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Abstract. Image computation �nds wide application in VLSI CAD,
such as state reachability analysis in formal veri�cation and synthesis,
combinational veri�cation, combinational and sequential test. Existing
BDD-based symbolic algorithms for image computation are limited by
memory resources in practice, while SAT-based algorithms that can ob-
tain the image by enumerating satisfying assignments to a CNF represen-
tation of the Boolean relation are potentially limited by time resources.
We propose new algorithms that combine BDDs and SAT in order to
exploit their complementary bene�ts, and to o�er a mechanism for trad-
ing o� space vs. time. In particular, (1) our integrated algorithm uses
BDDs to represent the input and image sets, and a CNF formula to rep-
resent the Boolean relation, (2) a fundamental enhancement called BDD
Bounding is used whereby the SAT solver uses the BDDs for the input set
and the dynamically changing image set to prune the search space of all
solutions, (3) BDDs are used to compute all solutions below intermediate
points in the SAT decision tree, (4) a �ne-grained variable quanti�cation
schedule is used for each BDD subproblem, based on the CNF represen-
tation of the Boolean relation. These enhancements coupled with more
engineering heuristics lead to an overall algorithm that can potentially
handle larger problems. This is supported by our preliminary results on
exact reachability analysis of ISCAS benchmark circuits.

1 Introduction

Image and pre-image computation play a central role in symbolic state space
traversal, which is at the core of a number of applications in VLSI CAD like
veri�cation, synthesis, and testing. The emphasis in this paper is on reachability
analysis for sequential system veri�cation. For simplicity of exposition, we focus
only on image computation; the description can be easily extended to pre-image
computation as well.

1.1 BDD-based Methods

Veri�cation techniques based on symbolic state space traversal [7, 9] rely on
e�cient algorithms based on BDDs [4] for computing the image of an input set
over a Boolean relation. The input set in this case is the set of present states



P , and the Boolean relation is the transition relation T , i.e. the set of valid
present-state, next-state combinations. (For hardware, it is convenient to also
include the primary inputs in the de�nition of T ). The use of BDDs to represent
the characteristic function of the relation, the input, and the image set, allows
image computation to be performed e�ciently through Boolean operations and
variable quanti�cation. As an example of its application, the set of reachable
states can be computed by starting from a set P which denotes the set of initial
states of a system, and using image computation iteratively, until a �xpoint is
reached.

A number of researchers have proposed the use of partitioned transitioned
relations [6, 21], where the BDD for the entire transition relation is not built
a priori. Typically, the partitions are represented using multiple BDDs, and
their conjunction is interleaved with early variable quanti�cation during image
computation. Many heuristics have been proposed to �nd a good quanti�cation
schedule, i.e. an ordering of the conjunctions which minimizes the number of peak
variables [11, 19]. There has also been an interest in using disjunctive partitions
of the transition relations and state sets [8, 18, 17], which e�ectively splits the
image computation into smaller subproblems.

The BDD-based approaches work well when it is possible to represent the
sets of states and the transition relation (as a whole, or in a usefully partitioned
form) using BDDs. Unfortunately, BDD size is very sensitive to the number
of variables, variable ordering, and the nature of the logic expressions being
represented. In spite of a large body of work, the purely BDD-based approach
has been unreliable for designs of realistic size and functionality.

1.2 Combining BDDs with SAT-based Methods

An alternative, used extensively in testing applications [13], is to represent the
transition relation in Conjunctive Normal Form (CNF) and use Satis�ability
Checking (SAT) for various kinds of analysis. SAT solver technology has im-
proved signi�cantly in recent years with a number of sophisticated packages now
available, e.g. [16]].
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Fig. 1. Miter Circuit for Combinational Veri�cation

