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Abstract. We present a formal verification methodology for datapath-
dominated hardware. This provides a systematic but flexible framework
within which to organize the activities undertaken in large-scale ver-
ification efforts and to structure the associated code and proof-script
artifacts. The methodology deploys a combination of model checking
and lightweight theorem proving in higher-order logic, tightly integrated
within a general-purpose functional programming language that allows
the framework to be easily customized and also serves as a specification
language. We illustrate the methodology—which has has proved highly
effective in large-scale industrial trials—with the verification of an IEEE-
compliant, extended precision floating-point adder.

1 Introduction

Functional validation is one of the major challenges in chip design today, with
simulation and testing a dominating element of the design effort [1]. Throughout
the 1990s, formal verification [2] has emerged as a promising complement to
simulation. A notable success is equivalence checking using BDDs, now widely-
used for checking consistency between adjacent levels in the design flow. Research
on the broader problem of functional validation has also delivered promising
results in trials on industrial-scale designs [3, 4, 5].

Although algorithmic advances have increased the reach of formal verifica-
tion, they have still failed to close the gap between the capability offered by
verification ‘point-tools’ and modern design complexity. In response, we have
coupled our research on verification technology and tools with research into ver-
ification methodology. The aim is to devise a systematic approach to organizing
the activities undertaken in large-scale verification efforts and structuring the
associated code and proof-script artifacts.

Algorithmic and tool research primarily address the well-known problem of
model-checking capacity limits, while often overlooking the equally important
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problem of managing the complexity of the verification activity itself. Like oth-
ers, we attack capacity problems with technical innovations in the core verifica-
tion algorithms. But almost any serious verification effort faces many practical
difficulties other than capacity. For example, it almost certainly requires us to
break a problem down into many model-checking runs—frequently many hun-
dreds. Organizing all the cases to be considered into a coherent whole or even
specifying them clearly (let alone discovering them) is complex, intellectually
demanding, and error-prone.

Our methodology addressed this particular verification complexity problem
by generating and organizing model-checking runs in a systematic way. More
generally, the methodology gives guiding structure and sequence to the many
interdependent and complex activities of a large verification effort. The method-
ology aims, on the one hand, to face the messy realities of design practice (e.g.
rapid changes and incomplete specifications) and, on the other hand, to produce
high-quality results that are understandable, maintainable—and possibly even
reusable. In Section 2 of this paper, we detail aspects of this methodology that
are critical for successful application of formal methods to large designs.

Our approach is applied in Forte, a formal verification environment that
combines an efficient linear-time logic model checking algorithm (symbolic tra-
jectory evaluation—STE [6]) with lightweight theorem proving in higher-order
logic. These are interfaced to and tightly integrated with FL, a general-purpose
functional programming language in the ML family [7]. This allows the environ-
ment to be customized and large proof efforts organized and scripted effectively.
FL also serves as an expressive specification language extending the temporal
logic primitives of STE. Section 3 gives a brief overview of Forte and supplies
pointers to further information.

The methodology we advocate is separated into the following four distinct
but overlapping activities: understanding and encapsulating the circuit, scalar
verification, symbolic model-checking, and theorem proving. Each phase has a
specific purpose and associated tasks, together with definable artifacts that re-
sult from these tasks. Section 4 provides a concrete illustration of these phases
applied to the verification of an IEEE-compliant, extended precision floating-
point adder.

2 Methodology

One of the defining aspects of circuit design is a complex set of trade-offs between
design requirements. Different and often contradictory requirements exist—fast
circuits, low power, small area, and efficient manufacturing testing. Creating an
effective formal verification methodology can be as difficult as the process of de-
sign. An effective verification methodology must also meet several requirements:

– Realism. It cannot depend on resources that are not available in the design
environment. For example, complete specifications are usually not available,
and access to design engineers may be limited.
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– Incrementality and recoverability. Preliminary results are needed early in a
verification effort. There should be a smooth transition between simulation
of special cases and a full proof, so that the effort spent delivers ‘debugging
value’ very early on. If changing a specification, circuit, or library causes
a previously-passing proof to fail, it should be possible to use incomplete
proofs from earlier in the effort to help isolate the problem.

– Transparency and confidence. A methodology (and system) should be trans-
parent, i.e. the verification engineer should know what has been proved and
what has not. The methodology should also be sound, so that false positives
are not possible.

– Structure. An effective methodology imposes structure on the overall veri-
fication effort. This not only helps new users learn, but also increases the
productivity of experienced users.

– Top-down/bottom-up. A realistic methodology must support a mix of bottom-
up and top-down techniques. The subtle features of designs and the capac-
ity limits of model-checking are discovered through bottom-up exploration.
Overall problem reduction is achieved by top-down decomposition with case
splitting, induction strategies, and algorithm-specific techniques.

– Debugging and feedback. The bulk of any verification effort is debugging, so
it is crucial to optimize the verification environment for proof failure, not
success. Not only must the system quickly discover failures, it should provide
focused feedback that enables a tight, rapid debug loop.

