Using DMIF for abstracting from IP-Telephony
Signaling Protocols

R. Ackermann®, V. Darlagiannis®, U. Roedig!, R. Steinmetz!-2

! Darmstadt University of Technology
Industrial Process and System Communications (KOM)
% German National Research Center for
Information Technology (GMD IPSI)

Abstract. IP Telephony recently finds a lot of attention and will be used
in IP based networks and in combination with the existing conventional
telephone system. There is a multitude of competing signaling protocol
standards, interfaces and implementation approaches. A number of basic
functions can be found throughout all of those, though. This includes the
addressing of participants using symbolic names, the negotiation of con-
nections and their parameters as well as the enforcement of a dedicated
handling of data streams by means of QoS signaling activities. Thus, a
generic abstraction hiding underlying protocol specifics is very desirable
and useful. The Delivery Multimedia Integration Framework DMIF - as
part of the MPEG approach towards distributed multimedia systems -
forms a general and comprehensive framework that is applicable to a
wide variety of multimedia scenarios.

In this paper we describe a more generalized and abstract view to basic
IP Telephony signaling functions and show how these can be hidden be-
low a common DMIF interface. This will allow for the implementation of
inter-operable applications and a concentration on communication func-
tionality rather than protocol details. We expect that this will also allow
for better exchangeability, interoperability and deployability of emerging
signaling extensions.

Keywords: Internet Telephony, Signaling, SIP, H.323, MPEG-4, DMIF

1 Introduction

IP-Telephony applications are considered to have a huge economic poten-
tial in the near future. Because companies and service providers start to
consider it to be getting ready for carrier-grade usage, it may also speed
up the deployment of state-of-the art QoS, security and billing compo-
nents in local as well as in the backbone networks. Though IP-Telephony
might be seen as (just) a specific application today, it is part of an ever
emerging scene of more general multimedia applications. Considering the
high dynamics and multitude of concurrent approaches in signaling pro-
tocols, interfaces and implementations, a consistent and comprehensive
framework can speed up development and allows a faster, better and
more generic implementation as well as the interoperability, exchange-
ability and re-use of modular components.

2 IP-Telephony Signaling Protocols and APIs

IP-Telephony signaling protocols are used to establish a conversation
comparable to a classic telephone call using an IP infrastructure. Typ-
ical applications and scenarios are recently based on different protocol
suites. Mainly, there are two major approaches - the H.323 [6][7] proto-
col family and the Session Initiation Protocol SIP [4] with a changing
distribution and relevance. Though today, a high percentage of applica-
tions and scenarios is still H.323 based (and we will therefore initially
focus on it), it is supposed that in the near future the use of the SIP
protocol may increase [3][13]. Both protocol types will even be usable
together with appropriate gateways [?][14]. Additionally, the close inter-
action with the existing Public Switched Telephone Network (PSTN) on
the basis of interacting media gateways plays a very important role. For
that domain, protocols like MGCP [2] / H.248 [5] that describe the inter-
action towards the PSTN SS#7 [12] and may use both H.323 and SIP for
signaling within the IP telephony world are under recent development
and standardization.

2.1 Signaling using the H.323 Protocol Family

The H.323 protocol suite compromises a variety of communication re-
lationships, which are handled via dynamically negotiated channels for
a number of H.323 protocol components such as RAS, Q.931, H.245.
These use Protocol Data Units that are encoded as described in ASN.1
specifications. Though the H.323 protocol suite has proven to provide
the intended communication services especially for usage in LANS, it is
considered to be complex, not easy to extend and having a considerable
signaling overhead that can not be neglected in a global environment.

2.2 Signaling using the Session Initiation Protocol SIP

The Session Initiation Protocol SIP has initially been used as a protocol
for multicast applications and provides generic control functionality. Its
basic operations which are directly related to call setup are registration
of participants and redirection or proxying of control data traffic. This
allows to access telephony services through single points of contact, may
hide infrastructure aspects and is also applicable for building hierarchies.
Additionally to its primary function, SIP allows to control call proceeding
and additional services in a very generic, efficient and extensible manner,
e.g. by means of Call Processing Language (CPL) scripts. SIP protocol
functionality can either be provided by centralized components but also
at "smart” end system nodes. Over the last period of intensive work, SIP
has emerged towards the core protocol of a comprehensive framework,
addressing additional features such as QoS support, firewall interaction
and call routing as well.