For checking equivalence of two given combinational circuits C1 and C2,
a typical approach is to prove that the XOR of their corresponding outputs,



called the miter circuit, can never evaluate to 1, as shown in Figure 1. This
proof can be provided either by building a BDD for the miter, or by using a
SAT solver to prove that no satisfying assignment exists for the miter output.
In cases where the two methods fail individually, BDDs and SAT can also be
combined, for example, in the manner shown in Figure 1. A cut is identi�ed in
the miter circuit to divide the circuit into two parts: the part PI of the circuit
between the circuit inputs and the cut, and the part PO of the circuit between
the cut and the output. A BDD is built for PO , while PI is represented in CNF.
A SAT solver then tries to enumerate all valid combinations at the cut using the
CNF for PI , while checking that it is not contained in the on-set of the BDD for
PO [12]. Enumerating the valid combinations at the cut corresponds exactly to
computing the image of the input set over the Boolean relation corresponding
to PI . Other ways of combining BDDs and SAT for equivalence checking have
also been proposed [5].

For property checking, the e�ectiveness of SAT solvers for �nding bugs has
also been demonstrated in the context of bounded model checking and symbolic
reachability analysis [2, 1, 22]. The common theme is to convert the problem of
interest into a SAT problem, by devising the appropriate propositional Boolean
formula, and to utilize other non-canonical representations of state sets. How-
ever, they all exploit the known ability of SAT solvers to �nd a single satisfying
solution when it exists. To our knowledge, no attempt has been made to for-
mulate the problems in a way that a SAT solver is used to �nd all satisfying
solutions.

In our approach to image computation, we use BDDs to represent state
sets, and a CNF formula to represent the transition relation. All valid next
state combinations are enumerated using a backtracking search algorithm for
SAT that exhaustively visits the entire space of primary input, present state
and next state variables. However, rather than using SAT to enumerate each
solution all the way down to a leaf, we invoke BDD-based image computation at
intermediate points within the SAT decision procedure, which e�ectively obtains
all solutions below that point in the search tree. In a sense, our approach can be
regarded as SAT providing a disjunctive decomposition of the image computation
into many subproblems, each of which is handled in the standard way using
BDDs. In this respect, our work is closest to that of Moon et al. [17], who
independently formulated a decomposition paradigm similar to ours. However,
there are signi�cant di�erences in the details, and we defer that discussion to
Section 7.

We start by providing the necessary background on a typical Boolean Satis-
�ability (SAT) algorithm in the next section. Our proposed algorithm for image
computation is described in detail in the sections that follow. Towards the end,
we provide experimental results for reachability analysis, which validate the in-
dividual ideas and the overall approach proposed by us, and describe some of
our work in progress.



Fig. 2. Backtracking Search Procedure for SAT

The complexity of this problem is known to be NP-Complete. In practice,
most of the current SAT solvers are based on the Davis-Putnam algorithm [10]].
The basic algorithm begins from an empty assignment, and proceeds by assigning
a 0 or 1 value to one free variable at a time. After each assignment, the algorithm
determines the direct and transitive implications of that assignment on other
variables, typically called bounding. If no contradiction is detected during the
implication procedure, the algorithm picks the next free variable, and repeats
the procedure. Otherwise, the algorithm attempts a new partial assignment by
complementing the most recently assigned variable for which only one value has
been tried so far. This step is called backtracking. The algorithm terminates



either when all clauses have been satis�ed and a solution has been found, or
when all possible assignments have been exhausted. The algorithm is complete
in that it will �nd a solution if it exists.

Pseudo code for the basic Davis-Putnam search procedure is shown in Fig-
ure 2. The function and variable names have obvious meanings. This proce-
dure has been re�ned over the years by means of enhancements to the Implica-
tions(), Bound(), Backtrack(), Next free var() and Val() functions. The GRASP
work [15] proposed the use of non-chronological backtracking by performing a
con
ict analysis, and addition of con
ict clauses to the database in order to
avoid repeating the same contradiction in the future.

3 Image Computation

The main contribution in our paper is the novel algorithm for image computation
by combining BDD- and SAT-based techniques in a single integrated framework.
In relationship to current SAT solvers, our contributions are largely speci�c to
their use for image computation. They are orthogonal to the most advanced
features found in state-of-the-art SAT algorithms like GRASP [16], and indeed
add to them.

