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Abstract. Stochastic process algebras have been proven useful because
they allow behaviour-oriented performance and reliability modelling. As
opposed to traditional performance modelling techniques, the behaviour-
oriented style supports composition and abstraction in a natural way.
However, analysis of stochastic process algebra models is state-oriented,
because standard numerical analysis is typically based on the calculation
of (transient and steady) state probabilities. This shift of paradigms ham-
pers the acceptance of the process algebraic approach by performance
modellers. In this paper, we develop an entirely behaviour-oriented anal-
ysis technique for stochastic process algebras. The key contribution is an
action-based temporal logic to describe behaviours-of-interest, together
with a model checking algorithm to derive the probability with which a
stochastic process algebra model exhibits a given behaviour-of-interest.

1 Introduction

The analysis of systems with respect to their performance is a crucial aspect in
the design cycle of concurrent information systems. Although huge efforts are
often made to analyse and tune system performance, these efforts are usually
isolated from contemporary hardware and software design methodology [15, 18,
28]. This insularity of performance analysis has numerous drawbacks. Most se-
vere, it is unclear how to incorporate performance analysis into the early stages
of a design, where substantial changes are still not too costly. In these design
stages, system models are nowadays developed by means of semi-formal methods
such as UML or SDL.

In order to overcome the insularity problem, there is a growing tendency towards
the integration of performance modelling and analysis into (semi-)formal meth-
ods, such as Petri nets [1], process algebra [21], or SDL [12]. This integration has
potential benefits for the application of both formal methods and performance
analysis: Using a formal method, performance models of interest are readily
available for analysis. Conversely, the availability of quantitative insight into a
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design clearly adds extra value to a formal design.

Process algebra is an influential approach to the modelling of concurrent sys-
tems using formal methods. Developed in the 80ies, process algebra is radi-
cally behaviour-oriented. Systems are modelled by describing the possible be-
haviours they can exhibit to the external environment. This approach led to
powerful composition operators as means to compose behaviours hierarchically.
The behaviour-oriented approach also enables one to employ abstraction mech-
anisms to compress behaviours to only those fragments relevant in a specific
environment.

In a behaviour-oriented setting, the notion of a state is an auxiliary one. To iden-
tify a state is of no importance, since a state is completely characterized by the
behaviour it exhibits. As a consequence, states exhibiting the same behaviour are
considered to be indistinguishable, and hence are (or can be) collapsed to just a
single state, using an appropriate notion of equivalence (such as bisimulation).

During the last decade, stochastic process algebra (SPA) has emerged as a
promising way to carry out compositional performance and reliability modelling,
mostly on the basis of continuous-time Markov chains (CTMCs) [21]. Following
the same philosophy as ordinary process algebra, the stochastic behaviour of a
system is described as the composition of the stochastic behaviours of its com-
ponents.

However, all standard analysis algorithms for stochastic models are purely state-
based. They compute interesting information about the model on the basis of
state probabilities derived by either transient or steady-state analysis [35]. As
a consequence, there is a disturbing shift of paradigms when it comes to the
analysis of stochastic process algebra models: While the model is specified in
a behaviour-oriented style, the performance properties-of-interest are defined in
terms of states, on a very different level of abstraction. This shift of paradigms
clearly hampers the acceptance of the SPA approach to performance modellers.

In the context of model checking of ordinary (i.e. non-stochastic) process algebra
models, a similar mismatch has been attacked successfully. Model checking is a
successful technique to establish the correctness of a given model, relative to a
set of temporal logic properties which the model should satisfy [9, 10]. The most
efficient model checkers use the logics LTL or CTL. Though different in nature,
both logics are state-oriented, their basic building blocks are state propositions.
So, at first sight they do not fit well to a behaviour-based formalism.

To import the success of model checking to behaviour-oriented formalisms, De
Nicola and Vaandrager have pioneered the development of an action-based vari-
ant of CTL, called aCTL [33, 34]1. aCTL is behaviour-oriented, yet it naturally
corresponds to CTL. In particular, [33, 34] provide a translation from aCTL to
CTL that allows one to perform (behaviour-oriented) aCTL model checking
by means of a (state-oriented) CTL model checker (on a transformed model)

1 The logic aCTL should not be confused with the logic ACTL, the restriction of
CTL to universal path quantifiers.



with only linear overhead. (It should however be noted that direct aCTL model
checkers are more popular by now [14, 32].)

In this paper, we develop a behaviour-oriented analysis technique for CTMCs,
and hence for the SPA approach modelling and analysis become entirely
behaviour-oriented. This is the central contribution of the paper. Our analy-
sis complements behaviour-oriented CTMC modelling with SPA in the same
sense as De Nicola and Vaandrager’s work complements ordinary process alge-
braic modelling.

We develop an action-based, branching-time stochastic logic, called aCSL

(action-based Continuous Stochastic Logic), that is strongly inspired by CSL,
the continuous stochastic logic first proposed in [2] and further refined in [5, 3].
Similar to CSL, aCSL provides means to reason about CTMCs, but opposed to
CSL, it is not state-oriented. Its basic constructors are sets of actions, instead
of atomic state propositions. The logic provides means to specify temporal and
timed properties, and means to quantify their probability. aCSL allows one to
specify properties such as “there is at least a 30% chance that action SEND will
be observed within at most 4 time units”. After defining syntax and semantics,
we develop a dedicated model-checking algorithm for aCSL. As an application
example, we study behaviour-oriented performance and reliability properties of a
multiprocessor mainframe example taken from [23]. Furthermore, we show that
Markovian bisimulation, an equivalence notion that can be used to compress
SPA specifications compositionally, preserves aCSL-formulas. This property is
exploited in our case study.