2.3 Application Interfaces - TAPI and JTAPI

The Microsoft Telephony API (TAPI) [11] has been developed in a joined
effort by Microsoft and Intel and is provided as part of Win9x and
WinNT. Its targets are to isolate features of the underlying hardware
from the applications by means of a standard API as well as to specify
a Telephony Service Provider Interface that the underlying services have
to meet.

It supports basic Computer Telephony Integration (CTI) applications
like automated dialing but starting with the TAPI version 3.0 under
Windows 2000 involves sophisticated features such as IP multicast con-
ferencing, a H.323 stack and Interactive Voice Response (IVR) function-
ality as well. Inherently it is limited to the Windows platform though
and does not up to now cover SIP, though protocol descriptions state,
that it provides powerful means to incorporate new protocols or protocol
extensions as so called Third Party Service Providers.

The Java Telephony Application Programming Interface (JTAPI) [15]
is an object-oriented interface that allows the development of portable
telephony applications in Java. It uses a modular approach that places
additional functionality, so-called extensions, on top of a common JTAPI
core. The API itself just describes interfaces which have to be imple-
mented for the underlying hardware or protocol infrastructure. As a cur-
rent drawback it must be stated that there is still only a small though
rising number of JTAPI peer class implementations.

Both APIs have current limitations and are inherently targeted at tele-
phony services. We do not consider JTAPI or TAPI as comprehensive
alternatives or competitors to our approach - they can even be combined
with it or provide services.

3 The abstraction Framework

3.1 MPEG and DMIF

MPEG-4 [10] is a new multimedia standard that is much more powerful
and comprehensive than the previous MPEG standards. To begin with,
it provides an object-based description of content, which can be both
naturally captured and computer generated. Though the term MPEG-4
is often associated with the specification of a set of video codecs working
with individual visual objects, the standard is much more comprehensive.
Among others, MPEG-4 defines the Delivery Multimedia Integration
Framework (DMIF) [8][9]. DMIF is a framework that abstracts and
thereby encapsulates the delivery mechanisms from the applications.
The frameworks API, called DMIF Application Interface (DAI), works
with Universal Resource Locators (URLs), which specify appropriate de-
livery mechanisms for specific scenarios. URLs can also specify the re-
quired network protocol, which provides a protocol abstraction for the
applications. Additional parameters of a connection such as e.g. Quality
of Service (QoS) requirements can be passed as arguments through this
generic interface as well. DAT is language and platform independent. A
basic description of its primitives is given in Table 1.

| Primitive | Description |

DAI ServiceAttach |Allows the initialization of a service session
with a remote peer, specified with a URL.
DAI ServiceDetach |Allows the termination of a service session.
DAI_AddChannel Allows the establishment of end-to-end
transport channels in the context of a
particular service session.

DAI RemoveChannel|Allows the replacement of existing transport
channels.

DAI_UserCommand |Allows the application-to-application exchange
of messages.

DAI_SendData Allows the transmission of media in the
established channels.

Table 1. DMIF primitives and functionality

Additionally, DMIF defines an informative DMIF-Network Interface (DNI)
for the network related scenarios. DNT allows the convenient development
of components that can easily adapt their signaling mapping to different
protocols.

3.2 Framework Architecture

Before defining the basic objects of our architecture, it is important to
identify main use cases, which are typically required by IP Telephony
applications. Basically a user should be able to register himself in the
”IP-networked world”, to enable his locating and identification for other
participants. After that, it is possible to receive calls or to originate them
to remote users. So, in a necessarily limited scenario there are three main
use cases, which are shown in Figure 1, using a UML use case diagram.