3.1 Representation Framework

Our representation framework consists of using BDDs to represent the input and
image sets, and a CNF formula to represent the Boolean relation. This choice
is motivated by the fact that BDD-based methods frequently fail because of
their inability to e�ectively manipulate the BDD(s) for the transition relation,
in its entirety or in partitioned form. Furthermore, since BDDs for the input and
image sets might also become large for complex systems, we do not require that
a single BDD be used to represent these sets. Any disjunctively decomposed set
of BDDs will work with our approach. For our current prototype, we use a simple
\chronological" disjunctive partitioning, such that whenever the BDD size for
a set being accumulated crosses a threshold, a new BDD is created for storing
future additions to the set. We are exploring use of alternative representations
to manage state sets. This setup is shown pictorially in Figure 3.

3.2 Image Computation Using CNF-BDDs

The basic image computation formula is shown below in Equation (1), where x,
y, and w denote the set of present state, next state, and primary input variables,
respectively; P (x) denotes the input set, and T (x;w; y) denotes the transition
relation.

Image(P; T )(y) = 9x;w:P (x) ^ T (x;w; y) (1)

In our framework, P (x) and Image(y) are represented as (multiple) BDDs,
while T (x;w; y) is represented as a CNF formula. We compute the image set by



Fig. 3. The CNF-BDDs Representation Setup

enumerating all solutions to the CNF formula T (x;w; y), and recording only the
combinations of y variables, while restricting the values of x variables to those
that satisfy P (x). Note that by restricting the x variables to satisfy P (x), we are
e�ectively performing the conjunction in the above formula. This restriction is
performed by what we call BDD Bounding. Essentially, during the SAT search
procedure, any partial assignment to the x variables that does not belong to
the on-set of the BDD(s) P (x) is pruned immediately [12]. Note also, that by
enumerating all (not a single) solution to the CNF formula, and by consider-
ing combinations of only y variables among these solutions, we are e�ectively
performing a quanti�cation over all the other (x, w) variables.

In practice, we use the following modi�cation of Equation (1) for image com-
putation, where the additional term Unreached(y) can be regarded as a care-set
for the image set. In applications such as reachability analysis where image com-
putation is performed iteratively, this set can be computed as the negation of the
current set of reached states. Again, by using BDD(s) to represent Unreached(y),
we can obtain additional pruning of the SAT search space by performing BDD
Bounding against this image care-set.

Image(P; T )(y) = 9x;w:P (x) ^ T (x;w; y) ^ Unreached(y) (2)

4 BDD Bounding

A naive approach for performing BDD Bounding is to enumerate each complete
SAT solution up to the leaf of the search tree, and then check if the solution
satis�es the given BDD(s). This is obviously ine�cient since the number of SAT
solutions may be very large.

In our setup, the x=y variables are shared between the input/image set
BDD(s) and the CNF formula. Therefore, whenever a value is set to or im-
plied on one of these variables in SAT, we can check if the intersection of the
partial assignment with the given BDD(s) is non-null. If it is indeed non-null,
the SAT procedure can proceed forward. Otherwise it must backtrack, since no
solution consistent with the conjunctions can be found under this subtree. In our
earlier work on combinational veri�cation, we had called this the Early Bounding

approach [12], and had demonstrated a signi�cant reduction in the number of



Fig. 4. Pseudo-code for BDD Bounding

backtracks due to pruning o� large subspaces of the search tree. Note that the
smaller the bounding set, the greater the pruning, and the faster the SAT solver
is likely to be.

4.1 Bounding Against the Image Set: A Positive Feedback E�ect

In addition to bounding against the input set P (x) and the image care-set
Unreached(y), a fundamental speed-up in our image computation procedure
can be obtained by also bounding against the BDDs of the currently computed
image set denoted Current(y). Note that Unreached(y) does not change during
a single image computation, while Current(y) changes dynamically, because as
soon as a solution for the image set is enumerated, it is added to Current(y).
Therefore, if a partial assignment over y variables is contained in Current(y),
it implies that any extension to a full assignment has already been enumerated.
Therefore, it serves no purpose for the SAT solver to explore further, and it
can backtrack. Note that Current(y) is updated dynamically during an image
computation step, As a result, a positive feedback e�ect is created in which the
larger the image set grows, the faster the SAT solver is likely to be able to go
through the remaining portion of the search space.