– Regression. The methodology should produce verification artifacts that are
easy to maintain and adapt to changing specifications and designs. Test cases
from initial proof development should continue to be usable in exploring
these changes.

– Effort reuse. Verification is an expensive, human-intensive activity. Proof
reuse should be supported to amortize the verification cost over design
changes and even multiple design efforts. Specifications and high-level de-
composition strategies are particularly important candidates for reuse.

The methodology detailed in this paper strikes a balance between these different
requirements. It is divided into four distinct but overlapping phases of effort,
which we introduce in the remainder of this section.

The first phase of the methodology is circuit wiggling—the process of edu-
cating oneself and one’s tools about the circuit and its operating environment.
The process begins by identifying an initial set of important signals. This is done
by using a simulator with a ‘don’t care’ value (called ‘X’) to observe the effect
of driving the circuit’s input and state signals. We say a circuit is ‘wiggling’
when enough knowledge has been gained about how to drive these signals to
make defined (non-X) values appear at the circuit outputs. Efforts during this
phase are not concerned that the outputs are correct, just that they appear as
non-X values. But understanding the circuit’s functionality at even this crudely
abstract level evolves into an initial sketch of the specification.
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Aside from knowledge, the primary artifact of this phase is a circuit API
that defines an interface to the circuit nets and their timings.1 Concretely, the
API is a functional program (written in FL) that encapsulates the details of the
circuit’s timing and I/O protocol, allowing the functional specification and other
later developments to abstract away from these details.

Targeted scalar verification, the second phase, begins by focusing on scalar
(i.e. bit-pattern) input and state values selected to invoke easy-to-understand cir-
cuit behavior. The primary difference between wiggling and verification is that
verification entails checking the circuit against a specification. Specifications are
constructed incrementally. Simple portions are written first, using obvious scalar
input and state vectors to check agreement with the circuit. As more of the re-
quired functionality is understood, and as the simple parts of the specification
are debugged, additional functionality is added. As the specification is filled out,
the scalar verification cases used are chosen to target several representative sam-
ples from each region of the input and state space explored, including boundary
conditions (e.g. maximum and minimum values, zeros).

The main artifacts of this phase are a functional specification, an improved
circuit API, and a set of scalar test vectors (which are saved to support regression
testing). Discrepancies between the circuit and specification are usually a result
of errors in the circuit API or the specification itself. But even at this early stage
genuine design bugs could be discovered. When it becomes time consuming or
difficult to find stimuli that result in discrepancies, it is time to move to symbolic
model checking.

Symbolic model checking is the third phase of verification and marks the be-
ginning of serious formal verification efforts.2 Instead of driving circuit nets with
scalar values, we present the circuit with symbolic values represented by BDD
variables [9] and compute a symbolic representation of the resulting outputs.
The model-checking engine being employed automatically verifies the resulting
input/output relation against the specification, and in case of disagreement it
generates scalar counterexamples—or even complete symbolic characterizations
of the difference. (In fact, the algorithms in Forte are more subtle than this and
operate incrementally.) Symbolic input values can be restricted by constraints,
which are described by FL specifications developed in the course of the proof. For
model-checking efficiency, these are encoded into parametric input functions [10].

Most hardware bugs are found during this phase of verification. Once sym-
bolic model checking begins in earnest, BDD sizes will likely confront the capac-
ity limits of the tool. This phase therefore includes the significant challenge of
managing BDD complexity. It is often necessary to find good variable orderings,
which is accomplished by a combination of automatic and manual techniques.
This phase of effort also involves determining the limits of what can be checked
by the model checking engines.

1 We borrow the term API, Application Program Interface, from software engineering.
2 Our use of ‘symbolic’ here differs from its meaning in SMV-style Symbolic Model

Checking [8].
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The main artifacts produced in this phase are an improved specification,
BDD variable orderings, and a set of constraints that characterize regions of the
input space for which model-checking is feasible. All these are realized as FL
programs, and are easily inspected and modified by the user.

When capacity management with variable ordering provides diminishing re-
turns, a verification decomposition strategy must be developed. This is where
the worlds of model checking and theorem proving meet.

The final, theorem proving phase is to mechanically check the correctness of
the specification and the soundness of the decomposition strategy. In addition to
organizing the model checking decomposition, theorem proving helps the verifi-
cation engineer discover missing details in the specification. This phase does not
directly find bugs in the circuit. Instead, bugs in the proof may be detected, such
as missing cases or incorrect reasoning. Fixing these bugs may require modifying
the model-checking cases, which may then reveal circuit bugs.

In addition, the theorem proving phase may include proof-based analysis
of the specification, typically by using a theorem prover to derive high-level
properties from the specification. Because it will have been created in a bottom-
up manner, there is a danger that the specification simply reverse engineers
the circuit—including its bugs. The aim of this activity is therefore to gain extra
confidence in the correctness of the specification by assessing it against properties
independent of the circuit. These could be derived, for example, from standards
such as the IEEE floating-point specification, the PCI bus specification, or a
programmer’s reference model for a microprocessor.