X

/ el Ap\

-

Registration

Originate Recteive Call

Handling additional tasks
e.g. QoS

Fig. 1. Basic Use Cases

As an example for an additional service, we refer to the signaling for
ensuring the desired QoS.

From the analysis of the use cases we derive the architecture of the
proposed framework. It is shown in Figure 2.

DMIFInstance DMIFFilter IpTelAppl
(from mgegd.dmif) ———————————————————— (from mgeg4.dmify ——————— (from application)
T T
1 !
| |
\ |
" | I
CallReceiver CallMaker v y
(from mgeg4.dmif) (from mgegd.dmif) DMIFSession DMIFApplication
(from mgeg4.dmif) (from mgegé.dmif)
T
!’ \\
1 \
Vi N
DNIReceiver DNIBase DNIMaker
(from mgega.dmify > (from mgega.dmify <~ (from mgeg4 dmif) DAIBase
- = (from mgeg4.dmif)
) N .- A
1 S P !
| = P 1
1 ~o 7 il
| >< !
| -7 AN I
1 P SO 1
\ I . ;
SIPComm H323Comm
(from iptel.sip) (from iptel.h323)
Socket

(from java.net)

Fig. 2. Framework Architecture

In our framework the DMIF Application Interface is implemented with
two interfaces, DMIFSession and DMIFApplication. The first provides
the set of methods that are offered to the application from the DMIF
layer, while the former is the set of callback functions for the DMIF
layer to inform the application about events and messages. The DMIF
layer is provided to the applications through the DMIFFilter. Its respon-
sibility is to parse application requests and to activate the appropriate
DMIFInstances to handle them.

The DMIFInstances are formed of two different objects: the CallReceiver
and the CallMaker. A CallReceiver object initially allows the user to reg-
ister himself. It is then responsible for the acceptance of incoming calls as
well as for their handling. A CallMaker executes the requests for outgoing
connections. Both CallReceiver and CallMaker behavior is independent
of the used signaling protocol. They communicate with the appropriate
signaling object using the DNI interface. Specific implementations of sig-
naling protocols are the SIPComm object, which uses the SIP protocol
and the H323Comm object, which uses the H.323 protocol suite.

4 Usage Scenarios and Protocol Mappings

After having identified basic functions we now show how calls can either
be received or originated using both H.323 or SIP as the underlying

signaling protocol. The protocol details are hidden from the applications
which use the same interface and primitives in any of the cases. They -
using the appropriate URL identifier - just have to specify which of the
available protocols should be used .

4.1 Registering and receiving calls using H.323

In this scenario, the IP Telephony Application (IpTelAppl) uses the
H.323 protocol to register the participant with a Gatekeeper and en-
ables him to accept calls. The sequence of protocol steps is shown in
Figure 3.

: IpTelAppl : DMIFFilter : CallReceiver Client : Gatek ver : || H.323 Terminal :
H323Comm H323Comm H323Comm
DAI_ServiceAttachReq ! ! ! !
: L newCallReceiver | i i i
NI_SessionSetup GRQ I I
. i I
I
GCF !
I
I
I
I
L I
.] I
DNI_ServiceAttach_| RRQ : :
RCF |
DAI_ServicgAttachRsp Response |
|
I
I
I
I
I
I
Ll ARQ !
i
0 ACF
L |
] I
L I I L
] I I
L I I I SETUP
i I I i i
| | l CALL PROCEEDING
I I I .
| DAI_ServiceAttachind | Notify |
i i I
DAI_Sen/lcé:zAtlachCnf Response ARQ i
I
| ACF
I
I
I
| ALER[TING
I
I]
| CONNECT
I .
: H.245 Protocol Messages ﬁ
I]
I i
| dLC
DAI_AddChannelind Notify)
= |]
! I
DAI_AddChannelCnf Response OLClAck
|
I I
I I
I I
I I
I I
I I
I I
I I
| |
| |
I I
I I
I I
I I
I I
I I
I I
I I