4.2 Implementation Details: Bounding the x Variables

For BDD bounding against P (x), we modify the Bound() function of Figure 2,
so that it checks the satisfaction of a partial assignment on x variables with
the on-set of the BDDs for P (x). Again, if the partial assignment has a null
intersection with each BDD, the SAT solver is made to backtrack, just as if
there were a contradiction.

The pseudo-code for the Bound() procedure for a single BDD is shown in
Figure 4. In this procedure, the initial argument is the BDD for P (x), and
the recursive argument maintains its projected version down the search tree.
The project variable in bdd() procedure, can be easily implemented by us-
ing either the bdd substitute() or the bdd cofactor() operations available
in standard BDD packages [20]. Unfortunately, these standard BDD operations
represent a considerable overhead in terms of unique table and cache lookups. In
our implementation, we use a simple association list to keep track of the x vari-
able assignments. Projecting (un-projecting) a variable is accomplished simply



Fig. 5. Determining Emptiness of the Product of Multiple BDDs with Projections



Recall that we allow use of a disjunctive partitioning of the reached state
set R = [iRi. Therefore, both the Unreached and !Current sets can be repre-
sented as product of BDDs, i.e. Unreached(y) = \i!Ri(y), and !Current(y) =
\i!Currenti(y). Rather than performing an explicit product of the multiple
BDDs, the partial assignment over y variables is projected separately onto each
BDD. Then the the multiple BDDs are traversed in a lock-step manner by using
a modi�ed bdd equal zero() procedure, to determine if there exists a path in
their product that leads to a one bdd. The pseudo code for this is shown in Fig-
ure 5, where the given procedure assumes that projection of variable values onto
the individual BDDs has already been carried out. In the actual implementation,
the projection of variables and detection of emptiness are done in a single pass,
along with handling of complemented BDD nodes. The worst-case complexity
is that of actually computing a complete product, but in practice the procedure
terminates as soon as any path to one bdd is found.

5 BDDs at SAT Leaves

So far we have explained our algorithm for image computation in terms of enu-
merating all solutions of the CNF formula using SAT-solving techniques, while
performing BDD Bounding where possible in order to prune the search space.
This still su�ers from some drawbacks of a purely SAT-based approach, i.e. so-
lutions are enumerated one-at-a-time, without any reuse. To some extent this
drawback is countered by examining partial solutions (cubes) for inclusion and
for pruning, but we can actually do better.

It is useful in this regard to compare a purely SAT-based approach vs. a
purely BDD-based approach. In essence, both work on the same search space of
Boolean variables { SAT solvers use an explicit decision tree, while BDD oper-
ations work on the underlying DAGs. A BDD-based approach is more suitable
for capturing all solutions simultaneously. However, due to the variable ordering
restriction, it can su�er from a size blowup in the intermediate/�nal results. On
the other hand, a SAT decision tree has no variable ordering restriction, and can
therefore potentially manage larger problems. However, since it is not canonical,
many subproblem computations may get repeated.

In order to combine the relative advantages of both, we use a SAT decision
tree to organize the top-level search space. Within this tree, along any path,
rather than using the SAT-solver to explore the tree further, we can invoke a
BDD-based approach to compute all solutions in the sub-tree under that path.
This integrated scheme, which we call BDDs at SAT Leaves, is illustrated pic-
torially in Figure 6. In a sense, the SAT decision tree can be regarded as a
disjunctive partitioning of a large problem at the root into smaller subproblems
at the leaves, each of which can be handled by a purely BDD-based approach.

5.1 Leaf Subproblem: BDD-based Image Computation

The formulation of the BDD subproblem to be solved at each leaf of the SAT
decision tree is shown below:



Fig. 6. BDDs at SAT Leaves

New(y) = Path(y0) ^ 9x00; z:P (x)j
Path(x0) ^ Unsat(x00; z; y00) (3)

This computes the image set solutionsNew from a sub-tree rooted at the end
of a path in the SAT decision tree. Here Path(x0)=Path(y0) denote the BDDs
for the partial assignment of x=y variables along the path, and x00=y00 denote the
unassigned x=y variables. Unsat(x"; z; y") denotes the product of all unsatis�ed
clauses at the end of the path, projected by the assigned variables along that
path. Note that Unsat is expressed in terms of the unassigned x=y variables, and
all other unassigned variables z appearing the original CNF formula. Finally,
P (x)jPath(x0) denotes the restriction of the set P (x) to the partial assignments
of x.

Note that in this equation, the part following the existential quanti�cation is
identical in formulation to a standard purely BDD-based approach. The di�er-
ence is only in the granularity of the Boolean relation Unsat, and its conjunc-
tive decomposition. In a standard approach, the Boolean relation T (x;w; y) is a
transition relation, expressed in terms of the present state, primary input, and
next state variables only. Furthermore, its conjunctive decomposition is typically
based on splitting the next state variables.

In our approach, the Boolean relation is expressed as a CNF formula over the
set of present state, primary input, next state, and intermediate variables denot-
ing signals on internal gates that implement the next state logic of the sequential
circuit. Furthermore, the conjunctive decomposition follows the structural de-
composition of the circuit into gates. Though this �ner-grained approach must
handle more number of Boolean variables than the standard approach, it also
allows a greater potential for early quanti�cation, which has been noted to help
overcome the blowup during image computation (described in detail in the next
section).

Another bene�t of using the �ne-grained CNF partitions is that there is no
penalty for performing pre-image computations. Many researchers have noted
that backward symbolic traversal is less e�cient than forward traversal. This
is partly due to having to handle the typically irregular unreachable part of
the state space. Furthermore, most methods use partitions based on splitting



the next state (y) variables, while sharing the present state (x) variables. This
scheme is good for performing image computations with early quanti�cation of
x variables, but it does not work very well for pre-image computations where the
y variables need to be quanti�ed. In contrast, our �ne-grained CNF formulation
is symmetric with respect to the x and y variables. Therefore, our method can
be applied equally well for image as well as pre-image computations.

5.2 Leaf Subproblem: Quanti�cation Schedule

In practice, it is important to choose a good quanti�cation schedule, i.e. an
ordering on the conjunctions of the partitions that avoids intermediate blowup
during image computation. Typically, a good schedule tries to minimize the
number of active variables in a linearized schedule, by analyzing the variable
support sets of the individual partitions [11, 19, 17].

Leaf Image Computation() f
B = fprojected P(x), projected unsat clausesg; // set of BDDs

do f
v = min cost variable(B); // choose variable v

C = fb | b 2 B, v 2 bg; // v appears in conjuncts in C

c = and smooth(C, v); // quantify v along with conjunction

replace(B, C, c); // replace conjuncts C in B by c

g while (variables to be quantified);

c = and(B);

new = and(path(y),c);

g

Fig. 7. Leaf Image Computation

For each leaf image computation, the pseudo-code for the quanti�cation
schedule is shown in Figure 7. We start with a collection B of BDDs consist-
ing of the projected P (x) (and potentially Unreached(y)), and a BDD for every
projected unsatis�ed clause. Next, we heuristically select a variable v to be quan-
ti�ed. We greedily choose the minimum cost variable, where cost is estimated as
the product of the individual BDD sizes that the variable appears in. Once v is
selected, we gather in set C all conjuncts that v appears in. This is followed by
conjunction and quanti�cation of v in C, and this result replaces the set C in B.
(Since the y variables cannot be quanti�ed, we never choose them.) This basic
loop is iterated until no more variables can be quanti�ed. The remaining BDDs
(with only y variables) are conjoined together, and the result is conjoined with
path(y) (the cube of assigned y variables), to give the set of new image solutions
corresponding to that path.