The artifacts of this phase are the final version of the functional specification,
a top-level correctness statement, a collection of model checking runs, and a
mechanized proof connecting the top-level correctness statement to the model
checking runs. There may also be a collection of proofs of properties derived
from the specification.

The four phases of verification are not strictly sequential—a fair amount
of overlap and backtracking happens in practice. This is shown in Figure 1,
a schematic time-line of how a typical verification might proceed through our
methodology. Reading from top to bottom, the diagram shows the relative distri-
bution of time spent on the major activities as a typical verification effort moves
through the four phases of the methodology. The curves shown are, of course,
only a rough guide; the exact distribution of effort will depend on the the specific
verification project. Along the right-hand side of the diagram, definite criteria
are listed for transitions between phases. The diagram also shows the point at
which the main artifacts are finalized. Section 4 will illustrate each phase in the
context of our motivating example.

Finally, finishing the theorem proving phase by no means terminates involve-
ment with the artifacts of the proof effort. If the design is still ‘live’, any part of
the verification code (from API on upwards) may have to be adapted to track
design changes. The structure imposed on these artifacts by our methodology
helps to localize changes textually. After design changes, scalar and symbolic
simulations, model checking runs, and theorem proving scripts all need to be
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Fig. 1. Schematic time-line of verification activities.

re-run. In Forte, the concrete form of FL programs provides maintainable and
incrementally executable scripts for all these verification activities. The results
of one proof effort may also be re-used on future designs. If the algorithm does
not change dramatically, this can be as easy as replacing the API.

3 The Forte Verification Environment

An effective methodology is obviously dependent on an effective verification plat-
form. The methodology ideas described in this paper are embodied in Forte, our
custom-built verification environment. Forte integrates model checking engines,
BDDs, circuit manipulation functions, theorem proving, and a functional pro-
gramming language. It builds formal circuit models from standard HDL sources,
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and includes tightly integrated graphical tools for the display of circuit structures
and waveforms.

In other publications, we have presented details about Forte’s approach to
combining model checking and theorem proving [11], symbolic simulation [10],
and arithmetic verification [4]. The present paper focuses on our verification
methodology, so we provide only a brief overview of Forte here. The key capabil-
ities of Forte for this paper are the FL language, symbolic trajectory evaluation,
and theorem proving.

The FL Language

FL is a strongly-typed, lazy, functional programming language. Syntactically,
it borrows heavily from Edinburgh-ML [12]. Semantically, its core is similar to
lazy-ML [13]. One distinguishing feature of FL is that BDDs are built into the
language and every object of the boolean type bool is represented as a BDD.

The FL language lies at the very center of Forte. Through its embedded BDD
package and primitive or defined functional entry-points, it provides a flexible
interface for invoking and orchestrating model checking runs. It is also used as
an extensible ‘macro language’ for expressing specifications, which are therefore
human-readable but when executed compute efficiently checkable properties in
a low-level temporal logic. Finally, it provides the control language for Forte’s
theorem prover and—through the concept of lifted FL [14]—the primitive syntax
of its higher order logic.

This approach gives a generic, open framework where solutions can be tai-
lored to individual verification problems. For each verification effort or project,
the user ‘programs up’ in the FL functional language just the right specification
constructs for the problem domain, as well as scripts for orchestrating verifica-
tions. By structuring these according to our methodology, much of this work can
be reused over entire classes of verifications.

Symbolic Trajectory Evaluation

Symbolic trajectory evaluation (STE) is a formal verification method that can
be viewed as a hybrid between a symbolic model checker and a symbolic simu-
lator [6]. As a simulator, it can compute the result of executing a circuit with
concrete boolean test vectors as inputs; as a symbolic simulator, it can com-
pute symbolic expressions giving outputs as a function of arbitrary inputs; as
a model-checker, it can automatically check the validity of a simple temporal
logic formula for arbitrary inputs—computing an exact characterization of the
region of disagreement in case the formula is not unconditionally satisfied. STE’s
seamless connection between simulation and verification is crucial to satisfying
our methodology’s requirement for early results.

STE performs model checking with a symbolic simulation-based algorithm
that is significantly more efficient than more traditional symbolic model-checking
approaches. STE is particularly well suited to handle datapath properties, and
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it is used in our work to verify gate-level models against more abstract refer-
ence models. However, since symbolic trajectory evaluation is based on BDDs,
there are circuit structures that cannot be handled monolithically. For example,
multipliers are beyond the capability of STE alone.

Theorem Proving

Because model checkers are incapable of verifying certain circuit structures, and
in any case have inescapable capacity limits, most verifications must be broken up
into pieces. A decomposition typically either follows the structure of the circuit
or partitions the input data space (though other problem-reduction strategies are
also possible). To ensure that no mistakes are made in this partitioning process
and to check that no verification conditions are forgotten, a mechanically-checked
proof is needed.

In Forte, a lightweight theorem proving system called ThmTac is used for
this task. It is implemented in FL and tightly integrated with the Forte model
checkers; as a result, no translation or re-formulation of the verification results
is needed before theorem proving can be performed. ThmTac is loosely based on
the classic model of LCF proof systems [12]. It consists of an FL implementation
of a Church-style formulation of higher-order logic, with an extensible theorem-
proving infrastructure built on top.