Fig. 8. Registering and receiving calls - H.823 scenario

It should be noticed that the DAI interface is used between the IP Tele-
phony application and the DMIFFilter and the DNI between the Call-
Maker and the H323Comm object. The IpTelAppl attaches to the local
Gatekeeper, by using the DAI ServiceAttachReq primitive, where it can
pass the address of it, if it is known. The DMIFFilter, parses the passed
URL and activates a CallReceiver object to handle the details of the
operation. The CallReceiver may inquire at the local H323Comm ob-
ject about the location of the Gatekeeper, if its address is not already
specified, using the DNI_SessionSetup primitive. In this case the local
H323Comm object broadcasts a request to locate the Gatekeeper. After
the Gatekeeper has been identified, the CallReceiver object requests the
H323Comm object to register itself at the local Gatekeeper. The local
H323Comm object is completing the request, by exchanging one more
pair of messages with the Gatekeeper (RRQ and RCF). After the suc-
cessful completion of the registration task, a handler to the CallReceiver
is returned to the IpTelAppl for further usage.

Suppose that later another H.323 terminal wants to call the IpTelAppl.
It can obtain the address of the local H323Comm object from the Gate-
keeper. Then, it submits a Setup message to the local H323Comm object
to request the establishment of a new session. The IpTelAppl is informed
about this request from the CallReceiver object. The IpTelAppl instance
can decide to accept the new call and the local H323Comm object re-
quests admission from the local Gatekeeper (ARQ and ACF messages).
After that it replies to the remote H.323 terminal that it accepts the
connection (CONNECT message).

A number of H.245 messages follow in order to exchange the capabilities
of the two terminals. Then, an Open Logical Channel (OLC) message is
sent to request for a media channel. The CallReceiver indicates this to the
IpTelAppl (DAI_AddChannellnd), which confirms it. Finally, the local
H323Comm object sends an acknowledge to the remote H.323 terminal.
The last procedure might be repeated for more media channels.

4.2 Registering and receiving calls using SIP

Figure 4 shows the registration of an IpTelAppl in order to receive calls
for the SIP case. The IpTelAppl requests user registration with the
DATI ServiceAttach command. The DMIFFilter therefore creates a new
DMIF Instance, the CallReceiver to handle the registration and possible
future calls. A CallReceiver requests from the SIPComm object to es-
tablish a connection with the SIP location sever. The SIPComm object
sends a REGISTER message to the Location Server to store its loca-
tion information for future incoming calls. The handler returned to the
IpTelAppl is used to proceed future interactions.

Later, when a new INVITE message is received from the SIPComm ob-
ject (Client instance), the IpTelAppl will be informed. It then can either
confirm the acceptance of the incoming call or reject the new invitation.
In the case of acceptance, a SIP 200 OK response is replied to the caller,
and the call is established after the final ACK is received.

Proxy or Redirect
- SIPComm

Location Server
- SIPComm

: IpTelAppl
: SIPComm

: DMIFFilter ‘ ‘ : CallReceiver

‘ Client

IDAI_ServiceAttachReq
Il

I I
L. newCallReceiver : !

I I
I I
I I I
DNI_SessionSetup, . .
I I
I I
DNI_ServiceAttach | . .
TCP I I
ﬂ |
I
REGISTER |
I I
> I
I
I I
DAI_ServicéAttachRsp Response | |
I I
I I
I I
I I
I I
I I
I I
T | |
I I I
T | | |
I I I I
T | | | M
L . . . INITE
Notify
: DAI_SewaeAﬁachlnd ! i
T I
DALServic‘bAnachCnf :
T I
I I
DALAdddhanneIlnd :
- L I
DAI_AddGhannelCnf) |
- Confirm ZOOJ(OK)
| .
I |
I I
I I
I I
. AGK
I
I I
I I
I I
I I L
I I
I I
I I
I I
I I
I I
I I

Fig. 4. Registering and receiving calls - SIP scenario
4.3 Call Setup using H.323

In this scenario - shown in Figure 5 - the IpTelAppl wants to setup a call
to a remote H.323 terminal. Only the most important and relevant (to
the DMIF layer) H.323 messages are shown.

