
An Algorithm for Progressive Raytracing

Okan Arıkan1 and Uǧur Güdükbay2

1 Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
387 Soda Hall 1776

Berkeley, CA 94720-1776, USA
2 Department of Computer Engineering

Bilkent University
Bilkent, 06533 Ankara, Turkey

okan@cs.berkeley.edu, gudukbay@cs.bilkent.edu.tr

Abstract. Progressive generation of images is one of the important re-
search areas of computer graphics. Especially, when the image generation
takes too much time the users want to see the progress in the rendering
process. The user may decide either to continue the rendering process or
stop the rendering according to the current view of the image. This may
be due to the fact that either the image is produced to enough detail for
the user or the user does not want to continue the rendering process for
some reason. This is especially important for progressive transmission of
images over the Internet. The images may be progressively transmitted
and when the detail level of the image is enough for the user, the trans-
mission process may stop. In this paper, we survey the progressive image
generation techniques and present an algorithm for progressive genera-
tion of raytraced images. The algorithm utilizes a refinement technique
that is similar to the one used in generating interlaced images in a pro-
gressive manner.

Keywords: progressive image generation, progressive transmission, ray-
tracing, interlacing.

1 Introduction

Raytracing is a popular image synthesis technique which is used to generate high
quality images incorporating shadows, reflections, refractions, texture mapping,
etc. [5,8,20]. To address deficiencies of the basic raytracing method (viz. com-
putational complexity and realism problems), some improvements on the basic
raytracing algorithm are proposed. Some of these improvements are incorpo-
rating shadows, distributed raytracing [3], adaptive depth control [7], spatial
coherence [4], first hit speed-up [19], and coupling ray tracing with other global
illumination models like radiosity [17]. However, the implementation of a general
raytracing algorithm is quite difficult for two reasons. The ray/surface intersec-
tion calculations are detailed and the execution time is long. Execution time can

T. Yakhno (Ed.): ADVIS 2000, LNCS 1909, pp. 248–256, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



An Algorithm for Progressive Raytracing 249

be reduced for test runs by generating images at a lower resolution than the one
finally required, but this would mask errors whose effect is slight and only visible
in the final resolution image.

This paper gives a short survey of the methods for generating images in a
progressive manner and presents a simple yet effective algorithm for this purpose.
Since raytracing calculates the color of pixels independently, the screen can be
rendered in any order without compromising efficiency. Thus, the image can be
calculated at an initial resolution and then can be detailed further by increasing
the resolution. Since the number of rays shot is directly proportional to the total
calculation time, user can see the image gaining detail in time and can know the
correctness of rendering. This method gives user a chance to see the rendering
in progress and gain insight into the quality of final image before waiting the
rendering to stop, which may take quite long time.

2 Previous Work in Progressive Image Generation

Generating images in a progressive manner is a research area for computationally
intensive rendering methods, such as ray tracing, radiosity, and direct volume
visualization methods. Besides, it becomes very important for the Internet since
progressive transmission of images over the network saves the users’ time a lot
and increases network bandwidth utilization. The users may stop the transmis-
sion process when the image is transmitted to enough detail for them. Related
with this, it is also important for digital content creation for the areas of long-
distance education and web-based learning where the progressive generation of
educational material on the computers, which is mostly images, is critical due
to time restrictions.

In this section we will summarize the progressive image generation techniques
in different areas of computer graphics.

2.1 Radiosity

In radiosity there is a great amount of work: here progressive refinement radiosity
is the de facto standard radiosity algorithm for generating radiosity images in a
progressive manner [1]. There are also some ray tracing based radiosity solutions
that utilize progressive refinement [16,17]

2.2 Volume Visualization

There is a great amount of research done especially in the field of volume visua-
lization by ray tracing to generate direct volume visualizations in a progressive
manner. Levoy reformulates the front-to-back image-order volume rendering al-
gorithm to use adaptive termination of ray tracing [10]. Another example of
rendering volumetric data using progressive refinement is by Laur and Hanra-
han [9].