Though the mechanism of lifted FL, the logical language of Forte actually
shares an implementation of the underlying λ-calculus data structures with FL
programs themselves. This means that lifted FL also allows the FL evaluation
machinery to be invoked as an inference of the logic; essentially, any phrase that
evaluates to true in FL can be ‘lifted’ to be a theorem in the logical language.
In particular, a successful STE (or CTL) model-checking run in Forte is just
a specific kind of function call that evaluates to true in FL. Any such model-
checking run can therefore can be lifted to a higher-order logic theorem asserting
its logical content, providing our methodology with a very smooth and flexible
link between model checking and theorem proving.

On top of this language infrastructure, ThmTac has numerous FL libraries
implementing our own versions of the conventional theorem-proving technology—
tactics and tacticals, term rewriting, and so on. The ThmTac theorem-prover
also has several special-purpose, integrated decision procedures, making reason-
ing (particularly about arithmetic results) significantly easier and more efficient.
For ease of use and proof robustness, it also supports the ‘declarative’ proof-
construction style [15].

4 Verifying a Floating Point Adder

In this section we will illustrate the application of our methodology in the veri-
fication of a floating-point adder. The adder performs IEEE-compliant floating-
point addition and subtraction at single, double, and extended precisions, and
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supports four rounding modes—toward 0, toward −∞, toward +∞, and to near-
est. It was verified as part of a large-scale verification effort undertaken on the
Intel Pentium R© Pro processor [4].

Sections 4.1 to 4.4 show how the adder verification proceeded through the four
phases of our methodology—understanding the circuit and making it ‘wiggle’,
targeted scalar verification, symbolic model checking, and theorem proving.

4.1 Wiggling

The verification effort began with education about the circuit and its operating
environment. This was accomplished by reading design documentation, perus-
ing the RTL code, consulting other verification and validation engineers, and
consulting the circuit designers. Notes from this activity evolved into an initial
sketch of the circuit API, specifying the names and timing of circuit signals that
are important to the verification.

Once an initial set of important signals has been identified, the process of
getting the circuit up and wiggling begins, based on the use of symbolic trajectory
evaluation as a scalar simulator. The aim of this is to develop an FL circuit API
that acts as a kind of simulation ‘test harness’ for driving input signals and
observing output signals. Developing this artifact involves discovering a mass
of detail about the input and output protocols, including the exact timing of
important signals, and encapsulating this in cleanly-structured FL code.

For the floating-point adder, the starting point was a small set of simulations
on very simple input cases (for example, computing zero plus zero). The aim was
to derive information about the relationship between the control inputs, state
nodes, and outputs of interest to supplement what was available in the design
documentation. Wiggling is a highly interactive process, with information being
gleaned by analyzing circuit behavior with a waveform viewer, viewing circuit
structure with a graphical browser, and writing FL functions and predicates that
probe the circuit.

After it was understood how to drive the input and state signals in such a
way as to reliably cause defined (non-X) values to appear at the outputs, we
refined the API in order to reduce the number of signals that are driven and the
length of time that they were driven. The aim was to make fewer assumptions
about the input behavior, in order to strengthen the eventual verification result.
Like the initial phase of wiggling, identifying the weakest necessary assumptions
is an iterative process that benefits from further discussion with designers and
architects, and study of the behavior of the circuit.

The final circuit API for the adder consists of two FL functions, one for
inputs and one for outputs. The first function, fadd fsub protocol, describes
the behavior of the circuit’s inputs during an addition or subtraction operation.
It takes the following arguments: uop, the bit-vector opcode of the instruction
to be executed (FADD or FSUB in this example); pc and rc, the precision and
rounding mode of the operation; and A and B, the two floating-point operands.
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let fadd_fsub_protocol [uop, pc, rc, A, B] =
// Drive clocks and resets

gen_clocks and no_resets and
// Opcode and inputs

(( (opcod isv uop) and // Opcode
(opcodv is T) and // Opcode is valid
(s1 isv A) and // Operand 1
(s1v is T) and // Operand 1 is valid
(s2 isv B) and // Operand 2
(s2v is T)) // Operand 2 is valid

in_cycle 2) and
// Round and precision control follow inputs by one cycle

(( (roundc isv rc) and // Rounding mode
(precc isv pc)) // Precision control

in_cycle 3);

Within this API, we impose the conditions that the circuit is clocked correctly
and that there is no reset during the execution of an operation. The function
also drives the circuit’s input nets with the opcode, the two input operands, and
the rounding and precision controls—each in the correct clock cycle. Inside the
functions called in the above definition is a mapping between signal names in
FL and the actual node names in the source RTL, as well as a layer of code that
establishes a unit-delay temporal abstraction.