Note that this formulation does not depend on a live variable analysis over a
linearized schedule but considers the actual BDD sizes for selection. Therefore, it
is better able to balance the computation in the form of a tree of conjunctions,



Fig. 8. Complete Image Computation Procedure

rather than a linear series of conjunctions. In our experiments, this heuristic
performed far better than others based on variable supports.

6 The Complete Image Computation Procedure

Our complete procedure for enumerating all solutions of the image set is shown in
Figure 8. It is based on the publicly available GRASP SAT-solver [16]. We start
by describing its original skeleton. After the initial preprocessing, the procedure
consists of an outer loop #1 (line 10) that explores the SAT decision tree to
increased depth if necessary. The inner loop #2 (line 24) is used primarily to
propagate constraints and check for con
icts after either a decision variable is
chosen, or after backtracking takes place to imply a certain value on a variable.
Loop #3 (line 26) actually performs the deduction to check for contradictions
and tries to resolve the con
ict using diagnosis until there is no more con
ict.
In GRASP, clauses are added to record causes of all backtracking operations,
including those used to enumerate multiple solutions.

The completeness argument for our procedure with respect to �nding all
solutions of the image set is based largely on the completeness of the original
procedure in GRASP [14]. The additions we have made to the original procedure
consist of introducing the techniques of BDDs at SAT Leaves (lines 11-18), and
BDD Bounding (lines 7-8, lines 42-57). The only other modi�cation we have
made is to perform con
ict analysis only if the value of the decision variable is
the �rst value being tried, or if its second value has been implied (line 27).

The correctness of �nding all BDD solutions at the leaves, and of pruning the
search space when BDD Bounding fails follows from the arguments described in



the previous sections. Note that in both these cases, we perform a chronological
backtracking (lines 14-17, lines 54-56) in order to search for the next solution.
In case BDD Bounding succeeds (line 42), we check whether a solution is found,
i.e. whether all clauses are satis�ed. If they are, a SAT solution has been found,
which is handled in the usual way, followed by chronological backtracking to �nd
the next solution (lines 45-48).

The reason for the modi�cation (line 27) is that we do not wish to add clauses
to record the causes of chronological backtracking, which can happen when a
solution is found, or after BDD Bounding fails. This makes GRASP's con
ict
analysis during diagnosis incomplete. Therefore, we do not allow diagnosis to
be performed if a con
ict is found with the second value of a variable after
chronological backtracking. This also disables non-chronological backtracking in
this case. Instead, we simply perform chronological backtracking (lines 34-39).
Overall, non-chronological backtracking is allowed to take place if the second
value of a variable is implied by some clause (either an original, or a con
ict
clause), but not if it is the assigned due to chronological backtracking after
BDD bounding, or �nding multiple solutions.

7 Why SAT?

As mentioned earlier, there has been recent interest in using disjunctive decom-
positions of the image computation problem using purely BDDs, with substan-
tially improved practical results [8, 17]. Our use of a SAT decision tree to split
the search tree, and use of the BDD-based image computations at its leaves
to perform the conjoining, results in a similar decomposition. However, in our
view, SAT provides many more advantages than just a disjunctive decomposi-
tion, which also di�erentiate our approach from the rest.

In particular, it allows us to easily perform implications of a variable decision
(splitting). In principle, deriving implications can be done in non-SAT contexts
as well, e.g. directly on circuit structure, using BDDs etc. However, to our best
knowledge, this has not been done in practice for image computation. By us-
ing a standard state-of-the-art SAT package [16], we are utilizing the years of
progress in this direction, as well as in related techniques of e�cient backtrack-
ing and con
ict analysis, which all help toward pruning the underlying search
space. Our use of BDD Bounding is an additional pruning technique, which al-
lows us to perform early backtracking without even invoking a BDD-based leaf
computation.

