has on the performance. Simulations were made for job component sizes uniformly
distributed on the intervals[1; 4] and[1; 8] for the multicluster system. The sizes of the total requestsin the single-
cluster system with 32 processors we use for comparison, arethe sum of 4 numbers uniformly distributed on these
intervals.

In all the simulations, the mean of the service time was maintained constant, equal to 1, and the interarrival time
was varied in order to determine the response time as a function of the utilization of the system, and to approximate
the saturation point (see also Section 3.3).

The main goal is to evaluate the performance of the model depending on the structure and distribution of the
requests. We consider the performance to be better when for the same utilization the average response time is
smaller, and when the maximum utilization is larger.

In Sections 4.1 and 4.2, the scheduling policy used is FCFS. In Section 4.3 the two scheduling policies, FCFS
and FPFS are compared. Section 4.4 presents the simulation results for a system composed of 4 clusters with 8
processors each, using ordered requests with component sizes obtained from a job-size distribution presented as
being more realistic in[9] and[13].
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Figure 3: The influence of the structure of the requests, for the FCFS policy.

4.1 The influence of the structure of the requests

Figure 3 compares the average response time for the three types of requests, for two different distribution
intervals of their component sizes. As expected, the case oftotal requests gives the best results from the point of
view of the maximal utilization of the system and of the response time, because whenever the number of requested
processors does not exceed the number of idle ones, it will bepossible to accept the job for service. Less good
results are given by the case with unordered requests. Still, because of the fact that it gives more freedom to
the scheduler than the one with ordered requests, its performance is better than in the ordered case, in all our
simulations. When requests are ordered the results are the worst because the user imposes both the number of
nodes received from distinct clusters and the actual cluster for each of those numbers. It causes a lower maximum
utilization and a larger average of the response time. Because of the low utilization, the system becomes saturated
faster and gets instable for a lower utilization than in the other cases. However, in general there are situations when
unordered requests determine a lower maximal utilization than ordered requests (see Section 3.3). The saturation
point can be estimated in the graphs by the fast growth of the response time depending on the utilization, as the
maximum utilization is being reached.

4.2 The influence of the size of the requests

We may expect that the distribution intervals of the requestsizes influence the probability of having multiple
jobs served simultaneously. When the upper limit of the distribution interval is decreased, the average size of the
requests decreases which means that more jobs can be simultaneously admitted for service. As Figure 3 and Figure
4 show, this has a positive impact on the maximum utilizationof the system, and on the average response time.

Figure 3 shows that for each type of requests, smaller request sizes generate a decrease in the response time. For
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Figure 4: The influence of the size of the requests for the FCFSpolicy.

the distribution in[1; 8], the mean value of the job components sizes is larger than half of the cluster’s size, which
makes the probability to have more jobs served simultaneously small, especially in the ordered case. Then, on
average there is little more than one job in service at a time,which allows a comparison with the M/M/1 queueing
model. For the ordered requests case with job components sizes in[1; 8], the system behaves like a single processor,
as Figure 5 indicates. The simulation results prove the comparison to be accurate, the maximum throughput being
similar to that of the M/M/1 system.

Figure 4 compares the results for the two distributions of sizes in the cases of ordered and total requests.

4.3 The impact of the scheduling policy

Another factor which influences the performance of the system is the scheduling policy. As expected, FPFS
improves the maximal utilization and the response time compared to FCFS, because it can schedule jobs in an
order different from the arrival order. Figure 6 also shows that the influence on performance of the distribution of
jobs sizes and of the structure of the requests observed for FCFS is maintained for the FPFS scheme.

For FPFS, increasing the maximum number of times a job can be jumped over, MaxJumps, improves the per-
formance up to a point. When this number is too large, the performance of individual jobs is negatively influenced,
and even the effectiveness of the scheme can be affected (MaxJumps!1) would cause starvation, being the same
as FPFS without a counter). At the other extreme, for MaxJumps=0 we return to FCFS. We performed simulations
with different values for Maxjumps, and finally chose MaxJumps equal to 7. Table 5 show the sensitivity of the
response time to the value of MaxJumps for different values of the utilization, in the case of total requests.

