Skip to main content

Semi-qualitative Reasoning about Distances: A Preliminary Report

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1919))

Included in the following conference series:

Abstract

We introduce a family of languages intended for representing knowledge and reasoning about metric (and more general distance) spaces. While the simplest language can speak only about distances between individual objects and Boolean relations between sets, the more expressive ones are capable of capturing notions such as ‘somewhere in (or somewhere out of) the sphere of a certain radius’, ‘everywhere in a certain ring’, etc. The computational complexity of the satisfiability problem for formulas in our languages ranges from NP-completeness to undecidability and depends on the class of distance spaces in which they are interpreted. Besides the class of all metric spaces, we consider, for example, the spaces ℝ × ℝ and ℕ × ℕ with their natural metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic, 34:56–83, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Börger, E. Grädel, and Yu. Gurevich. The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, 1997.

    Google Scholar 

  3. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, Oxford, 1997.

    MATH  Google Scholar 

  4. E.T. Copson. Metric Spaces. Number 57 in Cambridge Tracts in Mathematics and Mathematical Physics. Cambridge University Press, 1968.

    Google Scholar 

  5. T. de Laguna. Point, line and surface as sets of solids. The Journal of Philosophy, 19:449–461, 1922.

    Article  Google Scholar 

  6. M. de Rijke. The modal logic of inequality. Journal of Symbolic Logic, 57:566–584, 1990.

    Google Scholar 

  7. G. Gargov, S. Passy, and T. Tinchev. Modal environment for boolean speculations. In D. Scordev, editor, Mathematical Logic. Plenum Press, New York, 1988.

    Google Scholar 

  8. V. Goranko. Completeness and incompleteness in the bimodal base \( \mathcal{L}{\text{(}}R{\text{,}} - R) \) (R, —R. In P. Petkov, editor, Mathematical Logic, pages 311–326. Plenum Press, New York, 1990.

    Google Scholar 

  9. V. Goranko and S. Passy. Using the universal modality. Journal of Logic and Computation, 2:203–233, 1992.

    Article  MathSciNet  Google Scholar 

  10. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, pages 605–714. Reidel, Dordrecht, 1984.

    Google Scholar 

  11. R. Jansana. Some logics related to von Wright’s logic of place. Notre Dame Journal of Formal Logic, 35:88–98, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. O. Lemon and I. Pratt. On the incompleteness of modal logics of space: advancing complete modal logics of place. In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic, pages 115–132. CSLI, 1998.

    Google Scholar 

  13. A. Montanari. Metric and layered temporal logic for time granularity. PhD thesis, Amsterdam, 1996.

    Google Scholar 

  14. N. Rescher and J. Garson. Topological logic. Journal of Symbolic Logic, 33:537–548, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Segerberg. A note on the logic of elsewhere. Theoria, 46:183–187, 1980.

    Article  MathSciNet  Google Scholar 

  16. D. Vakarelov. Modal logics for knowledge representation. Theoretical Computer Science, 90:433–456, 1991.

    MATH  MathSciNet  Google Scholar 

  17. P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic and Recursion Theory, volume 187 of Lecture Notes in Pure and Applied Mathematics, pages 331–363. Marcel Dekker Inc., 1997.

    Google Scholar 

  18. G.H. von Wright. A modal logic of place. In E. Sosa, editor, The Philosophy of Nicholas Rescher, pages 65–73. D. Reidel, Dordrecht, 1979.

    Google Scholar 

  19. F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning based on RCC-8. In Proceedings of the seventh Conference on Principles of Knowledge Representation and Reasoning, KR2000, Breckenridge, USA, pages 3–14, Montreal, Canada, 2000. Morgan Kaufman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sturm, H., Suzuki, NY., Wolter, F., Zakharyaschev, M. (2000). Semi-qualitative Reasoning about Distances: A Preliminary Report. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds) Logics in Artificial Intelligence. JELIA 2000. Lecture Notes in Computer Science(), vol 1919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40006-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-40006-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41131-4

  • Online ISBN: 978-3-540-40006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics