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A concurrent and compositional
Petri net semantics of preemption

Hanna Klaudel and Franck Pommereau

LACL, Université Paris XII
61, avenue du Général de Gaulle
94010 Créteil, France
{klaudel,pommereau}@univ-parisi2.fr

Abstract. The aim of this paper is the introduction of preemption in
a compositional model, called M-nets, which is based on Petri nets and
hence provided with a concurrent semantics. We propose a way to model
preemptible systems by extending the M-net model with priorities and
the M-net algebra with a preemption operator. We show that these ex-
tensions can be seen as a high-level version of the well studied model of
priority systems, and so, can be reduced to Petri nets (without priori-
ties) which retain as much as possible of the original concurrency. As a
consequence, Petri nets appear as a model powerful enough to deal with
preemption in a compositional way and with a concurrent semantics.

Keywords. Petri nets, Preemption, Concurrency, Compositionality.

1 Introduction

Preemption relates to controlling the execution of the processes composing a
concurrent system. Such processes are said preemptible if they can be suspended
at any point of their execution.

Preemption is often addressed in reactive systems, for instance in synchronous
models and languages [14, 1]; for some of them, it is even an essential feature.
In most cases, the underlying semantics is sequential, which is well suited to the
modeling of systems in which the computation performed in response to an in-
put coming from the environment is relatively simple. But when the structure of
the computation becomes more important than the structure of the reaction, the
sequential semantics may be not sufficient. A concurrent semantics is often more
adapted to the modeling of heterogeneous architectures which combine software
(distributed on several processors) and specialized hardware components. In par-
ticular, playing with the scheduling of operations often allows a better resource
management.

Petri nets form an inherently asynchronous model in which concurrency can
be represented explicitly. This model and some of its extensions [22, 23] have been
used for works on preemption, but in an unstructured way (non compositional).

This paper addresses the question of preemption in the context of compo-
sitional Petri nets. This naturally leads to consider the framework defined by
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the Petri Box Calculus (PBC [3, 2]). The proposed approach tends to be as
conservative as possible with respect to the existing framework, with the goal
to minimize the changes necessary in order to adapt the existing tools to the
proposed model.

PBC is a process algebra with a syntactic domain of box-expressions and
a corresponding semantic domain of bozxes, a class of labelled 1-safe Petri nets
provided with an algebraic structure. It has been introduced with the aim of
modeling the semantics of concurrent systems and programming languages. In
order to cope with the possibly huge size of the nets, higher level versions of PBC
have been considered, and in particular an algebra of M-ezpressions (high-level
equivalent of box-expressions [18, 16]) and M-nets (high-level Petri net version
of boxes [4]) which allow to represent large (possibly infinite) systems in a clear
and compact way. The high- and low-level domains are related by an operation
of unfolding which associates a box-expression to each M-expression and a box
to each M-net.

The PBC framework also features a parallel programming language, B(PN)?
[5], which can be seen as a “user friendly” syntax on the top of both, high-
and low-level process algebras. It is implemented in PEP toolkit [13], allowing
to simulate modeled systems and to verify their properties via model checking.
Several contributions [5, 4, 20, 12, 19, 15] provide applications to the PBC theory
where box-expressions, M-nets and M-expressions are used as the semantical
domain for B(PN)2.

In this paper, the M-net model is extended by considering priority M-nets
as pairs (N, p) where N is an M-net and p a pairwise priority relation between
its transitions. The M-net algebra is then enriched by a new operation, 7, which
allows to make preemptible any priority M-net and can be nested arbitrarily.

We are particularly interested in a sub-class of priority M-nets, called pre-
emptible M-nets (P/M-nets), which fulfill some structural constraints. We show
that the concurrent (step) semantics of P/M-nets is sound with respect to the
semantics of preemption.

Moreover, applying results obtained in some related areas, we show for a
large class of P/M-nets, that they can be transformed into 1-safe Petri nets
(without priorities), retaining as much as possible of the concurrent semantics.
The transformation leads to really huge nets which cannot be used in practice,
nevertheless, this means that 1-safe Petri nets are expressive enough to model
preemption in a compositional framework.

The rest of the paper is organized as follows. Section 2 gives some intuition
about the aspects of M-nets which are important for our purpose. Section 3 dis-
cusses preemption and the impact of its introduction in the context of Petri nets.
Section 4 introduces priority M-nets, defines operation 7, and extends the usual
M-net operations to such nets. Then, P/M-nets are introduced as a structurally
restricted class of priority M-nets, and their concurrent semantics is shown sound
with respect to the semantics of preemption. A detailed example with nested
P/M-nets is given in section 5. Section 6 discusses some properties of P/M-nets
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and, in particular, their transformation to 1-safe Petri nets. The paper ends with
some concluding remarks.

2 M-net model

2.1 Basic definitions

Let E be a set. A multi-set over F is a function p : E — N, generally denoted
with an extended set notation, e.g., {a, a,b} for u(a) =2, u(b) =1 and p(e) =0
for all e € E\ {a,b}. p is finite if so is its support set E \ x~1(0). We denote
by M(E) (resp. M¢(E)) the set of multi-sets (resp. finite multi-sets) over E, by
@ and © the sum and difference of multi-sets. We may also use the usual sets
notations such as C or €; for instance, e € p stands for u(e) > 0.

2.2 M-nets

M-nets [4] form a class of high-level Petri nets provided with a set of operations
giving them a structure of process algebra. We use here the M-net model defined
in [8], and its asynchronous links extension from [17].

An M-net N is a triple (S,T,¢), where S is the set of places, T' is the set of
transitions, (T'x S)U (S x T) is the set of arcs, and ¢ is the annotation function
on places, transitions and arcs. The annotation of a place is of the form A.7,
where X is a label (entry e, exit x or internal i) and 7 is a type (a non-empty
set of values from a fixed set Val). As usual, for each node (place or transition)
r € SUT, we denote by *r the set of nodes {r' € SUT | v(r',r) # 0} and,
similarly, * = {r' € SUT | «(r,7") # 0}.

Transitions annotations are of the form A\.y where A is a label (which can be
hierarchical or for communications) and v is a guard (a finite set of predicates
from a set Pr). Hierarchical labels are composed out of a single hierarchical
action (e.g., X) indicating a future refinement (i.e., a substitution) by an M-net.
Communications may be:

— synchronous, similar to CCS ones [21], e.g., between transitions labelled by
synchronous communication actions such as A(as,...,a,) or A(al,...,a;,),
where A is a synchronous communication symbol, A is its conjugate and each
a; and a is a value or a variable (belonging to a fixed set Var);

— asynchronous, e.g., between transitions labelled by asynchronous links such
as b (ay) or b~ (az), where b is an asynchronous communication symbol and
each qa; is a value or a variable (ranging in type(b) C Val). The communication
is done via a place s, of type 7(sp) = type(b) which plays the role of a heap
buffer. Link % (a;) means that a; can be sent to s, and b~ (az) means that
as can be received from sp;

— or possibly both at the same time.

Communication labels are then of the form A\ = «.8 where « is a finite
multi-set of synchronous communication actions and 3 is a finite multi-set of
asynchronous links.
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Arcs are inscribed by multi-sets of structured annotations representing multi-
sets of values consumed or produced by a transition in a place. Structured an-
notations are variables, values or more complex structures allowing to cope with
place types generated by refinements [8, 10]. As usual, in figures, arcs with an
empty annotation will be omitted; moreover, annotation {e} on an arc is omitted
most of time and singletons are often replaced by their unique element.

2.3 Dynamic behavior and concurrent semantics

For each transition ¢ € T we shall denote by var(t) the set of all the variables
occurring in the annotations of ¢ and in the arcs coming to and from ¢t. A binding
for a transition ¢ is a substitution o : var(t) — Val; it will be said enabling if it
satisfies the guard, if it respects the types of the asynchronous links, and if the
flow of tokens it implies respects the types of the places adjacent to ¢.

A marking of an M-net (S,T,¢) is a mapping M:S — M(Val) which asso-
ciates to each place s € S a multi-set of values from 7(s). In particular, we shall
distinguish the entry marking, denoted M., where, for each s € S, Me(s) = 7(s)
if A(s) = e and the empty multi-set otherwise; the exit marking is defined simi-
larly. The dynamic behavior of an M-net starts with its entry marking; it ends
(if ever) with the exit marking.

The transition rule specifies the circumstances under which a marking M’
is reachable from a marking M. A transition ¢ is enabled at a marking M (this
is denoted M[t)) if there is an enabling binding o of ¢ such that Vs € S :
t(s,t)[o] € M(s), i.e., there are enough tokens of each type to satisfy the required
flow. The effect of an occurrence of t is to remove from its input places all the
tokens used for the enabling binding ¢ and to add to its output places the
tokens according to o; this leads to a marking M’ such that Vs € S: M'(s) =
M(s) & (s, t)[o] & (¢, s)[o].

The above transition rule defines the interleaving semantics of an M-net
which consists in a set of occurrence sequences. This semantics can be generalized
by introducing the step sequence semantics [9], which allows any number of
transitions to occur simultaneously.

Given an M-net N = (S, T,¢), a multi-set ¢ of transitions is said concurrently
enabled at a marking M if there are enough tokens to allow the simultaneous
firing of all the transitions in §. Such a ¢ is called a step. A step sequence of N
is a sequence D = (01, da,...) such that there are markings M;, Mo, ..., where
M, = M, and which satisfy M;[d;)M;41 for i > 1. The set of step sequences of
N is its step sequence semantics and is denoted by steps(IN). It is easy to see
that steps(N) is stable under linearisation: if § belongs to a step sequence D in
steps(N), then, replacing § with any of its linearisation gives a step sequence
which is also in steps(N) (e.g., {t1,t2} can be replaced by {t1}{t2} or {t2}{t1}).

2.4 Unfolding

Let N = (S,T,:) be an M-net. The unfolding of N is the labelled Petri net
U(N) = (U(S),U(T),W, ), where U(S) is the set of places, U(T) the set of
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transitions, W the weight function on arcs and A the labelling function on places
and transitions, defined as follows:

- U(S) = E((s,v) | s €S and v e 7(s)}, and V(s,v) € U(S) : A((s,v)) = A(s);

At ) a(t)[o].B(t)[o] if t is a communication transition,
) (<) =
At) if ¢ is a hierarchical transition;
- W((s,v),(t,0)) = > s, t)(x) - x[o](v), where z[o](v) is the number
z€L(s,t)

of values v occurring in the structured annotation z evaluated under o;
W((t,0),(s,v)) is defined analogously.