For efficiency reasons, our model checking algorithm is not based on a transla-
tion from aCSL to CSL. Instead, it checks aCSL properties directly. A transla-
tional approach would allow one to use a state-based CSL model checker (such
as E T MC2 [24]), but with an increase of the state space. We briefly sketch the
translation from aCSL to CSL, which is inspired by Emerson and Lei [13], and
discuss why the linear translation in the style of De Nicola and Vaandrager [33,
34] fails in the stochastic setting.

The paper is organised as follows. Section 2 introduces action-labelled Markov
chains, the basic model considered in this paper. In Section 3, we define syntax
and semantics of aCSL, derive a number of convenient operators, and discuss
Markovian bisimulation. Section 4 focuses on model checking of aCSL. Sec-
tion 5 studies aCSL-properties of the multiprocessor example, while Section 6
briefly discusses the translational approach to model checking aCSL. Section 7
concludes the paper.

2 Action-labelled Markov chains

The operational semantics of purely2 Markovian process algebra such as
TIPP [16], PEPA [29] and (the core of) EMPA [7] is defined in terms of la-
2 We call a stochastic process algebra purely Markovian if the delay of any action is

governed by an exponential distribution.



belled transition systems where transitions are labelled with pairs of actions and
rates. In this section we briefly recall this notion and define some notations that
are convenient for our purpose.

Action-labelled Markov chains. Let Act denote a set of actions, ranged over
by a, b. We will use A, B as subsets of Act and adopt the convention that for
singleton sets curly brackets are omitted; i.e., we write a for { a }.

Definition 1. An action-labelled Markov chain (AMC) M is a triple
(S, A, −→ ) where S is a set of states, A ⊆ Act is a set of actions, and
−→ ⊆ S × (A × IR>0) × S is the transition relation.

Throughout this paper we assume that any AMC is finite, i.e., has a finite number

of states and is finitely branching. Transition s a,λ−−−→ s′ denotes that the system
can move from state s to s′ while offering action a after a delay determined by
an exponential distribution with rate λ. We use the following notations:

RA(s, s′) =
∑

a∈A

{λ | s a,λ−−−→ s′ }

E(s) =
∑

s′∈S

RAct(s, s
′)

PA(s, s′) = RA(s, s′)/E(s).

Stated in words, RA(s, s′) denotes the cumulative rate of moving from state
s to s′ while offering some action from A, E(s) denotes the total rate with
which some transition emanating from s is taken, and finally, PA(s, s′) is the
probability of moving from state s to s′ by offering an action in A. For absorbing
s, E(s) = 0 and PA(s, s′) = 0 for any state s′ and any set A. Further note that
R∅(s, s′) = P∅(s, s′) = 0 for any states s, s′.

Paths. An infinite path σ is a sequence s0
a0,t0−−−−→ s1

a1,t1−−−−→ s2
a2,t2−−−−→ . . . with for

i ∈ IN , si ∈ S, ai ∈ Act and ti ∈ IR>0 such that Rai
(si, si+1) > 0. For i ∈ IN

let σ[i] = si, the (i+1)-st state of σ, and δ(σ, i) = ti, the time spent in si. For

t ∈ IR>0 and i the smallest index with t 6
∑i

j=0 tj let σ@t = σ[i], the state in
σ at time t.

A finite path σ is a sequence s0
a0,t0−−−−→ s1

a1,t1−−−−→ s2 . . . sl−1
al−1,tl−1−−−−−−−→ sl where sl

is absorbing, and R(si, si+1) > 0 for all i < l.

For finite σ, σ[i] and δ(σ, i) are only defined for i 6 l; they are defined as above

for i < l, and δ(σ, l) = ∞. For t >
∑l−1

j=0 tj let σ@t = sl; otherwise, σ@t is as
above.

We denote σ[i] A−−→σ[i+1] whenever σ[i] can move to σ[i+1] by performing some

action in A, i.e., if ai ∈ A. Note that σ[i] 6 ∅−−→ . Let Path(s) denote the set of
paths starting in s. A Borel space over Path(s) can be defined in a similar way
as in [5] and is omitted here.



3 An action-based continuous stochastic logic

This section describes the action-based stochastic logic aCSL which is inspired
by the action-based logic aCTL by De Nicola and Vaandrager [33] and the
stochastic logic CSL by Baier et al. [5], which in turn is based on the work of
Aziz et al. [2].

3.1 Syntax and semantics of aCSL

Syntax. For p ∈ [0, 1] and ⊲⊳ ∈ {6, <, >, > }, the state-formulas of aCSL are
defined by the grammar

Φ ::= true

∣

∣

∣ Φ ∧ Φ
∣

∣

∣ ¬Φ
∣

∣

∣ S⊲⊳p (Φ)
∣

∣

∣ P⊲⊳p (ϕ)

where path-formulas are defined for t ∈ IR>0 ∪ {∞} by

ϕ ::= Φ AU
<t Φ

∣

∣

∣ Φ AU
<t

B Φ.

Note that atomic propositions are absent. The boolean connectives such as ∨ and
⇒ are derived in the obvious way. The probabilistic operator P⊲⊳p (.) replaces
the CTL path quantifiers ∃ and ∀ that can be re-invented — up to fairness [6]
— as the extremal probabilities P>0 (.) and P>1 (.). The state formulas are di-
rectly adopted from CSL: S⊲⊳p (Φ) asserts that the steady-state probability for
a Φ-state meets the bound ⊲⊳ p and P⊲⊳p (ϕ) asserts that the probability measure
of the paths satisfying ϕ meets the bound ⊲⊳ p.