The second API function, fadd fsub result, just observes the output wbdata
at the appropriate clock cycle. It also asserts that the valid bit wbdatav is set.

let fadd_fsub_result [res] =
(( (wbdata isv res) and

(wbdatav is T))
in_cycle 5);

Once the API has been defined and validated, it establishes an abstract view
of the circuit’s I/O interface upon which the rest of the verification can build.
This clean structuring mechanism helps makes higher levels of the proof effort
reusable. And because the various mappings in the API are realized as FL source
code, they can easily be inspected and understood if necessary—supporting the
transparency requirement of our methodology.

4.2 Targeted Verification

Targeted verification begins essentially with regression testing, using the simple
input cases from the wiggling phase. The difference between wiggling and ver-
ification is that verification entails checking the circuit against a specification.
The objectives of this stage are a refined circuit API and a specification of the
circuit functionality.

The specification to be developed is incorporated into the output part of
the API in the previous section. For the adder, the function fadd fsub result
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was revised to take as arguments fspec, a specification of the function to be
performed by the datapath, and the same five input values as the input API.

let fadd_fsub_result fspec [uop, pc, rc, A, B] =
// fspec maps inputs -> result
let res = fspec [uop, pc, rc, A, B] in
(wbdata isv res) and
(wbdatav is T)
in_cycle 5;

Based on the output values supplied, the revised API function uses fspec to
compute the expected result res, and asserts that whatever is observed on the
circuit’s output signals must be identical to this.

Note that fadd fsub result is a higher-order function; its argument fspec
is itself a function. The revised API makes no assumptions about the particular
computation done by the specification; it could therefore be reused as the API
for operations other than addition and subtraction. The use of a full-fledged
programming language is what enables clean abstractions like the circuit API to
be constructed.

Our specification of floating-point addition and subtraction was a straight-
forward adaptation of a textbook algorithm [16]. Initially, our specification sup-
ported double precision operations and rounding toward zero only, and was
tested only for ‘true’ addition (that is, addition of operands with like signs,
or subtraction of operands with different signs). Through verification aimed at
particular corner cases, our specification was extended to support single, double
and double-extended precisions, and four rounding modes.

Our final specification was the composition of five functional stages, shown
schematically in Figure 2. In the first stage, the operands are inspected and the
mantissa of the smaller operand is shifted right in preparation for addition. Ad-
dition or subtraction of the mantissas takes place in the second stage. Following
addition, the mantissa is normalized—shifted left or right to align its significant
bits with the binary point. Finally, the mantissa is rounded and truncated ac-
cording to the given rounding mode and precision and renormalized if required.

We will not show the complete specification here, but the rounding function
RND is illustrative of how a specification evolves in this phase of the method-
ology. The FL function RND takes as arguments the sign bit s and significand
(or ‘mantissa’) sgf of the number to be rounded, as well as the precision and
rounding controls:

let RND pc rc s sgf =
// Extract lsb, guard, round sticky bits.

let L = Lsb pc sgf in
let G = Guard pc sgf in
let RS = RoundS pc sgf in

// Conditionally add one to LSB
let rbit =
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(rc ’=’ TO_ZERO) => F
| (rc ’=’ TO_POS_INF) => ((NOT s) AND (G OR RS))
| (rc ’=’ TO_NEG_INF) => (s AND (G OR RS))
| (rc ’=’ TO_NEAREST) => (RS => G | (L AND G))
| F in

// Result truncates mantissa to precision specified
// by pc, adds rbit and pads result with zeros.

Result rbit pc sgf;

In our initial specification, RND simply truncated its result to the required number
of bits (rounding toward zero). Later, as the other rounding modes were added,
the concepts of guard and sticky bits were introduced and used. Each extension
was justified by a particular set of test inputs.

For example, 1.0 × 230 − 1.0× 20, in single precision, should yield 1.0× 230

when rounded toward +∞ and 1.11111111111111111111111×229 when rounded
toward −∞. The correct behavior for such cases was usually deduced using
pencil and paper, and was always checked against the actual behavior of the
circuit. As a guard against the danger of inadvertently incorporating circuit
bugs in our specification, we will later verify the specification itself against the
behavior required by the IEEE 754 standard. Section 4.4 describes this aspect
of the verification.

Because our specification is written in FL, it is fully executable. It also con-
tains no temporal information, mentions no signal names from the RTL descrip-
tion, and says nothing about interface protocols. The circuit API supplies this in-
formation for a given implementation of the floating-point addition/subtraction
algorithm. Decoupling the specification of the datapath functionality (which can
remain constant for the life of a design) from the names of signals and their tim-
ing (which can change from week to week in a design project) supports our
requirements of regression and reuse. Again, the use of FL is a key enabler.

Work in this phase is directed towards defining and debugging a specifica-
tion, and so involves more thinking about the actual computation than in the
wiggling phase. It still consists mostly of simulation, but more time is spent an-
alyzing simulation results from the circuit and specification and less examining
the internals of the circuit. When it becomes time consuming or difficult to find
stimuli that result in a discrepancy between the circuit and specification, it is
time to move on to symbolic model checking.