If M is a marking of N, the marking U(M) of U(N) is defined as follows:
for every place (s,v) € U(S), U(M)((s,v)) = M(s)(v), i.e., each low-level place
(s,v) € U(S) contains as many tokens as the number of occurrences of v in the
marking M of s.

The unfolding can easily be extended to steps and step sequences, and one
can observe that the step semantics obtained by unfolding the step semantics of
an M-net N equals the step semantics obtained from U(N).

Theorem 1. Let N be an M-net. Then, U(steps(N)) = steps(U(N)).

Proof. By definition of the unfolding and by the analogous property for inter-
leaving semantics [4].

2.5 Algebra of M-nets

For compositionality, we are particularly interested in a sub-class of M-nets: we
assume that each M-net has at least one entry and one exit place, that each
transition has at least one input and one output place (T-restrictness property),
and that there are neither arcs going to entry places nor from exit places. Such
M-nets are said ex-good.

The algebra of ex-good M-nets comprises the operations listed below, where
Ni, Ny and N3 are M-nets, X is a hierarchical symbol, A is a synchronous
communication symbol, b is an asynchronous link symbol and f is a renaming
function on synchronous and asynchronous symbols. Detailed explanations and
some examples of these operations are given in [4, 10, 17].

N1[X — No] refinement N [f] renaming

Ni||N2 parallel composition Ni1sy A synchronization
N1; No sequence NirsA  restriction
NiON, choice [A: Ni] scoping

[Ny % No x N3] iteration Nitieb asynchronous links

In the following the considered M-nets are ex-good, except if specified explicitly.
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3 Preemption

In the following, we make a difference between programs (nets) and processes
(actually, step sequences) which are their dynamic behaviors; each step sequence
being a possible execution of its supporting net.

3.1 Abortion versus suspension

When dealing with preemption, two notions are usually separated: suspension
which “freezes” an execution but keeps it alive for a possible restart, and abortion
which kills an execution definitively. Our approach deals with both of them, but
focusing on abortion. More precisely, we treat abortion as a suspension followed
by some processing in order to remove all the tokens from the net which supports
the execution, making it unable to evolve anymore. This solution is based on
priorities which make the problem of suspension quite straightforward to solve:
in order to suspend a given net, it is enough to enable one of its transitions which
has the priority over all the others. Actually this is what we propose: during all
the abortion stage, there is always such a transition which is enabled and thus
freezes the rest of the net when it is being emptied.

3.2 Preemption and time

Preemption is often associated to time, at least intuitively, because it is expected
to have an immediate effect on a system. As far as Petri nets are concerned,
“immediate” means that no program transition may fire, from the beginning
until the end of the preemption. Of course, in some other contexts, introducing
time together with preemption makes sense, but it is not the case for our purpose.
This is the reason why this paper never deals with time or time related concepts.

3.3 Internal versus external abortion

From the point of view of an execution, there is a difference between an internal
abortion (when the execution “decides” to give-up its current work) and an ez-
ternal abortion (when the execution is killed by its environment). In both cases,
the execution is suspended (i.e., no further transition in the corresponding net
is allowed to fire, except, possibly, some well identified transitions involved into
the abortion itself), and its supporting net must be “emptied” (i.e., tokens must
be removed from the net). All the tokens have to be removed: first, because they
make alive the execution being killed, and moreover, because the net must be
cleaned up for a possible future re-usage, as the support of another execution.
In the case of an internal abortion, however, the M-net must not be com-
pletely emptied because its environment is not aware of the abortion and so waits
for its completion. Actually, the environment is expecting the exit marking of the
net which supports the aborted execution. As a consequence, the case of internal
abortion corresponds to an anticipated termination, which reflects the abortion
of the execution, followed by its completion through the production of the exit
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marking. In a way, internal abortion is a simple mean by which an execution can
terminate “cleanly”, regardless of its current state.

In the case of an external abortion, various behaviors may be acceptable since
the environment is aware of the situation (by definition of external abortion, it
is initiated by the environment). In our approach, we choose a solution where
the aborted net fires a particular transition which warns its environment that
the abortion stage is over, but the exit marking is not reached. This way allows
our construction to manage the abortion of nested executions quite elegantly:
abortion is transmitted from the top to the bottom, from external executions to
nested ones.

3.4 Modeling preemption in Petri nets

A preemptible Petri net should be able to run under two mutually exclusive
modes: in “standard mode”, it processes its program; in “abortion mode”, it must
stop its normal activity, empty and complete (reaching or not its exit marking).
Abortion mode can interrupt standard mode, but not the reverse.

On the one hand, we can consider that, before any move, standard mode
checks that abortion mode is disabled. The execution checks the absence of
token in the net part which supports abortion mode. This is a zero test, which
can be modeled by introducing inhibitor arcs or complementary places. In this
point of view, standard mode is responsible for freezing itself when necessary. On
the other hand, we can consider that abortion mode has the priority over normal
mode: if, in the net, transitions ¢,, for normal mode and ¢, for abortion mode are
both enabled, t, should be always preferred. This point of view naturally leads
to consider priorities between transitions. Here, standard mode is completely
passive with respect to its freezing.