Another di�erence of our approach from the rest is in the granularity of our
underlying search space. Since we focus on the CNF formula for the transition
relation, which is derived directly from a gate-level structural description of the
design, we obtain a very �ne-grained partition of the relation, which is also sym-
metric with respect to image and pre-image computations. This allows us to split
into much �ner partitions, where decision variables can also be internal signals.
We use both BDD-based and SAT-based criteria for selection of these variables,
e.g. estimate of cofactor BDD sizes [8], number of clauses a variable appears in,



etc. We are also exploring SAT-based criteria targeted towards �nding multiple,
and not single, solutions. For each partition partition itself, the �ner level of
granularity allows us to exploit the bene�ts of early quanti�cation to a greater
degree. This is re
ected in our BDD-based quanti�cation schedule algorithm,
which uses di�erent criteria (actual BDD sizes) for selecting the variable to be
quanti�ed, and is organized as a tree of conjunctions, rather than a linear series.

Finally, our aim is to combine SAT and BDDs in a seamless manner in
order to facilitate a smooth and adaptive tradeo� between time and space for
solving the image computation problem. In our algorithm, the move from SAT
to BDDs occurs when a BDD subproblem is triggered. Ideally, we would like to
do this whenever we could be sure that the BDDs would not blow up. However,
there seems to be no simple measure to predict this a priori. We are currently
experimenting with several heuristics based on number of unassigned variables,
size of the projected P (x) set etc. We have also implemented a simple timeout
mechanism for the BDD subproblem, which allows us to return back to SAT,
in order to perform some more splits (unlike [17]). Since CNF formulas and
BDDs are entirely interchangeable, the boundary between SAT and BDDs is
somewhat arbitrary. In principle, it is possible to freely intermix CNFs and
BDDs for various parts of the circuit, and perform required analysis on the more
appropriate representation. Our approach is a step in this direction.

8 Experiments

We have implemented an initial prototype of our image computation algorithm
based on the CUDD BDD package [20] and the GRASP SAT solver [16]. This
section describes our experimental results on some ISCAS benchmark circuits
known to be di�cult for reachability analysis. All experiments were run on an
UltraSPARC workstation, with a 296 MHz processor, and 768 MB memory.

Since our main contribution here is to make the core step of image computa-
tion more robust, we only focus on experiments for exact reachability analysis.
Our algorithm can be easily adapted and enhanced in many orthogonal direc-
tions such as its use in approximate reachability analysis, invariant checking, and
model checking. We are currently working on porting this prototype to VIS [3]
in order to use its infrastructure for such applications, and also to have access
to a wider set of benchmarks.

A comparison of our prototype, which we call the CNF-BDD prototype, with
VIS [3] is shown in Table 1. It shows results for performing an exact reachability
analysis using pure breadth-�rst traversal on some benchmark circuits known to
be di�cult to handle in practice. The circuit name and number of latches are
shown in Columns 1 and 2, respectively. For our approach, a measure of circuit
complexity is the number of variables appearing in our CNF representation of
the transition relation { shown in Column 3. The number of steps completed is
shown in Column 4, where a "(p)" indicates partial traversal. Column 5 reports
the number of states reached. In Column 6, we report the CPU time taken
(in seconds) by VIS. For these experiments we used a timeout of 10 hours.



Table 1. Results for Exact Reachability Analysis

However, sometimes VIS runs into memory limitations before the timeout itself,
indicated as "{" in this column. Columns 7 through 11 provide numbers for
our CNF-BDD prototype. Column 7 reports the CPU time taken (in seconds).
Columns 8 and 9 report the memory used, and the number of peak BDD nodes, as
reported by the CUDD package. To give an idea of the e�ciency of our modi�ed
SAT solver, we report the number of BDDs-at-SAT Leaves (Leaves), and the
number of backtracks due to BDD Bounding (Bounds) in Columns 10 and 11,
respectively. In all our experiments, we did not observe any non-chronological
backtracking in the SAT solver. Therefore, the total number of backtracks during
image computation for all steps is the sum of Columns 10 and 11.