250 O. Arıkan and U. Güdükbay

2.3 Raytracing

There are many algorithms for generating ray traced images in a progressive
manner. Examples of these are [6,11,12,13,14]. Besides, some public-domain ray-
tracing-based renderers, like RADIANCE [18], offer simple previewing capabili-
ties that allow the generation of a rough approximation to the image very rapidly.
The images are refined by tracing more rays into the scene.

Painter and Sloan [12] proposes a technique to incorporate progressive refine-
ment and anti-aliasing to an ordinary raytracer. The algorithm aims to create a
high-quality anti-aliased image quickly, whose quality is improved in a progres-
sive manner after the initial image is shown. Their algorithm achieves progressive
refinement using statistics and some data structures that allow rapid detection
of badly approximated areas that need to be refined. So it is an adaptive refine-
ment algorithm where detailed parts of the image are selected first for refinement.
Their method generates the samples of the image stochastically and adaptively.
During this process, the samples are evaluated to determine whether further re-
finement is necessary or not. The evaluation criteria eliminates the plain areas
from further consideration. Then, the image is reconstructed by interpolating
the samples and the image is filtered and resampled for display.

Raidl and Barth [14] modifies a raytracer for fast previewing during scene
composition. Their algorithm controls a strong undersampling so that a very
rough approximation can be shown in a very short time. The algorithm exploits
similarities to the preceding image to render small changes im the scene. The al-
gorithm is based on a recursive image subdivision technique that uses a heuristic
priority calculation to detect changed regions of the image and to prefer them
in the adaptive refinement. In this way, changed regions in the image are trea-
ted early and other parts are copied from the preceding image until the priority
schedule opens them for more accurate calculation.

Haines [6] proposes a technique that first renders everything at a very low
resolution and then toss some Gouraud shaded polygons on the screen. Then
the algorithm looks for large differences and resolves them by starting from the
middle of the picture since generally the central part of the image is the inte-
resting part. In doing this, his algorithm checks different criteria for refinement
process, like object corners, colors, shadows, etc.

Pighin et al. [13] proposes a technique for progressive previewing of raytraced
images while they are computed using discontinuity meshing. Their algorithm
constructs and incrementally updates a constrained Delaunay triangulation of
the image plane, which is suggested in [12]. The points in the triangulation cor-
respond to all the image samples that have been computed by the ray tracer,
and the constraint edges correspond to various important discontinuity edges in
the image. The triangulation is displayed using hardware Gouraud shading, pro-
ducing a piecewise-linear approximation to the final image. They handle texture
mapped surfaces and other regions in the image that are not well approximated
by linear interpolation with the aid of hardware texture mapping.



An Algorithm for Progressive Raytracing 251

3 The Proposed Algorithm

In this section we propose an algorithm for progressive generation of raytraced
images. The algorithm takes samples for low resolution and progressively increase
the detail level (and the number of rays shot). For this purpose, we used a very
similar refinement that is used in the interlaced GIF images [2]. Thus, the image
is calculated line by line and leaving a fixed amount of space in between. These
gaps are filled with the image of next rendered line. Then, the non-rendered
gaps between lines are halved and newly rendered lines are inserted at each
pass. The algorithm is not an adaptive algorithm. In other words, the image is
refined uniformly at all parts. The proposed progressive raytracing algorithm is
summarized in Fig. 1. Figure 2 shows a simple illustration of the progressive

rendered[1..number_of_scanlines] stores whether the
scanline is "raytraced" (1) or "replicated" (0)

initialize rendered array to all 0’s

while (there are replicated lines) do
{

find the largest replicating span

raytrace the pixels on the scanline at the middle of that span

modify the rendered array element for that scanline to "raytraced"

replicate the raytraced pixels to the empty spans below

modify the pointers so that the largest replicating span found at
the beginning of this iteration is replaced by two new formed spans

}

Fig. 1. Progressive raytracing algortihm

rendering process. The dark pixels represent the actually calculated pixels. The
remaining light gray pixels are replicated from the dark ones in order to fill the
gaps. In the next pass, one of the replicated lines is chosen and rendered. Then
the gaps below it is filled this new line. This process continues until no replicated
line is left (all pixels in the image are calculated).