It can be noticed that for low utilizations, far from the saturation point, improvements given by the scheduling
scheme or the distribution and the structure of the requestsare very small if any. The differences show only for
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Figure 5: A comparison between a multicluster with ordered requests in [1,8] and a M/M/1 system.

MaxJumps utilization
0.62 0.78

0 1.91246 4.8845
1 1.80850 3.8588
3 1.80102 3.3412
7 1.70349 2.9125
12 1.69023 2.8249
20 1.68996 2.7771

Table 5: The response time in a single cluster with 32 Processors (FPFS policy) as a function of MaxJumps.

heavy traffic, when the arrival rate is reasonably high and the job queue is long. For a low arrival rate, under all
circumstances we obtain the same results because jobs can beserved immediately upon arrival.

4.4 A realistic job-size distribution

The simulations described in this section use a distributionof the job sizes that favours small jobs and jobs whose
requests’ components are powers of 2. Jobs whose componentsare powers of 2 are generated with probabilityp = 0:7 . The probability distribution on [1,8] in this case is the normalization of (q; 3q2; q3; 3q4; : : : ; 3qN ), whereN = 8 andq = 0:90. With probability1 � p a job with components uniformly distributed in[1; 4] is generat
ed. Figure 7 shows the variation of the response time for the composed distribut ion together with the confidence
intervals, for a confidence level of95%.

5 Related work

The problem of scheduling rigid jobs by pure space sharing ina multiprocessor system was also the subject of
[1]. It was pointed out that although more complex scheduling schemes are presented in the literature, scheduling
schemes for rigid jobs using pure space sharing are still important since these are the schemes implemented on most
existing multiprocessor systems. The authors implementedand compared scheduling strategies such as FCFS,
FPFS, FPFS with job sorting (both decreasing and increasing), and backfilling. In order to avoid starvation in
FPFS and its variations, a time limit is used rather than the maximal number of times a job can be overtaken.
Simulation results were combined with performance analysis and experiments in order to verify the effectiveness
and the practicality of the schemes. The performance was analysed in terms of processor utilization and stability,
using queueing models and the one-dimensional bin-packingproblem. As a result of the simulations, the mean
response time and the utilization were represented as a function of the system’s load. It was concluded that the
most effective and the most practical from the schemes analysed are FPFS and Fit Processors Most Processors
First Served (FPMPFS). Backfilling can improve performanceas well, but it requires a-priori knowledge of the
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Figure 6: The influence of the scheduling policy.

execution times of jobs, which makes it less practical. The performance of the scheduling schemes proved to be
sensitive to the distribution of the number of processors requested by a job.

In [13], the optimizations of sorting the job queue according to increasing numbers of processors requested, and
of backfilling, are studied with trace-driven simulations.The traces were derived from the logs of three supercom-
puter installations, amongst which an SP2, and showed relatively large numbers of short jobs and of jobs with sizes
that are small or powers of2. On the SP2, for a sorted job queue, increasing the Maximum Allowable Skipping
Count (MASC), a parameter with the same meaning as our MaxJumps, to a large value (simulations were presented
with MASC=10; 100; 1000) yielded a considerable decrease of the average turnaroundtime. This contrasts with
our result that the performance of FPFS in a single cluster isnot very sensitive to increasing MaxJumps beyond7. However, on the Paragon, the sensitivity to the MASC was much smaller than on the SP2, so this sensitivity is
very dependent on the job mix.

The influence of splitting the processors into groups on the performance of the system was also studied in
[3]. A technique for operating system schedulers called processor pool-based scheduling, designed to assign the
processes of parallel applications in multiprogrammed, shared-memory NUMA multiprocessors, is presented and
evaluated. It is assumed that a job starts as a single process, and that it may grow by starting additional processes.
Different policies for the initial placement of the jobs andfor the placement of its additional processes when it
expands were studied. Since it was assumed that the number ofprocessors required by each job is not known when
the application starts, the best strategy for initial placement was found to be Worst Fit, because it leaves the largest
room for the growth of jobs inside the pool. The author noted that when the number of processors required is
known by the time of the arrival, the problem of choosing which processors to allocate is similar to a bin-packing
problem with multiple bins. He studied the importance of application parallelism in determining the pool size, and
also the influence of the architectural configuration. The results show that although application parallelism should
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Figure 7: The response time for a multicluster with ordered requests and with job sizes generated from a distribu-
tion that favours small values and powers of 2.