4.3 Symbolic Model Checking

The symbolic model checking phase marks the beginning of serious formal ver-
ification efforts. At this point symbolic Boolean (BDD) values are declared for
each circuit input:

let OPCOD = variable_vector "opcod[opcod_w:0]";
let PC = variable_vector "pc[1:0]";
let RC = variable_vector "rc[1:0]";
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let A = variable_vector "A[fp_w:0]";
let B = variable_vector "B[fp_w:0]";

Our eventual aim in this phase is to drive all input signals with symbolic Boolean
values, and thus obtain exhaustive confirmation that the circuit conforms to its
specification. However, STE also allows an arbitrary mix of scalar and symbolic
simulation values, and so satisfies the methodology requirement for incremental-
ity.

This phase brings with it two major challenges, the first of which is the
capture of input validity conditions. Many circuits impose constraints on their
environments and are guaranteed to work correctly only if those conditions are
met. For example, circuits associated with decoding instructions may require
that their inputs are legal instructions, or a non-pipelined execution unit may
require that there is a certain latency between consecutive operations.

The floating-point adder also imposes constraints on its environment; each
of its operands must either be zero (all exponent and mantissa bits zero) or
normal (with exponent between 0 and maximum, and the mantissa of the form
1.b1b2b3 . . .). The FL function VALID FP expresses this constraint:

let isNORM fp = (exp fp ’> 0) AND (exp fp ’< MAX_EXP) AND
(Jbit fp);

let isZERO fp = (exp fp ’= 0) AND (man fp ’= 0);

let VALID_FP fp = (isZERO fp) OR (isNORM fp);

In addition to data validity conditions, a huge variety of other conditions will
typically be used to restrict the input and state spaces for a verification. These
include isolation of the case that is being executed, cases that are believed to be
buggy, and cases that are not yet included in the specification.

For the floating-point adder verification, we are interested only in the re-
sponse of the circuit to FADD and FSUB opcodes. The validity condition therefore
restricts the opcode, as well as ensures each operand is either zero or normal:

let Add = (OPCOD = FADD);
let Sub = (OPCOD = FSUB);

let ValidInput = (Add OR Sub) AND VALID_FP A AND VALID_FP B;

FL allows a user to implement whatever specialized ‘vocabulary’ of functions
is needed to express input constraints like these in the most natural way. Here
we have used FL to define a concise vocabulary for the domain of floating-point
verification. This supports our goal of transparency, as definitions like VALID_FP
and ValidInput can easily be inspected and understood. Definitions like these
also provide infrastructure that all users can employ in later verification efforts.

The second major challenge in this phase is complexity management. Once
symbolic model checking begins in earnest, BDD sizes will begin to exceed the
capacity limits of the tool. Some reduction in BDD sizes can be obtained by
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choosing good variable orderings, but a top-level strategy to combat verification
complexity becomes crucial. For the floating-point adder, we divided the verifi-
cation into numerous subcases—initially according to the whether the mantissa
datapath performs addition or subtraction, and then according to the difference
between the two exponents. The following definitions characterize the domain of
operation of the mantissa datapath as ‘true addition’ or ‘true subtraction’:

let EqualSigns = ((sgn A) = (sgn B));

let TrueAdd =
ValidInput AND
((Add AND EqualSigns) OR (Sub AND NOT EqualSigns));

let TrueSub =
ValidInput AND
((Add AND NOT EqualSigns) OR (Sub AND EqualSigns));

In each domain of operation, we further decompose the model-checking prob-
lem according to the exponent difference. As an example, for ‘true addition’ we
consider the following cases:

1. The exponent of operand B is much larger than the exponent of operand A
(that is, the magnitude of operand A is almost negligible).

2. The exponent of operand B is larger than the exponent of operand A by 1,
2, . . . , n; where n is the mantissa width.

3. The exponents of the operands are equal (only one case).
4. The exponent of operand A is larger than the exponent of operand B by 1,

2, . . . , n; where n is the mantissa width.
5. The exponent of operand A is much larger than the exponent of operand B.

We compute the cases systematically in FL, as well as describe them in
a transparent form, by defining auxiliary functions capturing relations between
operand exponents. For example, Exp1BiggerBy expresses the condition that the
exponent of operand A is larger by n than the exponent of operand B. Exp1TooBig
captures the condition that the magnitude of operand A is almost negligible.

let Exp1BiggerBy n = ((exp A ’-’ exp B) ’=’ (nat_to_bv n));

let Exp1TooBig =
((exp A ’>’ exp B) AND // No wraparound
((exp A ’-’ exp B) ’>’ (nat_to_bv max))); // Vin1 >> Vin2

Each true addition case is then generated by an FL function true add case
using these functions. Every case imposes the restriction TrueAdd, together with
a condition generated from an integer that quantifies the exponent difference
(and is also used later to compute an appropriate BDD variable ordering.) The
function ExpDiff constructs an individual case from this integer. Finally, the
list true add cases enumerates all the true addition cases.
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let ExpDiff n =
(n < ~max) => Exp2TooBig |
(n >= ~max AND n < 0) => Exp2BiggerBy (~n) |
(n = 0) => EqualExps |
(n <= max AND n > 0) => Exp1BiggerBy n |

Exp1TooBig;

let true_add_case n = (TrueAdd AND ExpDiff n, n);

let true_add_cases = map true_add_case (~max-1 upto max+1);

The FL source code for the case decomposition is a major artifact produced
in this phase. For the floating-point adder, the case analysis given above follows
an input space decomposition strategy; it is therefore specific to the algorithm,
but is not dependent on fine details of circuit structure (which are hidden by
the API). This artifact is therefore highly reusable in other settings that employ
roughly the same algorithm.