The IpTelAppl calls the DAT ServiceAttachReq to originate a new call. It
passes the URL of the remote participant for symbolically addressing the
intended communication partner. The DMIFFilter parses the request and
creates a new CallMaker object to handle the details of this operation.
It requests the session setup from the local H323Comm object, which
communicates with the Gatekeeper to request for admission to place
the call and to address the remote party (ARQ and ACF messages).
Then, the CallMaker calls the DNI_SessionAttach primitive to request
the establishment of a new session with the remote terminal from the
local H323Comm object. A set of messages is exchanged between the two
H.323 peers, compromising both Q.931 and H.245 protocol elements. At
the end, the IpTelAppl receives a positive response.

Once the connection is established, the application may initiate the setup

H.323 Terminal ‘

G :
H323Comm H323Comm ‘ H323Comm

‘ : IpTelAppl ‘ ‘ : DMIFFilter ‘ ‘ : CallMaker ‘ ‘ Client :

|
newCallMaker ! | |
|
!

['DAI_ServiceAttachReq | NI SessionSet
| DNI_SessionSetup | ARQ

|

|

|

|

|

ACF |
|

l

|

DNI_SessionAttach |
|

.

SETUP

L
CALL PRqCEEDI NG

|
ALERTING

CconNecT

H.245 Protocol Messages
Response '
DAI_ServigepttachRsp

DAI_AddChannel | |

addChannel

DNI_AddChannel

Fo---

dlc

OLCIAck

Response
DAI_AddChannelRsp !

|

|

|

|

|

|

|

|

|

|

e |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Fig. 5. Originating Calls - H.828 scenario

of additional media channels with the DAI_AddChannelReq primitive.
The local H323Comm object is negotiating the channels with the re-
mote H.323 terminal (OLC and OLC Ack messages). This procedure is
repeated between the two terminals for every media channel.

4.4 Call Setup using SIP

In this scenario - described in Figure 6 - the IP Telephony application is
setting up a new call, using the SIP protocol. No specific details of the
protocol are required for the application.

It constructs an appropriate URL, which denotes the intended usage
of the SIP service. The IpTelAppl requests the DMIFFilter to attach
with the requested remote participant. The symbolic address of the re-
mote user is passed as a SIP URL with the appropriate parameters. The
DMIFFilter creates a new CallMaker object to handle the signaling task
for this new call. The CallMaker interacts with the SIPComm object
(Client instance) to establish the call (if TCP is used) with a SIP proxy

: IpTelAppl : DMIFFilter : CallMaker Client : ‘ Server : ‘
SIPComm SIPComm |

I I I I
PAI_ServiceAttachRe i |
- 79 newCallMaker DNI_SessionSetup*

I

DNI_SessionAttach
1

Locate the prox
or rediregt server

TCP

DAI_ServiceAttachRsp Response ﬁ

DAI_AddChannelRed aqdchannel
‘

(-
|
|
|
|
|

DNI_AddChannel ! INVITE

200

DAI_AddChannelRsp Response ﬁ

Fig. 6. Originating Calls - SIP scenario

or redirect server, using the DNI SessionAttach primitive. The Client
has to locate the appropriate SIP proxy or redirect server first to request
the remote user. After the (successful) connection with the server a re-
sponse is given back to the IpTelAppl, with a handler to refer to the
same objects for later requests.

In a next step the IpTelAppl may add a voice channel. IpTelAppl calls the
DAI_AddChannel primitive from the DMIFFilter to request for a chan-
nel with specific QoS, if this is supported from the underlying network.
The previously created CallMaker object is identified and is requested
to handle the new request. The CallMaker maps the Application QoS
to the Network QoS and calls the DNI_AddChannel primitive to ask the
SIPComm object to request for a new channel with the remote user. SIP-
Comm, interacts with the SIP proxy and redirect server to locate and
invite the remote user, using the INVITE message. In the basic scenario,

it will receive a positive SIP response (OK 200), and will complete the
invitation with the SIP ACK message.