In this paper, we prefer the second point of view since it allows us to bring
to the theory of priority systems as presented in [6]. Actually, M-nets extended
with priorities and with a suitable definition of unfolding, lead directly to priority
systems. This allows us to apply the main result from [6], which consists in
transforming a priority system (X, p) in a Petri net X, which is derived from X
in such a way that it preserves as much as possible of the concurrency in X' and
does not violate the priority constraints specified by p.

4 Preemptible M-nets

The purpose of this section is a definition of preemptible M-nets (P/M-nets for
short), a class of composable M-nets provided with some additional information
about priority between transitions and having some structural properties which
ensure the soundness of their step semantics with respect to the semantics of pre-
emption. For the definition of P/M-nets we proceed as follows: first, we consider
an auxiliary and very powerful class of nets called priority M-nets, analogous to
priority systems from [6], as M-nets equipped with a pairwise priority relation
between their transitions. The transition rule of these nets takes into account
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efo} (o (5] Oxde}
efe} (o) (1] O (2] (Ox{}
i.{e}

Fig. 1. A marked priority M-net with p = {(¢3,¢2)} (with simplified annota-
tions).

the information about priority and so does the step semantics. Then, we extend
M-net operations to priority M-nets, giving to them an algebraic structure, and
we define a new operation for priority M-nets, called 7, which serves to make
preemptible any priority M-net. Finally, as the main definition of this section,
we introduce P/M-nets as a sub-class of priority M-nets having interesting struc-
tural properties with respect to preemption.

4.1 Pairwise priorities

Let N = (S,T,¢) be an M-net. A binary relation p C T x T is called a pairwise
priority relation. Intuitively, (¢1,t2) € p means that during an execution of N,
the firing of transition ¢, is always preferred to t; when both are enabled; in other
words, t1 has a lower priority than t5. We use standard mathematical notations,
in particular, for p C T x T, we denote:

dom(p) = {t; € T | Ity € T such that (t1,t2) € p},
cod(p) = {ta € T'| 3t1 € T such that (t1,t2) € p}.

4.2 Priority M-nets

A priority M-net is a pair P = (N, p) where N = (S,T,¢) is an M-net (possibly
having some non T-restricted communication transitions) and p C 7' x T is a
pairwise priority relation over T. We call N the net part of P.

Definition 1. Let P = (N, p) be a priority M-net, M a marking of N = (S, T, 1)
and t a transition of N such that M[t); then t is p-enabled in P at M, denoted
M[t),. if ' € T such that M[t') and (t,t') € p.

Notice that p allows to disable a transition which would have been enabled
with usual M-nets transition rule, but not the reverse. In other words, we have
Mlt), = M[t).

The notion of step and step sequence defined for M-nets could be directly
reused for priority M-nets. But, this way, they would lead to inconsistencies in
the semantics. Consider for example the priority M-net P = (N, p) shown in
figure 1 (taken from [6]), if we do not take p into account, we have the step
semantics:

steps(N) = {0, {t:},{ta}, {t1, ta}, {t1 Hta}, {taHta }, {ta Ht2 1},
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where () is the empty step sequence.

We can see that it contains the sequence {t;}{t3} which violates p. Remov-
ing this sequence is necessary but not enough since it introduces inconsistency.
Actually, the semantics cannot contain {t1,t3} because {t1}{ts} is one of its
linearisations. The consistent step semantics of P, denoted steps(P), is thus the
biggest sub-set of steps(IN) such that each step sequence D € steps(P) and each
of its linearisations respect p. So, we have:

steps(P) = {0, {t:}, {ta}, {ta}{tr}, {t:1 H{t2}}-

According to [6], this consistent step semantics is one of the most concurrent
semantics one can expect for priority systems.

The unfolding of priority M-nets is a natural extension of the unfolding of
M-nets.

Definition 2. Let P = (N, p) be a priority M-net. The unfolding of P, U(P),
is a pair (U(N),U(p)) where U(N) is the usual M-net unfolding and U(p) is
defined as the smallest set such that: for each pair (t,t') € p such that t is

unfolded into a set of low-level transitions {(t,01),...,(t,on)} and t' is unfolded
into {(t',01'),...,(t',0k")}, we have {((ti,0:),(t;,07)) |1 <i<nAl<j<

k} CU(p). If M is a marking of N, then U(M) is defined as it is for M-nets.

As for M-nets, an extension of the unfolding of priority M-nets to consistent
steps and consistent step sequences is straightforward and we still have:

U(steps(P)) = steps(U(P)).

4.3 Algebra of priority M-nets

The extension of usual M-net operations to priority M-nets is immediate for
most of them. However, in the case of synchronization or refinement, several
possible definitions of priority relation can be considered. Our choice is not the
most general possible, we already have in mind the definition of operation 7 and
of P/M-nets. Priority M-nets are just an intermediate step which avoids circular
definitions.