Throughout this phase, model-checking is invoked through an FL verification
function built on top of the circuit API. The function prove verifies one case,
and is supplied with an input validity condition and an ordering parameter (the
difference between the exponents of the operands).

let prove (vc, n) =
// Drive the inputs

let ante = fadd_fsub_protocol [uop, pc, rc, in1, in2] in
// Specification’s idea of the output

let cons = fadd_fsub_result fadd_fsub [uop,pc,rc,in1,in2] in
// Install ordering, then run symbolic trajectory evaluation

(Order n) fseq (STE_vc ckt vc ante cons);

This is where the circuit API interacts with the specification; the API func-
tion fadd_fsub_protocol computes the antecedent (stimulus) for a symbolic
trajectory evaluation run, and the API function fadd_fsub_result is called
with the datapath specification fadd_fsub to compute the consequent (expected
result). STE_vc performs symbolic trajectory evaluation upon the circuit ckt, in-
corporating the supplied condition vc and the computed antecedent ante and
consequent cons. The function Order generates and installs a BDD variable
ordering, based on the parameter n (the difference between the exponents of
the two operands being added or subtracted). The ordering is chosen to mimic
the alignment of mantissa bits that will take place in computing the sum or
difference of the operands.

Verification of all the true addition cases is accomplished by applying prove
to the list of all cases:

let true_add_result = map prove true_add_cases;
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true_add_result is a list of boolean values, each signifying success or failure of
a particular case. In practice, since the cases are independent, we verify them in
parallel on a network of workstations.

The case breakdown for true subtraction is similar, with the complication
that additional case splits are needed when the exponents are equal or differ by 1.
In these cases, the difference between the two mantissas may have many leading
zeros and a large left shift may needed to renormalize. The true subtraction cases
are generated with the help of further auxiliary functions in FL.

As verification proceeds in this phase, disagreements between the circuit and
the specification are increasingly likely to indicate bugs in the circuit rather than
the specification. Of course, subtle bugs may still lurk in the specification. For ex-
ample, in model-checking the true subtraction cases we discovered a discrepancy
between the specification and the circuit when the exponents differed by one and
the difference between aligned mantissas was the smallest non-zero value. In this
corner case, our specification incorrectly normalized the result before rounding;
we corrected this by adding one extra bit to its internal mantissa.

4.4 Theorem Proving

The final, theorem proving, phase of the methodology is relatively open-ended
and can include many possible activities. The most common activity is checking
the validity of the problem decomposition devised in the model checking phase
and ensuring completeness of coverage. Of course, a certain amount of simple
checking can be done directly in FL. For example, we can compute in FL a list
of all cases verified in the floating-point adder example:

let cases = true_sub_cases @ true_add_cases;

Then to check that the list is exhaustive, we just compute in FL a boolean
(BDD) value cases_exhaustive as follows:

let all_cases_disjunction = OR_list (map fst cases);

let cases_exhaustive =
(ValidInput AND (Add OR Sub)) ==> all_cases_disjunction;

The logical implication calculated here states that, under the assumptions the
inputs are either normal or zero and the operation is legal, the disjunction of
the list of all cases comes out true.

We use such mechanized checks because, with complicated specifications and
environmental constraints, even painfully detailed code reviews will often miss
important errors. In one verification script, we discovered quite late that we
had duplicated an opcode in the instruction map, and so were not verifying one
type of instruction. In another verification, a simple typo in an environmental
constraint caused us to overlook an entire class of instructions.

The theorem proving phase goes well beyond simple computation of checks in
FL. It provides a high degree of confidence in the validity and coverage of a given
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decomposition, and it can handle decomposition strategies not easily analyzed by
just computing BDDs. Moreover, through a computational reflection technique
called lifted FL [14], it can also trivially employ the kind of evaluation methods
described above as a proof strategy.

The aim of theorem-proving is to use deductive proof to knit together the
(possibly hundreds of) individual model checking runs generated in the previous
phase into a top-level correctness statement that says that the circuit satisfies
the specification for all valid input and states. In the style encouraged by our
methodology, a top-level correctness statement concisely ties together the three
major elements of the whole proof effort—the circuit, the validity condition
on the environment, and the specification. Writing the correctness statement
in a standard, stylized form helps satisfy the transparency requirement for our
methodology. A standard form makes it easier for a reader to extract pieces of
critical information and answer questions about the verification. For example,
one might ask, ‘Was this circuit verified for all addressing modes?’.