The initial number of replicated lines between actually calculated lines deter-
mine how good the initial approximation will be. Moreover, allowing horizontal
gapping in addition to vertical can improve the technique.



252 O. Arıkan and U. Güdükbay

Pass 1 Pass 2

Rendered Pixels

Replicated Pixels

Fig. 2. Interlacing process

4 Implementation

4.1 Ray Tracer Implementation

We have based our progressive raytracer on a simple standard raytracer. This
raytracer incorporates basic raytracer functionality in a modular way. Supported
basic features include

– basic primitives like spheres, discs and polygons,
– reflections,
– refractions and
– texture mapping.

Although the basic raytracer also includes antialiasing routines, we removed
them since antialiasing and filtering modifies pixel (or sample) color by a function
of neighboring pixels (or samples). This is because progressive raytracing needs
each pixel value to be calculated independently so that the pixel can be calculated
in any order.

4.2 Graphical User Interface

Development of a Graphical User Interface (GUI), which will allow simultaneous
management of display window and the raytracer, was the hardest part. In most
of the classical window systems like Xwindows (with Toolkit), the interaction
with the user is strictly event-based [15]. Since progressive raytracing requires a



An Algorithm for Progressive Raytracing 253

raytracer core running and calculating pixels while a GUI managing the display
window, we created separate processes for each part. The overall structure of
the processes can be visualized like in Fig. 3. These two processes are concurrent
processes which could be assigned to parallel processors.

Initializer

Shared Memory

Process 1

Raytracer

Process 2
GUI

(XWindows-Xtoolkit)

Misc. Callbacks
(expose, etc.)

OpenGL

Framebuffer Manager

Fig. 3. Overall structure of the processes

The Initializer allocates necessary memory, prepares the execution envi-
ronments and creates two new processes one of which is the actual raytracer
and the other will be the GUI. Upon initialization, the raytracer and the GUI
processes are allocated a shared memory which will hold the data. Raytracer,
then reads the scene description and other peripheral data (like texture maps)
and starts rendering and pushing data into the shared memory. The GUI, on the
other hand, initializes the Xtoolkit and constructs the window to display the
data calculated. Then, this window is associated with OpenGL1 and callbacks
are registered. One of these callbacks is a timeout mechanism which continuously
generates expose callbacks in fixed intervals (2 seconds by default). Consequently,
expose callback notifies OpenGL to refresh the screen from the shared memory.

5 Results

A series of raytraced images generated by our progressive raytracer is given in
Fig. 4. As seen in the figure, there is no significant improvement in the image
quality after 50 percent.

1 OpenGL is a registered trademark of Silicon Graphics International, Inc.



254 O. Arıkan and U. Güdükbay

(a) 5 % (b) 10 % (c) 25 %

(d) 50 % (e) 75 % (f) 100 %

Fig. 4. Progressive generation of a raytraced image

6 Conclusions and Future Work

We implemented a progressive version of raytracing that allows us to generate
raytraced images in a progressive manner. This is useful since raytracing is a
time consuming process and the images are not seen until the intensities of all
pixels are generated. Sometimes it is necessary to see the low resolution versions
of the final image to get an idea about the final image and discontinue the image
generation process at the early stages if the final image will be useless. This is
especially useful for progressive transmission of images over the Internet. Future
work may include:

1. Antialiasing: As mentioned above, antialiasing techniques like oversam-
pling or filtering are hard to incorporate into a progressive raytracer. Because
in these methods, several samples affect the final pixel color and neighboring
pixel can contribute into the final color. The final image can be computed
in panels to implement antialiasing.



An Algorithm for Progressive Raytracing 255

2. Adaptive Refinement: The computation power can be concentrated in
parts displaying rapid changes in color (detail). This way faster convergence
to the realism can be obtained.

3. User Dictated Refinement: A different user interface that will allow user
to determine the parts to compute first can be developed, increasing the
usability of the program.

Acknowledgments. This research is partially supported by an equipment
grant from Turkish Scientific and Technical Research Council (TÜBİTAK) with
grant number EEEAG 198E018. Thanks to Varol Akman for valuable discussi-
ons.