Definition 3. Let P; = (Ny,p;), for i € {1,2,3}, be priority M-nets, where
N; = (8;, Ty, ), and let X be a hierarchical symbol, A a synchronous commu-
nication symbol, b an asynchronous link symbol, and f a renaming function on
communication symbols. The usual M-net operations are extended as follows for
priority M-nets:

— P[X « Py] = (N1[X < N2, p) where
p=A{(t,t") € p1 | Au(t) # X # M ()}
(G} {(t)(.t, t)(.tl) | (t,tl) € p2 Nty € Ti N )\1(15)() = X}
(] {(t)(.t, t/) ‘ t ¢ COd(p2) AN (t)(,t/) epi ANty €Ty A )\1(?5)() = X},
— P tieb = (N tieb, p1);
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x.{o} x.{1,2}

P = (N7 {(t3,t2)}) PSyA = (NSyA7 {(t37t4)7 (t37t2)})

Fig. 2. Example of synchronization of priority M-nets. (Only synchronous labels
are represented.) Restricting on A would remove from the net ¢; and ¢y (with
their surrounding arcs) and (s, t2) from its priority relation.

= P = (N [f)o0);

— Pisy A= (NysyA,p) where Nysy A= (S,T,t) and p is is the smallest set
including p1 such that if t' € T results from a basic synchronization of t1
with to, and

o if 3t" such that (t1,t") € p or (t2,t") € p, then (t',t") € p,
o if 3t" such that (t",t1) € p or (t",12) € p, then (t",t') € p.
— Pirs A= (Nirs A, p), where Nyrs A= (S,T,1) and p=p1 N (T x T).

Control flow operators (sequential composition (;), iteration ([x x x]), par-
allel composition (||) and choice (O)) are based on refinement and so defined
canonically. Scoping is defined as a synchronisation followed by a restriction:
[A: Pl]=(Psy A)rs A.

4.4 A new operation for preemption

In order to define operation 7, we use the priority M-net P, = (Ng, p) where
N, is represented in figure 3 and the priority relation is

Pr = {(t7vt4)7 (t77t5)7 (tg,t4), (t87t5)7 (tX7t5)7 (t27t3)}'

The usage we make of N, is rather simple, even if the net may look quite
complex:

— the top part (e1, tx and i1) embeds the net N from (XN, p) which should
be made abortable. When N terminates normally (with no preemption),
transition t( fires, consuming the token in place e; and producing the exit
marking in x;

— all the rest is used for preemption: internal abortion starts with a firing of ¢,
which produces a token e in place 75; external abortion starts when ts or t3
fires, producing a token o. These two tokens allow to start the emptying of
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(&) . @ e )i e}
e.{e} X

{kill'}.0.0
{kill} {c™ (n),c"

Fig. 3. N, net part of P, where type(c) = N and ¢(i3) = i.{e,0}. Large black
border of some transitions just indicates that they belong to cod(p,). Inscriptions
on the arcs are simplified: singletons are replaced by their unique element.

N; they are different in order to know, after the emptying is done, if N, may
terminate producing the exit marking (for e, with transition ¢7) or should
be completely emptied (for o, with ¢g);

— transition ¢; is for internal preemption: it will be synchronized with all tran-
sitions in N having a synchronous action quit in their label. This way, N
may abort itself by firing such a transition. After ¢; has fired and N has
been completely emptied, ¢t7 can fire and terminate N;

— transition t5 is for external abortion: it may be synchronized later on with
a transition such as t5, coming from another N, in which the present one is
nested. This synchronization is not yet possible on the net of figure 3, but a
further renaming Eill’ v Kill will allow it. After the emptying was completed,
transition tg can fire and fully empty N;; tg is intended to be synchronized
with a transition such as ¢¢ and, here again coming from an external Ny; it
will be made possible thanks to a further renaming empty’ — e%p\ty;

— transition t3 is similar to to but is used when an external abortion occurs
while an internal one is already in progress. It just replaces the token e in
1o with a token o. This corresponds to a switch from internal to external
abortion mode. The priority (¢2,t3) in p, ensures that t3 is always preferred
to to when both are enabled;

— emptying is performed by transitions ¢4, t5 and tg. We already had an in-
tuition about the role of t5 and tg: the former triggers an abortion into a
N, nested in N, doing this, it increments a counter handled through the
links on ¢ (this counter was initialized to zero by either ¢; or t); the latter
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allows such an aborted net to empty completely (by firing its transition tg),
decrementing the counter;

the counter in ¢ of killed sub-nets is used to ensure that each aborted sub-net
is also emptied: as stated in definition 4, t4 and ¢5 have the priority over t7
and tg, but tg has not. So, any possible firing of ¢4 and t5 will be done before
t7 or tg have a chance to fire, then they must wait for tg to perform all the
needed (and possible) emptying and thus to decrease the counter until zero.
Finally, and not before, t; or tg is allowed to perform communication ¢~ (0);
the way ¢4 works is not directly visible in V. Roughly speaking, for every
place s in N, we will add an emptying transition ts with a synchronous action
abort in its label and an arc s — t, labelled with a singleton {a}, where a
is an arbitrary variable. These transitions will be synchronized with t4 and
so, the loop on t4 will be used to empty N, taking tokens one by one;

for convenience, the type of ¢ has been set to N which leads, after unfolding,
to an infinite number of places in the obtained low-level net. Fortunately,
this type can easily be bounded in practice.