The path-formula Φ1 AU
<t Φ2 is fulfilled by a path if a Φ2-state is eventually

reached via visiting only Φ1-states before, while taking only A-transitions; be-
sides, going from the beginning of the path until reaching the Φ2-state should
last at most t time units. The formula Φ1 AU

<t
B Φ2 requires in addition that

(i) a move to a Φ2-state is actually made and that (ii) this transition is la-
belled by some action in B. We remark the following. Due to the fact that the
Φ2-state must be reached via a B-transition, the formula Φ1 AU

<t
B Φ2 is invalid

in a (¬Φ1 ∧ Φ2)-state s: although the state satisfies Φ2, it is not able to move
from a Φ1-state to a Φ2-state via a B-transition as it does not fulfill Φ1. The
formula Φ1 AU

<t Φ2 is, however, valid in state s, since for the validity of this for-
mula it is not required that a transition into a Φ2-state is made. Thus, whereas
for Φ1 AU

<t Φ2 it suffices to currently be in a Φ2-state, this is not the case for
Φ1 AU

<t
B Φ2.

3

3 If we enlarged the set of path-formulas such that conjunction and negation of path-
formulas is allowed (in a similar way as for CTL∗), the relationship between AU

<t
B

and AU
<t could be made precise as follows:

Φ1 AU
<t

Φ2 = Φ2 ∨ (Φ1 AU
<t

A Φ2).



The major differences with a ‘standard’ until-formula Φ1 U Φ2 of linear and
branching temporal logics are that restrictions are put on (i) the action labels
of transitions to be taken and on (ii) the amount of time that is needed to reach
a Φ2-state. This can be made precise in the following way:

Φ1 U Φ2 = Φ1 ActU
<∞ Φ2.

In the sequel, we use Φ1 AUB Φ2 as an abbreviation of Φ1 AU
<∞

B Φ2 and
Φ1 AU Φ2 as an abbreviation of Φ1 AU

<∞ Φ2. These are the untimed versions
of the until-operators AU

<t
B and AU

<t.

An interesting aspect of aCSL is that the following set of next-operators are all
derived operators:

X<t
A Φ = true ∅U

<t
A Φ

XA Φ = X<∞
A Φ

X Φ = XAct Φ.

The formula X<t
A Φ asserts that from the current state an A-transition can be

made to a Φ-state before time t. Remark that the Φ-state must be reached by
the first transition, as — due to the empty set of actions — further transitions
are disallowed. XA is the action-labelled next-operator from aCTL, whereas X
is the traditional state-based next-operator.

Note 1. In our logic, the next operator is derived from the until-operator. In
aCTL the reverse holds [33]. This stems from the special treatment of inter-
nal, i.e., τ -labelled, transitions in aCTL. For instance in aCTL, X∅ Φ allows
to reach a Φ-state by an internal transition (but not any other). In our setting,
internal transitions are treated as any other transition, and accordingly, X∅ Φ is
invalid for any state. We have made this difference deliberately: whereas aCTL

is aimed to characterize branching bisimulation – a slight variant of weak bisimu-
lation equivalence – we focus on characterizing a strong equivalence like lumping
equivalence (since exact weak equivalences on AMCs cannot be obtained [21]).

The temporal operator 3 and its variants are derived in the following way:

A3
<tΦ = true AU

<t Φ

A3 Φ = A3
<∞ Φ

3
<tΦ = Act3

<t Φ

A path fulfills A3
<tΦ if it reaches a Φ-state within t time units by only per-

forming A-actions. Formulas A3 Φ and 3
<tΦ denote the generalisations to in-

finite time and arbitrary actions. Their combination, 3 Φ, corresponds to the
well-known “eventually” operator. An even more discerning 3-operator can be
defined by

A3
<t
B Φ = true AU

<t
B Φ and A3BΦ = A3

<∞
B Φ

Here, the path leading to the Φ-state consists of an arbitrary number of A-
actions, followed by a single B-action. Dual to these 3-operators is the set of



2-operators, of which we only mention the following:

P⊲⊳p (A2
<tΦ) = ¬P⊲⊳p (A3

<t¬Φ) and P⊲⊳p

(

A2
<t
B Φ

)

= ¬P⊲⊳p

(

A3
<t
B ¬Φ

)

with the obvious generalisations to infinite time and/or arbitrary sets of actions.
Finally, existential and universal quantification are introduced as

∃ϕ = P>0 (ϕ) and ∀ϕ = P>1 (ϕ)

Note that by this definition formula ∀ϕ holds even if there exists a path that
does not satisfy ϕ, if that path has zero probability mass.

We consider the modal operators from Hennessy-Milner logic [19] and the µ-
calculus [30] as derived operators. They are obtained as follows:

〈A〉Φ = P>0 (XA Φ) and [A] Φ = ¬〈A〉 ¬Φ.

The modal operator 〈A〉Φ states that there is some A-transition from the current
state to a Φ-state, whereas [A] Φ states that for all A-transitions from the current
state a Φ-state is reached.

Note 2. The modal operator 〈a〉p Φ from the probabilistic modal logic PML [31]
cannot be obtained as a derived operator in our setting. The state-formula 〈a〉p Φ
asserts that, given that an a-transition happens, the probability of moving to
a Φ-state is at least p. This interpretation fits well to the reactive probabilistic
setting used in [31] in which over each set of equally labelled transitions a discrete
probability space is defined. Since we consider a generative setting — having a
discrete probability space over all, possibly different labelled, transitions — the
probability in a formula like 〈a〉p Φ is relative to all transitions, and not just the
ones labelled with a. In the continuous variant of PML [8] a similar approach
as in [31] is taken, and a reactive interpretation is used.

Semantics. The aCSL state-formulas are interpreted over the states of an AMC
(S, A, −→ ). Let Sat(Φ) = { s ∈ S | s |= Φ }.

s |= true for all s ∈ S
s |= ¬Φ iff s 6|= Φ

s |= Φ1 ∧ Φ2 iff s |= Φi, for i=1, 2
s |= S⊲⊳p (Φ) iff π(s,Sat(Φ)) ⊲⊳ p
s |= P⊲⊳p (ϕ) iff Prob(s, ϕ) ⊲⊳ p

Here, π(s, S′) denotes the steady-state probability to be in a state of set S′ when
starting in s. It is defined by means of a probability measure4 Pr on the set of
paths Path(s) emanating from s.

π(s, S′) = lim
t→∞

Pr{ σ ∈ Path(s) | σ@t ∈ S ′ }

Prob(s, ϕ) denotes the probability measure of all paths satisfying ϕ given that
the system starts in state s, i.e.,

Prob(s, ϕ) = Pr{ σ ∈ Path(s) | σ |= ϕ }.
4 The probability measure Pr is defined by means of a Borel space construction on

paths. We refer to [5] for a formal definition.



The fact that these sets are measurable follows by easy verification from the
Borel space construction given in [5].

The meaning of the path-operators is defined by a satisfaction relation, also
denoted by |=, between a path and a path-formula. We define: σ |= Φ1 AU

<t Φ2

if and only if:

∃k > 0.
(

σ[k] |= Φ2

∧ (∀i < k. σ[i] |= Φ1 ∧ σ[i] A−−→σ[i+1]) ∧ t >
∑k−1

i=0 δ(σ, i)
) (1)

where we recall that δ(σ, i) denotes the sojourn time in state σ[i]. Thus,
Φ1 AU

<t Φ2 is valid for a path if at some time instant before t a Φ2-state is
reached — assume this is the (k+1)-st state (for k > 0) in the path so far — by
visiting only Φ1-states, while taking only A-transitions along the entire path.

For the other until-formula we have: σ |= Φ1 AU
<t

B Φ2 if and only if:

∃k > 0.
(

σ[k] |= Φ2 ∧ (∀i < k−1. σ[i] |= Φ1 ∧ σ[i] A−−→σ[i+1])

∧σ[k−1] |= Φ1 ∧ σ[k−1] B−−→σ[k] ∧ t >
∑k−1

i=0 δ(σ, i)
)

Note the subtle difference with (1): For Φ1 AU
<t

B Φ2 to be valid, there should
be a single transition leading to a Φ2-state labelled by some action in B.

It is left to the interested reader to check that s |= X<t
A Φ iff

σ[1] |= Φ ∧ σ[0] A−−→σ[1] ∧ t > δ(σ, 0).

This agrees with the intuitively expected semantics for X<t
A Φ.

3.2 Markovian bisimulation

In this section, we show that aCSL is invariant under the application of Marko-
vian bisimulation. Markovian bisimulation, a variant of Larsen-Skou bisimulation
[31], is a congruence for the stochastic process algebras TIPP [16] and PEPA
[29]. In the context of process algebraic composition operators, a congruence
relation can be used to compress the state space of components before composi-
tion, in order to alleviate the state space explosion problem, under the condition
that the relation equates only components obeying the same properties. Hence
the question arises whether a Markovian bisimulation R can be applied to com-
press models (or model components) prior to model checking aCSL-formulas.
In general, this requires that the validity of aCSL-formulas is preserved when
moving from an AMC M to its quotient AMC M/R. We establish this property
in Theorem 1.

Definition 2. A Markovian bisimulation on M = (S, A, −→ ) is an equivalence
R on S such that whenever (s, s′) ∈ R then Ra(s, C) = Ra(s′, C) for all C ∈
S/R and all a ∈ Act. States s and s′ are Markovian bisimilar iff there exists a
Markovian bisimulation R that contains (s, s′).



Here, S/R denotes the quotient space and Ra(s, C) abbreviates
∑

s′∈C Ra(s, s
′).

Let M/R be the AMC that results from building the quotient space of M under
R, i.e., M/R = (S/R, A, −→ ). In the following we write |=M for the satisfaction
relation |= (on aCSL) on M.

Theorem 1. Let R be a Markovian bisimulation on M and s a state in M.
Then:

(a) For all state-formulas Φ: s |=M Φ iff [s]R |=M/R Φ

(b) For all path-formulas ϕ: ProbM(s, ϕ) = ProbM/R([s]R, ϕ).

In particular, Markovian bisimilar states satisfy the same aCSL formulas.

In the appendix, we sketch the proof of Theorem 1. The detailed proof can be
found in [25]. This result allows to verify aCSL-formulas on the potentially much
smaller AMC M/R rather than on M. The quotient with respect to Markovian
bisimilarity can be computed by a modified version of the partition refinement
algorithm for ordinary bisimulation without an increase in complexity [26]. In
addition, due to the congruence property of Markovian bisimularity on TIPP
and PEPA, a specification can be reduced in a compositional way, thus avoiding
the need to model check the (possibly very large) state space S. This feature is
exploited in the case study discussed in Section 5.

4 Model checking aCSL

The general strategy for model checking aCSL proceeds in the standard way: For
a given state formula Φ, the algorithm recursively computes the sets of states
satisfying the sub-formulas of Φ, and constructs from them the set of states
satisfying Φ. For boolean connectives, the strategy is obvious. Model checking
steady-state properties S⊲⊳p (Φ) involves solving linear systems of equations, af-
ter determining (bottom) strongly connected components, exactly as in the CSL

context [5].

Model checking the probabilistic quantifier P⊲⊳p (ϕ) is the crucial difficulty. It
relies on the following characterizations of Prob(s, ϕ). We discuss the character-
izations by structural induction over ϕ. For the sake of simplicity, we first treat
the simple untimed until-formulas.

Untimed until. For ϕ = Φ1 AU Φ2 we have that Prob(s, ϕ) is given by the
following equations: Prob(s, ϕ) = 1 if s |= Φ2,

∑

s′∈S

PA(s, s′) · Prob(s′, ϕ)

if s |= Φ1 ∧ ¬Φ2, and 0 otherwise. For A = Act we obtain the equation for
standard until as for DTMCs [17].

Let ϕ = Φ1 AUB Φ2. For s 6|= Φ1, the formula is invalid. As for s |= Φ1 the
situation is more involved let us, for the sake of simplicity, assume that A and



B are disjoint, i.e. A ∩ B = ∅. Then the only interesting possibilities starting
from s are (i) to directly move to a Φ2-state via a B-transition, in which case the
formula ϕ is satisfied with probability 1, or (ii) to take an A-transition leading
to Φ1-state s′ which satisfies ϕ with probability Prob(s′, ϕ). Accordingly, for
A ∩ B = ∅, Prob(s, ϕ) can be characterized by:

∑

s′|=Φ2

PB(s, s′) +
∑

s′|=Φ1

PA(s, s′) · Prob(s′, ϕ). (2)

In the general case we have to take into account that A and B may not be
disjoint. Equation (2) does not apply now, since an (A ∩ B)-transition into a
state that satisfies both Φ1 and Φ2 is “counted” twice. We therefore obtain that
Prob(s, ϕ) is the least solution of the following set of equations:
∑

s′|=Φ2

PB(s, s′) +
∑

s′|=Φ1

PA(s, s′) · Prob(s′, ϕ) −
∑

s′|=Φ1∧Φ2

PA∩B(s, s′) · Prob(s′, ϕ)

if s |= Φ1, and 0 otherwise. Note that

Prob(s, XB Φ) = Prob(s, true ∅UB Φ) =
∑

s′|=Φ

PB(s, s′)

which coincides, for B = Act, with the characterization of next for DTMCs [17].
Thus, the probability that s satisfies XB Φ equals the sum of the probabilities
to move to a Φ-state via a single B-transition. The reader is also invited to
check that for B = ∅ there is no state that satisfies Φ1 AUB Φ2 with positive
probability.

Timed until. For ϕ = Φ1 AU
<t Φ2 we have that Prob(s, ϕ) is the least solution

of the following set of equations: Prob(s, ϕ) = 1 if s |= Φ2, and
∫ t

0

e−E(s)·x ·
∑

s′∈S

RA(s, s′) · Prob(s′, Φ1 AU
<t−x Φ2) dx

if s |= Φ1∧¬Φ2, and 0 otherwise. For state s satisfying Φ1 ∧ ¬Φ2, the probability
of reaching a Φ2-state within t time units from s equals the probability of reaching
some direct successor s′ of s within x time units, multiplied by the probability of
reaching a Φ2-state from s′ within the remaining time t−x. Since there may be
different paths from s to Φ2-states, the sum is taken over all these possibilities.
(Note that by taking t = ∞ we obtain, after some straight-forward calculations,
the characterisation for untimed until AU given before).

For ϕ = Φ1 AU
<t

B Φ2 we have that Prob(s, ϕ) is the least solution of the following
set of equations:

∫ t

0

e−E(s)·x ·





∑

s′|=Φ2

RB(s, s′) +
∑

s′|=Φ1

RA(s, s′) · Prob(s′, Φ1 AU
<t−x

B Φ2)

−
∑

s′|=Φ1∧Φ2

RA∩B(s, s′) · Prob(s′, Φ1 AU
<t−x

B Φ2)



 dx



if s |= Φ1, and 0 otherwise. This characterization can be justified in the same
way as for its untimed counterpart, i.e., Φ1 AUB Φ2, given the above explanation
for the simpler timed until variant. Let us consider what this yields for X<t

B Φ:

Prob(s, X<t
B Φ) = Prob(s, true ∅U

<t
B Φ) =

∫ t

0

e
−E(s)·x ·

∑

s′|=Φ

RB(s, s′)

which, after some straight-forward calculations, leads to

∑

s′|=Φ

PB(s, s′) ·
(

1 − e−E(s)·t
)

.

The first term of the product denotes the discrete probability to move via a sin-
gle B-transition to a Φ-state, whereas the second term denotes the probability
to leave state s within t time units.

This equational characterization allows one to model check aCSL formulas
by means of approximate numerical techniques. The concrete implementation
closely follows the one for CSL outlined in [5] and implemented in [24]. We are
currently investigating whether the solution of the above integral equations can
be reduced to standard transient analysis via uniformisation, as in [3].

5 Case study: multiprocessor mainframe with software

failures

We consider a multiprocessor mainframe which was first introduced in [27] and
has since then served as a standard SPA example, see e.g. [23, 11]. Here we only
briefly repeat the main features of the model.

5.1 Specification of multiprocessor mainframe

The multiprocessor mainframe serves two purposes: It has to process database
transactions submitted by users, and it provides computing capacity to program-
mers maintaining the database. The system is subject to software failures which
are modelled as special jobs. On the top level, the system is composed of two
processes (cf. Fig. 1).

System := Load |[putUserJob, putProgJob, fail]|Machine

Process Load represents the system load caused by the database users, the pro-
grammers and the failures. The mainframe itself is modelled by the Machine
process. The three different system load components are modelled as so-called
Markov modulated Poisson processes, see [27]. The intensity of the load alters
between different levels. To realize a synchronous change of load level, a syn-
chronizing action c is used.

Load := ProgLoad |[c]| UserLoad |[c]| FailLoad
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Fig. 1. Mainframe model structure

The Machine component consists of two finite queues and four identical proces-
sors. The queues buffer incoming jobs. They are controlled by a priority mecha-
nism to ensure that programmer jobs have the lowest priority, while failures have
the highest priority. The priority mechanism is realised by appropriate synchro-
nisation of the queue processes. For instance, process Q can only deliver a job
to a processor if queue R is empty and no failure is present. Furthermore, the
insertion of new jobs into the system is prohibited once a failure has occured,
until the system is repaired.

Each of the four processors executes user or programmer jobs waiting in the
respective queues, unless a failure occurs. As failures have preemptive priority
over the other two job classes, all processors stop working once action fail has
occured and then wait until the system will recover (via action repair).

5.2 Properties of interest

This section contains some example properties which are of interest for the mul-
tiprocessor mainframe model. For each property, a description in plain English,
its aCSL formulation and some explanation are given. We first introduce some
purely functional requirements to ensure that the priority mechanism is prop-
erly realised by the model. Then we turn to the performance and reliability
requirements which the system should satisfy. For A ⊆ Act we let A denote
Act \A. We use the following sets of actions: Get := {getUserJob, getProgJob},
Put := {putUserJob, putProgJob}, Fin := {finishUserJob, finishProgJob}
and FailRep := {fail, repair}. We omit brackets for singleton sets.

Φ1: If there are user jobs waiting, the processors will not start programmer jobs.

ΦUserJobWaiting ⇒ ¬〈getProgJob〉 true

where ΦUserJobWaiting is defined by ∃ (putUserJob3getUserJob true), charac-
terizing at least one user job waiting in the queue.



Φ2: Whenever a failure occurs, no jobs can be inserted into the queues until the
system is repaired.

[fail] ∀ (Put3repairtrue)

Φ3: Whenever a failure occurs, the processors will be blocked until the system
is repaired.

[fail] ∀ (Get∪Fin3repairtrue)

Φ4: After a repair, both queues are empty.

[repair] ( ¬ ΦUserJobWaiting ∧ ¬ ΦProgJobWaiting )

where ΦProgJobWaiting characterizes at least one waiting programming job,
defined in a similar way as ΦUserJobWaiting . This is an example of a property
which is not true, since a failure does not cause the queues to be flushed.

Φ5: In steady state, the probability of low priority programming jobs having to
wait because of user jobs being served is smaller than 0.01.

S<0.01 (〈finishUserJob〉true ∧ ΦProgJobWaiting )

Φ6: At least two processors are occupied by user jobs.

〈finishUserJob〉 〈finishUserJob〉 true

Φ7: In steady state, the probability that at least two processors are occupied by
user jobs is greater than 0.002.

S>0.002 (Φ6)

Φ8: There is at least a 30% chance that some job will be finished within at most
4 time units.

P>0.3

(

Fin3
<4
Fintrue

)

Φ9: In steady state, the probability of the system being unavailable (i.e. waiting
for repair) is at most 0.05.

S60.05

(

∃(FailRep3repairtrue)
)

Φ10: After a system failure, there is a chance of more than 90% that it will come
up again within the next 5 time units.

[fail] P>0.9

(

repair3
<5
repairtrue

)

The fact that the above property holds for all states can be expressed by ∀ 2 Φ10.
Slightly weaker, one might require the above property to hold on the long run,
formulated as S>1 (Φ10).



states (original) 3690 13530 110946
(compressed) 720 2640 21648

property verification runtimes (in seconds)

Φ1 0.012 0.037 0.268

Φ2 0.008 0.049 0.864

Φ3 0.008 0.039 0.319

Φ4 0.003 0.005 0.036

Φ5 0.642 2.371 18.750

Φ6 0.001 0.002 0.014

Φ7 0.558 2.122 18.814

Φ9 0.554 2.009 18.819

Φ10 2.557 11.404 92.324

Table 1. Verification runtimes

5.3 Verification results

In this section we report on our experience with the verification of the above
properties. The results have been obtained by means of a trial implementation,
basically an extension of the model checker E T MC2 [24]. The implementation
does not yet support the full logic aCSL, therefore property Φ8 has not been
checked.

For the properties listed in the previous section we present the verification run-
times in Table 1. We checked three models: A small model with 4 (2) programmer
(user) buffer places, an intermediate model with 10 (4) programmer (user) buffer
places and a large model with 40 (10) programmer (user) buffer places. The small
model has 3690 states and 24009 transitions, the intermediate model has 13530
states and 91069 transitions and the large model has 110946 states and 761989
transitions. However, we did not perform model checking on the original models
but on models with compressed state spaces which we gained through the ap-
plication of Markovian bisimilarity (in the example multiprocessor system, the
main potential for reduction stems from the symmetry of the four identical pro-
cessors). By Theorem 1, the compressed models satisfy the same properties as
the original ones. After bisimilarity compression, the small model has 720 states
and 3219 transitions, the intermediate model has 2640 states and 12295 transi-
tions and the large model has 21648 states and 103471 transitions. All steady
state properties given in the table were double checked with TIPPtool [22].



6 On translating aCSL to CSL

The design of aCSL closely follows the work of De Nicola and Vaandrager on
aCTL [33]. For what concerns model checking, they propose a translation K
from aCTL into CTL, and a transformation (also denoted K) from action-
labelled to state-labelled transition systems in such a way that for an arbitrary
aCTL formula Φ and arbitrary action-labelled transition system M (with the
obvious notation):

s |=
M,aCTL

Φ iff K(s) |=
K(M),CTL

K(Φ) (3)

In this way, aCTL model checking can be reduced to CTL model checking,
by checking a translated formula K(Φ) on a transformed model K(M). The
bypass via K blows up the model and the formula, but only by a factor of 2,
whence it follows that model checking aCTL has the same worst case (space
and time) complexity as CTL. The key idea of this transformation is to break
each transition of M in two, connected by a new auxiliary state. The new state
is labelled with the action label of the original transition, playing the role of
an atomic state proposition. (The original source and target states are labelled
with a distinguished symbol ⊥). Formula Φ is manipulated by K in such a way
that starting from some state K(s) essentially all the labellings of original states
(⊥) do not matter, while the ones of auxiliary states do. Unfortunately, this
approach does not carry over to the Markov chain setting, because splitting a
Markovian transition in two implies splitting an exponential distribution in two.
However, no sequence of two exponential distribution agrees with an exponential
distribution. Since aCSL is powerful enough to detect differences in transient
probabilities, this approach is infeasible.

Even though a translation in the style of De Nicola and Vaandrager does not
allow one to reduce aCSL to CSL, this does not imply that such a reduction
is generally infeasible. For the sake of completeness, we remark that it is indeed
possible to reduce model checking aCSL to model checking (slight variants of)
CSL. We briefly sketch two possibilities:

– Apply the transformation of [33] and map AMCs to interactive Markov
chains (IMC) [20]. This transformation is exemplified in Figure 2 (from left
to middle), where state labellings appear as sets, and dashed transitions are
supposed to be immediate. In general, IMC allow for nondeterminism, but
this phenomenon is not introduced by the translation. Therefore, the model
checking algorithm of [5] can be lifted to this subset of IMC.

– Transform AMCs to state-labelled CTMCs (SMC), using a transformation
inspired by Emerson and Lei [13]. The main idea is to split each state into
a number of duplicates, given by the number of different incoming actions
it possesses, and label each duplicate with a different action, and distribute
the incoming transitions accordingly. (In order to track the first transition
delay correctly, one additional ⊥-labelled duplicate per state is needed.) To
give an intuitive idea, this transformation is depicted in Figure 2 (from left
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Fig. 2. Transformation example from AMC (left) to IMC (middle) and SMC (right)

to right). A mapping K from aCSL to a minor variant of CSL exists that
ensures s |=M φ to hold if and only if (s,⊥) |=K(M) K(φ) holds. (The
satisfaction relation |=K(M) on CSL requires a subtle – but straight-forward
to implement – modification.) Details can be found in [25]. In the worst
case, the state space is blown up by a factor given by the maximal number
of distinct actions entering a state.

Notice that both translations sketched above require a small modification of the
model checking algorithm for CSL [3, 5]. Furthermore, both approaches induce
a blow up of the model by a linear factor. To avoid these drawbacks, we have
decided to develop a direct model checking algorithm, as sketched in Section 4.
Remark that despite the aforementioned translations from aCTL to CTL, ded-
icated model checkers for aCTL are more popular by now [14, 32].

7 Concluding remarks

This paper has introduced a behaviour-oriented analysis approach for Marko-
vian stochastic process algebra. From a conceptual as well as from a pragmatic
point of view, this approach closes a disturbing gap in the process algebraic ap-
proach to performance and dependability modelling. In particular, performance
engineers are no longer confronted with the need to switch from a behaviour-
oriented to a state-oriented view when it comes to model analysis.

The behaviour-oriented modelling and analysis approach outlined in this paper
has four ingredients: (1) A standard stochastic process algebra (such as TIPP,
PEPA, EMPA) is used to model the system under consideration as an action-
labelled CTMC. (2) The action-based logic aCSL serves as a powerful means
to specify properties of interest. (3) A model checking algorithm decides which
properties are satisfied by the Markov chain model. (4) Since Markovian bisim-
ilarity preserves aCSL properties, it can be used to compress the model (or



the model components, due to the congruence property for TIPP and PEPA)
before model checking. We have illustrated all four ingredients by means of the
multiprocessor mainframe case study.

PMLµ [8], the continuous-time variant of PML [31], is another logic on action-
labelled CTMCs. PMLµ and aCSL are incomparable, because PMLµ takes a
reactive point of view, while our view is generative (see Note 2). PMLµ is not
considered in the context of model checking, instead it serves as the foundation
of a formalism to assign rewards to states, i.e., to construct Markov reward mod-
els. The thus obtained models are then analyzed with standard (steady-state)
numerical analysis. PMLµ does neither provide means to quantify probability
nor to reason about time intervals.