be considered, the optimal pool size is a function of the system’s architecture.
Whereas we approach the problem of the maximal utilization from a more theoretical perspective, in [11] a study

of the utilizations as observed in existing supercomputinginstallations is presented. Experience with a large range
of machines over more than a decade shows that employing FCFSresults in a40% � 60% utilization, that more
sophisticated policies such as backfilling give an improvement of about15 percentage points, and that reducing the
maximal job size allowed increases utilization.

Finally, let us briefly mention some of the other research that is being performed in the context of the DAS.
Whereas the research presented in this paper is at the operating systems level, the other research on the DAS is
done at the level of the run-time system [12] and of the applications [2]. In [12], a library is presented which
optimizes the collective communication primitives of MPICH, a widely used version of MPI, in order to achieve
fast communications in wide-area systems. Because collective communication algorithms are usually designed
for LANs, they do not take into account the high latencies of wide-area links, which negatively influence their
performance. The authors designed algorithms which are wide-area optimal in that an operation includes only one
wide-area latency, and every data item is sent at most once across each wide-area link. They modified 14 collective
operations of MPI and obtained substantial performance improvements over MPICH. As an example, in the case
of the MPI_Bcast primitive, the completion time was reducedto 50% for 32 processors divided into 4 clusters and
a message size of one byte. This was obtained by sending the message only once to each cluster over the wide-area
links, and then broadcasting it inside each cluster on the fast local links.

In [2], several nontrivial algorithms on a multilevel communication structure (LAN clusters connected by a
WAN, such as the DAS) were analyzed and several optimizationtechniques were used to improve their perfor-
mance. The optimizations either reduced intercluster traffic or masked the effect of intercluster communications
and caused a significant improvement. The authors concludedthat many medium-grain applications could be
optimized to run well on a multilevel, wide-area cluster. One of the optimized applications solves the Traveling
Salesman Problem. It was improved by replacing the dynamic work distribution through a centralized queue with
a static distribution over the clusters, each of them havingits own local queue. For 32 processors divided into 4
clusters, the speedup was 24, compared to 15 for the unoptimized solution.

6 Conclusions

We have proposed a model for scheduling rigid jobs in multicluster systems, based on our DAS system, and
assessed its performance for different structures and sizes of jobs in terms of average response time as a function
of utilization.

We simulated two scheduling schemes, First Come First Served and Fit Processor First Served, and three types



of requests. As expected, for both scheduling schemes, the average response time is smaller and the maximum
utilization is larger when the requests are more flexible. The best performance was obtained for total requests,
when only the total number of processors needed is provided,and when the problem is similar to a single bin-
packing problem. For unordered requests, when the numbers of processors to be allocated in separate clusters is
specified, the problem is similar to a set of related bin-packing problems, and because there are more restrictions,
the performance decreases. It can be improved by changing the policy from FCFS to FPFS, because then the
scheduler gets freedom to look further in the queue for jobs which fit, but it will still be below the total requests
case. In all our simulations, ordered requests, when the exact clusters from which to satisfy the components of the
requests are provided, cause even larger response times, and an even lower maximum utilization.

Decreasing the maximal size of the requests improves the performance of the system. This fact is again related
to the bin-packing problem, because it is easier to schedulesmall jobs than large ones.

We derived an approximation for the maximal utilization in single-cluster systems and checked its validity
against simulation results.

We plan future work on the effect of communication on the performance of multicluster systems (and of the
applications), in comparison with single-cluster systems, because inter-cluster communication is much slower than
communication inside the same cluster (in [2] a factor of 50 between these communication speeds was reported).
We also intend to do simulations and performance measurements using traces from real multicluster systems in-
stead of theoretical distributions.
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