It can be seen that the performance of our CNF-BDD prototype is better than
VIS in 3 of 4 circuits. For s1512, our prototype is worse likely due to the large
number of steps { 1024, and the overhead in every step of re-starting the SAT
solver. For s1269, our prototype performs somewhat better than VIS, but not by
a big factor. For both of these circuits, our numbers are worse than those reported
recently by Moon et. al [17] { 891 sec. for s1269, and 2016 sec. for s1512. The
real gains from our approach can be seen in the more di�cult circuits s1423 and
s5378, where neither VIS nor our prototype can perform complete traversal. For
s1423, VIS was able to complete up to step 11. For the same number of steps, our
prototype is faster than VIS by more than a factor of 5. In fact, our prototype is
able to complete two additional steps of the reachability computation in the time
allotted compared to VIS. With ongoing improvements in the implementation,
our run time is likely to improve signi�cantly. Similarly, for s5378, our prototype
is faster than VIS up to step 6, and is able to complete 2 additional steps in
the time allotted. As can be seen from the Columns showing Mem and Peak,
our approach seems not to be memory bound yet, for these experiments. VIS,
on the other hand, gets memory bound in the allotted time. Furthermore, the
number of backtracks is also well under control, with BDD bounding being very
e�ective in pruning the SAT search space.

To contrast the memory requirements of our approach with a standard purely
BDD-based approach, we conducted detailed experiments for s1423. At this time,
we were not able to change the VIS interface in order to extract the memory
usage statistics we needed. Therefore, these experiments were conducted using a
stand-alone traversal program called "nanotrav", which is distributed along with



Fig. 9. Results on Memory Usage for Circuit s1423

the CUDD package [20]. In general, nanotrav performs worse than VIS, since
it does not include sophisticated heuristics for early quanti�cation or clustering
of the partitioned transition relation. This limitation does a�ect the memory
requirements to some extent, but we present Table 2 mainly to show the overall
trend. In this table, the number of steps and reached states is shown in Columns
1 and 2. For nanotrav, Column 3 reports the CPU time taken (in seconds). The
number of peak nodes and live nodes at the end of each image computation are
shown in Columns 4 and 5, respectively. Columns 6, 7, 8 report the same for
our CNF-BDD approach. We also report the number of BDDs at SAT Leaves
(Leaves), and the number of backtracks due to BDD Bounding (Bounds) in
Columns 9 and 10, respectively.

As can be seen clearly from this table, the memory requirements continue
to grow with the number of steps. However, this growth is at a faster pace for
nanotrav than it is for the CNF-BDD prototype. At the 11th step, the peak
BDD nodes for nanotrav are greater than for CNF-BDD by a factor of 4. Not
surprisingly, the CNF-BDD can complete two more reachability steps in about
the same time. Furthermore, the CNF-BDD prototype is still not limited by
memory while performing the 14th step, but is forced to time out after 10 hours.

In our approach, we can tradeo� between SAT solvers and BDDs by dy-
namically changing the conditions for triggering BDDs at SAT leaves. However,
this only provides a memory-time tradeo� for the purpose of image computa-
tion. It does not reduce the memory requirements in using monolithic BDDs
for representing state sets. As described in the earlier sections, our approach is
completely suited for handling state sets in the form of disjunctive partitions



(multiple BDDs). We are currently working on extending our prototype in this
direction.

9 Conclusions and Ongoing Work

In conclusion, we have presented an integrated algorithm for image computation
which combines the relative merits of SAT solvers and BDDs, while allowing
a dynamic interaction between the two. In addition, the use of a �ne-grained
CNF formula allowed us to explore the bene�ts of early quanti�cation in the
BDD subproblems. This can potentially �nd application in purely BDD-based
approaches as well.

Apart from extending our prototype to handle other applications such as ap-
proximate traversal, invariant checking and CTL model checking, a number of
enhancements to the basic image computation strategy are possible. Speci�cally,
we are considering various forms of partitioning including disjunctive partition-
ing of the reached set, exploiting disjoint partitions in the CNF formula (and
maximizing this e�ect through appropriate variable selection), and partitioning
the circuit structurally. The SAT-BDD approach works best when it has a large
reached set to bound against. We are experimenting with the use of an under-
approximate traversal as a preprocessing step to generate a large reached set,
before starting an exact traversal. Similarly, the SAT-BDD framework allows a
natural exploration of DFS vs. BFS, as well as various combinations of search
which are targeted for �nding bugs.
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