Proving a top-level correctness statement does not directly find bugs in the
circuit. Instead, bugs may be found in the verification—missing cases, overly
tight environmental constraints, or incorrect reasoning steps. Fixing these may
require changing the model-checking cases and re-running some or all of them.
Of course, these new model-checking runs may then reveal bugs in the circuit.

Technically, theorem proving is seamlessly integrated with model checking
in Forte using the mechanism of lifted FL, which allows any FL phrase that
evaluates to true to be converted into a theorem of higher order logic. The
collection of successful verifications from the model-checking phase all evaluate
to true, and so we can use this mechanism to convert their FL sources into
theorems. By standard (and rather trivial) reasoning in higher order logic, these
theorems can then be combined into the top-level correctness statement. A side-
effect will be to have checked the decomposition soundness and case coverage.

The primary artifact of this activity—arguably of the entire effort—is a top-
level correctness statement. Theorem proving glues the results of multiple model
checking runs together to derive this theorem, which is itself beyond the capacity
of model checking. But the final phase of the methodology can also provide an
independent check on the ‘quality’ of the specification, by deriving independent
properties from it.

For example, the floating point adder specification (which is essentially an
algorithm) was validated against the more abstract IEEE standard specification
of floating point addition. For this proof, we divide the algorithm into two stages
(Figure 2). Stage 1 includes alignment, addition/subtraction, and normalization;
stage 2 is the rounder. For each stage we have assumptions about the inputs of the
algorithm, properties to prove about the output, and some auxiliary properties
to prove that are relied upon by subsequent stages.

The overall properties of Stage 1 are established by ‘cascading’ properties of
the alignment, add/subtract, and normalization algorithms. Proofs of this first
stage verify p’s relation to the inputs and, roughly speaking, conclude that

(| p | ≤ | in2+in1 |) ∧ (| in2+in1 | < | p |+ulp ) ∧ (ps ≡ (| p | < | in2+in1 |))
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Fig. 2. Decomposition of reference model proof.

The value ulp is the distance between the rational number | p | and the rational
of next largest magnitude actually representable with the precision available.

The proof of stage 2 is decomposed into four cases, one for each rounding
mode in the IEEE standard. The proof proceeds by assuming the above property
of stage 1 and concluding an output specification for each rounding mode. For
example, when rounding toward −∞ we have

(r ≤ in2 + in1) ∧ (in2 + in1 < r + ulp ) ∧
(s = −1 ∧ m = 2p ⊃ r + 1

2ulp > in2 + in1)

This says the true sum of the inputs lies between the computed result r and the
next representable rational number, as required by the IEEE standard. The third
conjunct deals with an important special case. When r is negative (s = −1) and
r’s mantissa m is a power of two, then the pair of representable values on either
side of r will have different exponents. The distance from r to the next largest
representable value is then one-half the distance between r and the representable
value of next largest magnitude.

The proof concluded by combining the theorem for stage 1 and the separate
cases for stage 2 to derive one theorem specifying the outputs of the adder in
terms of its inputs for all rounding modes (and, indeed, for several precisions).

In this example, the theorem proving phase produces two major results. First,
it ensures that the decomposition from the top-level correctness statement to
the model checking runs is correct. In principle, this could have been verified
by an ‘infinite capacity’ model checker; the second result goes much further.
By checking the specification against an abstract IEEE specification, theorem
proving is used to derive more a obviously correct theorem—one that is beyond
the expressive power of the specification language of the STE model-checker.
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5 Conclusions

We have described a methodology for carrying out datapath verification on large
hardware systems. The FADD example in this paper uses STE-based model
checking; our framework also includes CTL-based model checking. Our verifica-
tion methodology has evolved over a series of case studies carried out at Intel.
These include verifications of an IA32 instruction-length decoder [10, 11] and of
IEEE compliance of many of the major Intel Pentium R© Pro floating point in-
structions [4]. The methodology is certainly not complete—industrial hardware
verification is very challenging, and much further work remains in methodology
and the underlying technology.

Our methodology relies heavily on the capabilities provided by the Forte
system. While developing Forte, we have been conscious of the competing goals
of capability and usability for the tools. We are also keenly aware that a routine
verification for the technology or tool developer may be virtually impossible for
others to duplicate. Our methodology aims to address these issues by targeting
the usability of Forte and by providing information that will help others to use
Forte successfully.

A typical introduction to Forte begins with the new user exploring conven-
tional simulation in Forte. Once the user is comfortable with this mode of usage,
symbolic simulation and model-checking are introduced. When the capacity lim-
its of model-checking are reached, the user then learns about theorem-proving.
This incremental and modular approach also has benefits in the desired usage
model for Forte when verification engineers are using it on a regular basis. Given
that there will be much more model-checking than theorem-proving, a valida-
tion team composed of a few theorem-proving experts and a larger number of
model-checking experts can divide up the verification tasks.

Our methodology aims to create proof efforts that are relatively circuit-
independent. This makes our proofs more robust during design evolution, as
well as more reusable for future generations of designs implementing the same
functionality.
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