For the future, we intend to study to what extent aCSL can be extended to-
wards the analysis of Markov reward models. In the state-based setting, we have
recently developed a continuous reward logic (CRL) that allows bounds on re-
wards to be checked, and naturally combines with CSL [4].
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A Appendix: Sketch of the proof of Theorem 1

In order to verify Theorem 1(a), we prove that (u, v) ∈ R implies ∀Φ.(u |=M Φ
iff v |=M Φ). We do so by structural induction on Φ. The only non-trivial cases
are that Φ is of the form S⊲⊳p (Ψ), or P⊲⊳p (ϕ). In the former case, S⊲⊳p (Ψ),
we use the induction hypothesis, the fact that Markovian bisimulation implies
lumpability, and that lumpability ensures that steady-state probabilities can be
obtained from the lumped quotient Markov chain [21]. In the latter case, P⊲⊳p (ϕ),
we can apply Theorem 1(b), together with the induction hypothesis. So, only
Theorem 1(b) remains to be verified. For this purpose, it is sufficient to show
that (u, v) ∈ R implies

Pr{ σ ∈ Path(u) | σ |= ϕ } = Pr{ σ ∈ Path(v) | σ |= ϕ }

We have to distinguish two cases, ϕ = Φ1 AU
<t

B Φ2 and ϕ = Φ1 AU
<t Φ2. Only

the first of them is elaborated below. The other case proceeds in a similar, but
simpler, way. For n > 1 and t > 0 we define the set of paths Au

n(t) as

Au
n(t) = { σ ∈ Path(u) | σ[n] |= Φ2

∧ ∀ 0 6 i < n. σ[i] |= Φ1

∧ ∀ 0 6 i < n − 1. σ[i] A−−→σ[i + 1]

∧ σ[n − 1] B−−→σ[n]

∧
∑n−1

i=0 δ(σ, i) < t }

(observe the similarity to the semantics of Φ1 AU
<t

B Φ2) and the set of paths
Bu

i (t) for i > 1 by Bu
1 (t) = Au

1 (t), and Bu
n+1(t) = Au

n+1(t) \
⋃n

i=1 Bu
i (t). Intu-

itively, Au
n(t) is the set of paths starting in u and reaching a Φ2-state within t

time units in n steps, where the first n − 1 steps are A-transitions and the last
step is a B-transition. Bu

n(t) denotes the subset of Au
n(t) consisting of paths that

reach a Φ2-state in n steps without performing an A∩B-transition to a Φ2-state
in the previous steps.

Note that Bu
i (t), Bu

j (t) are pairwise disjoint (for i 6= j). By exploiting the fact
that { σ ∈ Path(u) | σ |= Φ1 AU

<t
B Φ2 } =

⋃

n>1 Bu
n(t), we obtain:

Pr{ σ ∈ Path(u) | σ |= Φ1 AU
<t

B Φ2 } =

∞
∑

i=1

Pr{ σ ∈ Bu
i (t) }.

Hence, it is sufficient to show that for arbitrary t > 0,

∞
∑

i=1

Pr{ σ ∈ Bu
i (t) } =

∞
∑

i=1

Pr{ σ ∈ Bv
i (t) }.



We fix some t > 0, and prove the above by showing the stronger property that
for all positive n, Pr{ σ ∈ Bu

n(t) } = Pr{ σ ∈ Bv
n(t) }. This proof proceeds by

induction on n, the length of the paths in Bu
n(t) and Bv

n(t). So, we perform a
nested induction, the (inner) induction on n is nested in the (outer) induction
on the structure of the formula Φ.

In the base case n = 1 of the inner induction, let us first assume u 6|= Φ1. But
then v 6|= Φ1 (by the outer induction hypothesis) and hence Pr{ σ ∈ Bu

1 (t) } =
0 = Pr{ σ ∈ Bv

1 (t) }. If, conversely, u |= Φ1, we obtain v |= Φ1 by the outer
induction hypothesis, and therefore

Pr{ σ ∈ Bu
1 (t) } =

∑

w|=Φ2
PB(u, w) ·

(

1 − e−E(u)·t
)

=
∑

C∈M\R, C|=Φ2

∑

w∈C PB(u, w) ·
(

1 − e−E(u)·t
) (∗)

=
∑

C∈M\R, C|=Φ2

∑

w∈C PB(v, w) ·
(

1 − e−E(v)·t
)

=
∑

w|=Φ2
PB(v, w) ·

(

1 − e−E(v)·t
)

=

Pr{ σ ∈ Bv
1 (t) }

Here, C |= Φ2 denotes that all states in the equivalence class C satisfy Φ2, which
we can assume by the outer induction hypothesis. The transformation labelled
(∗) uses that (u, v) ∈ R implies

∑

w∈C PA(u, w) =
∑

w∈C PA(v, w), since C is
the class of a Markovian bisimulation.

To complete the inner induction we now assume that for arbitrary n > 1 we have
that Pr{ σ ∈ Bu

n(t) } = Pr{ σ ∈ Bv
n(t) }, and aim to show that this also holds for

n + 1. The case u 6|= Φ1 proceeds as above. The remaining case, u |= Φ1, leads
to the following transformation, using the same arguments as above.

Pr{ σ ∈ Bu
n+1(t) } =

∫ t

0
e−E(u)·x ·

∑

w|=Φ1
RA(u, w)· Pr{ σ ∈ Bw

n (t − x) } dx =
∫ t

0 e−E(u)·x ·
∑

C∈M\R, C|=Φ1

∑

w∈C RA(u, w)· Pr{ σ ∈ Bw
n (t − x) } dx

(∗)
=

∫ t

0
e−E(v)·x ·

∑

C∈M\R, C|=Φ1

∑

w∈C RA(v, w)· Pr{ σ ∈ Bw
n (t − x) } dx =

∫ t

0 e−E(v)·x ·
∑

w|=Φ1
RA(v, w)· Pr{ σ ∈ Bw

n (t − x) } dx =

Pr{ σ ∈ Bv
n+1(t) }

This completes the proof sketch, details can be found in [25].