References

1. Cohen M.F. Chen, S.E., Wallace, J.R. and Greenberg, D.P., “A Progressive Refi-
nement Approach to Fast Radiosity Image Generation”, ACM SIGGRAPH Con-
ference Proceedings, pp. 75-84, 1988.

2. CompuServe Inc., “GIF: Graphics Interchange Format”,
http://www.daubnet.com/formats/GIF.html.

3. Cook, R.L., Porter, T., and Carpenter, L., “Distributed Ray Tracing”, ACM SIG-
GRAPH Conference Proceedings, pp. 137-144, 1984.

4. Glassner, A., “Space Subdivision for for Fast Ray Tracing”, IEEE Computer Gra-
phics and Applications, Vol. 4 No. 4, October 1984.

5. Glassner, A., An Introduction to Ray Tracing, Academic Press, New York, 1989.
6. Haines, E., “Progressive Ray Tracing and Fast Previews”, Ray Tra-

cing News, Vol. 10, No. 1, edited by Eric Haines, January 1997,
http://www.acm.org/tog/resources/RTNews/html.

7. Hall, R.A., and Greenberg, D.P., “A Testbed for Realistic Image Synthesis”, IEEE
Computer Graphics and Applications, Vol. 3, No. 8, November 1983.

8. Kay, D.S., “Transparency, Refraction and Raytracing for Computer Synthesized
Images”, Master’s Thesis, Cornell University, Jan. 1979.

9. Laur, D., and Hanranan, P., “Hierarchical Splatting: A Progressive Refinement
Algorithm for Volume Rendering”, ACM SIGGRAPH Conference Proceedings, pp.
285-288, 1991.

10. Levoy, M., “Volume Rendering by Adaptive Refinement”, The Visual Computer,
Vol. 6, No. 1, pp. 2-7, February 1990.

11. Maillot J-L. and Carraro, L. and Peroche, B., “Progressive Ray Tracing”, Proc. of
Third Eurographics Workshop on Rendering, pp. 9-20, Bristol, UK, May 1992.

12. Painter, J. and Sloan, K., “Antialiased Ray Tracing by Adaptive Progressive Re-
finement,” ACM SIGGRAPH Conference Proceedings, pp. 281-288, 1989.

13. Pighin, F., Lischinski, D., and Salesin, D., “Progressive Previewing of Ray-Traced
Images Using Image-Plane Discontinuity Meshing”, Proc. of 8th Eurographics
Workshop on Rendering, pp. 115-125, France, July 1997.

14. Raidl, G. and Barth, W., “Fast Adaptive Previewing by Ray Tracing”, Proc. of
12th Spring Conference on Computer Graphics, edited by W. Purgathofer, pp.
247-255, Comenius University, Bratislava, Slovakia, June 1996.

15. Scheifler, R.W., Gettys, J. and Newman, R. X Window System, Digital Press, 1988.



256 O. Arıkan and U. Güdükbay

16. Schlick, C. and Le Saëc, B., “A Progressive Ray Tracing based Radiosity with Ge-
neral Reflectance Functions”, Proc. of Eurographics Workshop on Photosimulation,
Realism and Physics in Computer Graphics, pp. 101-113, June 1990.

17. Wallace, J.R., Elmquist, E.A., Haines, E.A., “A Ray Tracing Algorithm for Pro-
gressive Radiosity”, ACM SIGGRAPH Conference Proceedings, pp. 315-324, 1989.

18. Ward, G., “The RADIANCE Lighting Simulation and Rendering System”, ACM
SIGGRAPH Conference Proceedings, pp. 459-472, 1994.

19. Weghorst, H., Hooper, G, and Greenberg, D.P., “Improved Computational Me-
thods for Ray Tracing,” ACM Transactions on Graphics, Vol. 3, No. 1, pp. 52-69,
1984.

20. Whitted, T., An Improved Illumination Model for Shaded Display”, Communica-
tions of ACM, Vol. 23, No. 6, pp. 343-349, June 1980.


	Introduction
	Previous Work in Progressive Image Generation
	Radiosity
	Volume Visualization
	Raytracing

	The Proposed Algorithm
	Implementation
	Ray Tracer Implementation
	Graphical User Interface

	Results
	Conclusions and Future Work