In order to have things working properly, we assume that actions symbols

quit, kill, kill’, empty, empty’ and abort, their conjugated symbols and link
symbol ¢ are reserved for operation 7, and so are never used somewhere else.

Operation 7 relies on Py : it first refines the net which should be made pre-

emptible into P, and then adds the emptying transitions (such as ty) as de-
scribed above (and formalized below). Scoping on quit allows internal preemp-

tion, scoping on abort allows to control the emptying transitions and scoping on

{kill,empty} allows the transmission of abortion to the potentially nested pri-
ority M-nets. A tie on c is also made so the counter can work properly. Finally,
actions kill’ and empty’ are renamed in order to allow the result to be nested in
another 7.

Definition 4. Let P be a priority M-net. Then,

w(P) = [[{abort,quit, kill,empty} : Ab(Pr[X < P]) tiec]

[kill’ 1= Fill, empty’ — empty]

where Py is the priority M-net defined above and Ab is an auzxiliary opera-
tion which includes the additional emptying transitions; if Pr[X «— P] = P’ =
((S',T7,07), ), then AB(P') = ((S",T",0"), o) with:

S"=5" andVs e S" : " (s) =1(s);

—T"=T'WTs where Ts = {ts | s € "\ {ax} A s* Ncod(p’) = 0}

(1) ifteT,
{abort} 0.0 ift € T;

(tys) ifteT,
0 if t € Ty;

antheT”:L”(t)z{

V(t,s) € T" x S" : /(t,s) = {
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J(s,t) ifteT’,
— V(s,t) € 8" xT": 1" (s,t) =< {a} CVar ift=ts €Ts,
0 ift € Ts \ {ts};
— ' =p W{(t,ts) | ts € Ts Nt € (°ts)°}.

Let us make two remarks about this definition:

— places which are input places for transitions belonging to cod(p) (if P =
(N, p)) are left untouched; the reason is that such places are already “un-
der control”, i.e., belong to a nested emptying mechanism. We do not need
additional emptying transitions for them:;

— the added emptying transitions are always synchronized with transition ¢4
in N, whose enabling is well controlled. So, net 7(P) never empties in an
uncontrolled way. Another consequence is that the only non T-restricted
transitions are those such as to, t3 and tg.

4.5 P/M-nets

We are now in position to define preemptible M-nets (P/M-nets). They are de-
fined as a sub-class of priority M-nets with some structural constraints. This
sub-class happens to be reasonably wide (see section 6) and sound with respect
to the semantics of preemption (see section 4.6).

Definition 5. Let P = (N, p) be a priority M-net. P is a P/M-net iff either:

— N is an ex-good M-net and p =0, or;

— P is deﬁned as 7T(P1), Pl[X — PQL P1HP2; Pl;PQ, P1 DPQ, [Pl * P2 * P3],
Pisy A, Pirs A, [A: Py], Pitieb or Pi[f], where P;, fori € {1,2,3}, are
P/M-nets, X is a hierarchical symbol, A is a synchronous communication
symbol, b is an asynchronous link symbol, and f is a renaming function on
communication symbols.

Definition 6. A P/M-net (N, p) is said: valid if N is an ex-good M-net; finite
if U(N) is finite (in number of places and transitions); 1-safe if U(N) is 1-safe.

4.6 Soundness

In order to define the soundness of a P/M-net P = (N, p) with respect to the
semantics of preemption, we split the set T of transitions of N in four disjoint
parts: T' =T, WT, ¥ T; & T),.

If P = w(P’), then, T, (r is for root) is the set of transitions involved in an
abortion of P at the top level. In other words, T} contains all the transitions
coming from a synchronization with ¢4, t5 or tg in N used in w(P’). T; (internal)
contains the same kind of transitions, but issued from a possible 7 nested in P’.
T; (termination) contains only transition ¢; coming from P, in 7(P’). All the
remaining transitions are in T, (program). If P # w(P’), we have T, = T; = .

Definition 7 below formalizes the intuition of the expected behavior of a
preemptible M-net P. Actually, P can evolve in one of the following ways:
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{A}.0.0
[+ 1
OO
Oz} ——O
{quit}.0.0

Fig. 4. Net part of P/M-net P, = (Ny,p1) with p; = 0. All the places of Ny
have type {e}, and arcs should be annotated {e}.

— P runs without any abortion. In this case, it fires only transitions from Tp;
— P runs as before by firing transitions in 7}, until some abortions occur in
some nested 7’s. In this case, all the next fired transitions are in Tj & T};

— P = w(P') and it completely aborts at a point of its execution. In this
cases, it starts like in the previous case, until it begins aborting and thus
only fires transitions from 7, or from T; because of some possible abortions
transmitted to nested 7’s. After the end of the abortion, it may fire ¢7 from
T; to produce its exit marking.

Definition 7. Let P be a P/M-net. steps(P) is said sound with respect to the
semantics of preemption iff each D € steps(P) is of the form &y ...6,87...6,.6"
or d1...0,01...0,, if P =n(P'), otherwise D = 0y ...0,, where for all j, §; €
My(T; WT,), for all k, 6;, € My(T; WT,), and 6" = {tr € T;}.