5 Conclusion and Future Work

In the paper we have proposed a framework based on DMIF and pos-
sible mappings for common IP Telephony signaling operations. We are
not intending to develope ”yet another implementation” for one of the
emerging signaling standards, but try to find a generic approach by iden-
tifying basic functionalities.

Based on our experiences with implementing a protocol gateway between
H.323 and SIP the ”conventional way” [1] we assume, that the approach
fits well with the recent functionality of established signaling protocols
while being flexible enough to also incorporate changes or cope with even
new protocols. Though we have concentrated on describing scenarios in-
volving end systems, it is applicable for the development of infrastructure
components using a variety of signaling protocols as well.

The basic motivation for choosing DMIF is its standardization and the
experience, that generating software in a standardized instead of a per-
application or per-protocol way can speed up development and permits
more generalized solutions. We consider our framework feasible and in-
tend to implement it using different underlying protocol stack software
thus enabling applications to use the described interface and to have
means for the evaluation of its performance and implementation as well
as runtime-overhead.

References

1. R. Ackermann, V. Darlagiannis and R. Steinmetz: Implemen-
tation of a H.323/SIP Gateway. Technical Report TR-2000-02,
Darmstadt University of Technology, Industrial Process and Sys-
tem Communications (KOM), Jul. 2000.

2. M. Arango, A. Dugan, I. Elliott, C. Huitema, and S. Pickett: Me-
dia Gateway Control Protocol (MGCP). Internet Draft, Internet
Engineering Task Force, Feb. 1999. Work in progress.

3. I. Dalgic and H. Fang: Comparison of H.323 and SIP for IP
Telephony Signaling. In Proc. of Photonics East, Boston, Mas-
sachusetts, Sept. 1999.

4. M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg: SIP:
Session Initiation Protocol. Request for Comments (Proposed
Standard) 2543, Internet Engineering Task Force, Mar. 1999.

5. K. Hoffmann, K. Pulverer, P. Blatherwick, B. Bell, M. Korpi, T.
Taylor, R. Bach, and C. Ruppelt: Megaco/H.248 Generic Pack-
ages. Internet Draft, Internet Engineering Task Force, Sept. 1999.
Work in progress.

6. International Telecommunication Union: Visual telephone sys-
tems and equipment for local area networks which provide a non-
guaranteed quality of service. Recommendation H.323, Telecom-

10.

11.

12.

13.

14.

15.

munication Standardization Sector of ITU, Geneva, Switzerland,
May 1996.

International Telecommunication Union: Packet based multime-
dia communication systems. Recommendation H.323, Telecom-
munication Standardization Sector of I'TU, Geneva, Switzerland,
Feb. 1998.

ISO: Information Technology - Coding of audio-visual objects,
Part 6: DMIF. ISO/IEC IS 14496-6, 1999. ISO IEC JTC1/SC29.
ISO: Information Technology - Coding of audio-visual objects,
Part 6: DMIF version 2. ISO/IEC IS 14496-6v2, 2000. ISO IEC
JTC1/SC29.

R. Koeman: MPEG-4, Multimedia for our time. IEEE Spectrum,
36(2), pages 26-33, February 1999.

Microsoft Corporation: The Microsoft Windows Telephony Plat-
form with TAPI 2.1. White Paper. http://www.microsoft.com/
ntserver/commserv/techdetails/prodarch/tapi2lwp.asp.

T. Russell. Signaling system #7: McGraw-Hill, New York, 1995.
H. Schulzrinne and J. Rosenberg: A Comparison of SIP and H.323
for Internet Telephony. In The 8th International Workshop on
Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV 98), pages 83-86, Cambridge, England, July
1998.

K. Singh and H. Schulzrinne: Interworking between SIP/SDP and
H.323. Internet Draft, Internet Engineering Task Force, Jan. 2000.
Work in progress.

Sun Microsystems: Java(tm) Telephony API. Product Descrip-
tion. http://java.sun.com/products/jtapi/.