By induction on the algebraic structure, we get that what we structurally de-
fined through P/M-nets is what we expected as a model preserving the semantics
of preemption.

Theorem 2. Let P be a P/M-net. Its step semantics, steps(P), is sound with
respect to the semantics of preemption.

5 A detailed example

This section gives an example of P/M-net. We show the construction of the
P/M-net
P:W(F(Pl)HPQ)

where Pj is a P/M-net with two parallel transitions t,, labelled {A}.0.0, and ¢,
labelled {quit}.0.0 (see figure 4). P is a net from which we will just consider
one transition ¢, having one internal input place i.; we assume that this net is
valid, well defined and does not use 7 in its construction (this would demonstrate
transmission of abortion but, for the sake of simplicity, we prefer to show this
feature with Py only). P» is schematized in figure 5. This example allows us to
illustrate internal and external abortion as well as the propagation of abortion to
nested m operations. In the following, most annotations are omitted from figures
in order to keep them as readable as possible.

First, let us look carefully at the P/M-net produced by mx(P;) whose con-
struction is detailed in figures 6 to 8. The first step for building 7 (P;) is to refine
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O —® O

Fig. 5. The scheme for P, its priority relation is ps = 0.
{A}...

Fig. 6. Net part of P;[X < P;] with the added emptying transitions. See figure 3
for the detailed annotations.

P, into P, and to add the emptying transitions; the net part of the result is
shown in figure 6 and the coresponding priority relation is

pll = {(t77t4)7 (t87t4)7 (t77t5)7 (t87t5)7 (ta»tS)v
(tb7t8>7 (tO’tls)’ (tmt5)7 (tb>t5)7 <t27t3)}'

The next step consists in performing the scoping over kill and empty, making
asynchronous links over ¢, and renaming k:ll’ into kill and empty’ into eﬁ-p\ty,
as stated in definition 4. The result is sketched in figure 7 (most annotations are
omitted as well as place s, for asynchronous links on ¢). Transitions ¢, and ¢;
yield a new transition t; whose firing starts internal abortion stage. The synchro-
nization of t4 with the added emptying transitions yield ¢}, and ¢. Transitions
t5 and tg are removed because they are nothing to synchronize with (it will not
be the case later in our example, when we will consider the nesting of w(P;) into
another 7). The priority relation of 7(Py) is

pll/ = (ta’ til/)’ (t;)’ til/)’ (t7> til/)’ (t8> til/)’ (tO’ t£1>7 (t7’ til)7 (t8a til)’ (t27 t?’)}'

One can observe that everything works right when this net is started from its
entry marking: if ¢ (internal abortion) or ¢, (external abortion) fires, then the
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Fig. 7. Simplified w(P;). Transitions labels are 0.0.0, except on t,, t2, t3 and tg.
{%ill}.0.0
(Rall}y.0.0 {empty}.0.0

(OF— l W(\I{ﬁ) | —(=)

Fig. 8. A really simplified representations of 7(P;).

net is correctly emptied, whenever t, did fire or not. Similarly, if t3 fires after
t;, did. The difference between external and internal abortion appears at the
very end: for internal abortion, ¢; fires, producing the exit marking; for external
abortion, only tg can fire. We will see later in the example how t5, t3 and tg are
synchronized in order to achieve a correct transmission of abortion when 7(Py)
is nested into another .

The communication transitions, related to the preemption and visible from
the outside of 7w(Py), are to, t3 and tg. So, in the following, 7(P;) will be schema-
tized as shown in figure 8. (Notice that we show only one entry place while there
are actually two, this has no other consequence than simplifying the figures.)

In order to finish our example, we have to put m(P;) in parallel with Py
and to apply m on the result. We get the P/M-net depicted (in a simplified
version) in figure 9. The net resulting from 7(P;)|| P2 is splitted in two parts,
the part coming from P, corresponds to the gray box in the top and the part
which comes from 7(P;) corresponds to the box in the bottom. The middle part,
which is not boxed, comes from the last application of . For this final P/M-
net, the priority relation is p = {(t,t3), (t7,13), (ts,t3), (t1,13), (t7,13), (ts,t3),
(t7’ t/5)v (t77 tg)v .- }

We can see that an abortion has three effects: one is the emptying of Py with
transition 7 (there would be much more transitions like ¢ if P, would be larger),
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3
°
o
{emply} ...
v \y |
~a m(P1)

Fig. 9. A simplified representation of the P/M-net resulting from 7 (7 (Py)|| P2).

one other is the emptying of entry and exit places for the parallel composition
7(P)||P2 (with transitions ¢} and ¢3), and the last is the propagation of the
emptying to 7(Py) (with transition ¢f or ¢Z). When this sub-abortion is done
and when all P, is empty (which can be done in any order, even in parallel), ¢
can fire, ending the emptying of w(Py).

We can also observe that suspension is immediately effective. Thanks to the
definition of p,, t. is suspended as soon as t7 is enabled (and it is disabled after
t2 fired). Similarly, transitions in m(Py) are first suspended as long as t; and
t? are enabled and, when of them one fires, the suspension is done internally
because t}, tj and ¢} in w(P;) are then enabled (see figure 7).

In this final net, transition ¢; is dead because the net never uses internal
abortion; even if sub-net 7(P;) does, it is not the case for 7(w(P1)||P2) as a
whole.

Asynchronous links on ¢ (even if not shown in the figures) ensure that the
propagation of abortion to 7(P;) is always followed by its complete emptying,
through a firing of transition t; (see figure 9).

Let us conclude this example noticing that the net we obtain is ready to be
nested in another m, like (P ) was, thanks to its own transitions to, t3 and tg. If
no such nesting is to be made, the net should be restricted over kill and empty,
resulting in a valid P/M-net. This restriction would be necessary, not only for
validness, but also in order to avoid a spontaneous firing of transition to or t3
which would result in an unexpected abortion of the net.
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6 Properties of P/M-nets and links with existing works

Let us observe first that a P/M-net (N, p) which has been constructed without
operation 7 is always valid and has p = (). This property states that the intro-
duced extension is conservative and does not disturb the existing model if one
makes no usage of operation 7. This is the reason why we consider P/M-nets
as a “reasonably wide” model: it contains M-nets which already proved being
useful.

However, in general, a P/M-net P = (N, p) can have some crippled tran-
sitions. It turns out that they can easily be identified by their synchronous
label {empty} or {kill}. These transitions belong to the communication inter-
face of P and are crucial in order to nest P in another operation 7, e.g., in
P’ = w(...P...). Operation 7, thanks to the scoping on kill and empty, al-
lows P’ to abort its preemptible parts such as P. However, if P is not to be
nested in an operation 7, then these crippled transitions should be removed.
Actually, in that case, the P/M-net of interest is P rs {kill, empty}. Moreover,
Prs {kill,empty} is valid; this property is important because it shows that even
if our modeling needs to relax the T-restrictness of some transitions, the final
result can always be T-restricted.

Valid P/M-net semantics may still appear as somehow unsatisfactory, because
of the use of priorities. It turns out that some results in the field of semantics
of priority systems may be applied for P/M-nets. In [6], the authors define a
transformation of a finite 1-safe Petri net Y, equipped with a pairwise priority
relation p, into a bounded Petri net which retains as much as possible of the con-
currency of (X, p). In this context, as much as possible means that only semantics
composed of consistent steps are considered (see [6, section 3]). This result can
be directly applied to the unfolding of a valid, finite and 1-safe P/M-net. (One
can see that if P is 1-safe, so is w(P).) Then, applying the result from [7], the
obtained bounded Petri net can be transformed into a 1-safe Petri net which has
the same pomset semantics (partially ordered multi-sets semantics), and we can
state:

Proposition 1. Let P be a wvalid, finite and 1-safe P/M-net. Then, P can be
transformed into a low-level 1-safe Petri net having the same consistent step
semantics.

So, P/M-nets can be transformed, in most of reasonable cases (i.e., finite
ones), into 1-safe Petri nets having an equivalent concurrent semantics. However,
the construction given in [7] leads to really huge nets and so is not intended to
be used in practice. Nevertheless, the above proposition is important since it
means that 1-safe Petri nets are expressive enough to model preemption with a
concurrent semantics.

In practice, it should be possible to modify the existing model checker of
PEP [13, 11] in order to have it dealing with priorities. The model checker relies
on finite prefixes computation: it develops the branching process semantics of
the analyzed low-level net until it finds a maximal cut. (This is always the
case in finite 1-safe Petri nets since the number of states if finite.) Under such
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conditions, the influence of priorities should be to prune some branches in the
computation. For two enabled transitions ¢; and s, the existing algorithm would
build one branch starting with a firing of ¢; and another for t,. With priorities,
if (t1,t2) € p, the branch starting with ¢; does not have to exist anymore.
This does not mean that the computation would be more efficient; actually, the
contrary should hold: adding priorities would force the examination of much more
cases in order to take into account some possibly disabled transitions, because
of priorities. However, the model checking remains decidable.

7 Conclusion

We presented what is, to the best of our knowledge, a first attempt to provide
a fully compositional model of Petri nets with a preemption operator, with a
concurrent semantics. Our construction is based on M-nets which are extended
with priorities, structured into an algebra and structurally restricted leading to
preemptibles M-nets (P/M-nets). The P/M-net algebra is similar to the M-net
algebra, but having an additional operation 7, which transforms any P/M-net
into its preemptible equivalent.

We show that P/M-nets can be considered as a high-level version of so called
priority systems (as defined in [6]) by defining an unfolding operation which
transforms a P/M-net into a low-level Petri net having priorities between its
transitions. Thus, applying results from [6] and [7], any reasonable P/M-net can
be transformed into a 1-safe Petri net (without priorities) which retains as much
as possible of the concurrency present in the P/M-net. This transformation leads
to enormous nets and is not tractable in practice, but it shows that 1-safe Petri
nets are powerful enough to model preemption with a concurrent semantics.

The presented work has been already applied for giving the semantics of some
preemption-related extensions of the parallel programming language B(PN)?2,
introducing abortable blocks, treatment of exceptions, a generalized timeout
construct and a small Unix-like process manager.
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