
The Semantics of VerilogUsing Transition System CombinatorsGordon J. Pacegpace@cs.chalmers.seChalmers University of Technology, SwedenAbstract. Since the advent of model checking it is becoming more com-mon for languages to be given a semantics in terms of transition systems.Such semantics allow to model check properties of programs but are usu-ally di�cult to formally reason about, and thus do not provide a su�-ciently abstract description of the semantics of a language. We presenta set of transition system combinators that allow abstract and compo-sitional means of expressing language semantics. These combinators arethen used to express the semantics of a subset of the Verilog hardwaredescription language. This approach allows reasoning about the languageusing both model checking and standard theorem proving techniques.1 IntroductionVarious bene�ts can be gained through the formal de�nition of the semantics ofa language: documentation of the language semantics, enabling of formal reason-ing, and automatic machine reasoning using techniques which allow (relatively)e�cient automatic property checking. Giving a semantics through which we ben-e�t from all these is usually di�cult to achieve. For example, documenting thefull semantics of an industrial strength language tends to yield inelegant se-mantics that are di�cult to reason about, while aiming at automatic machinereasoning one tends to construct semantics which are impractical for interactiveformal reasoning which may be necessary to verify large systems.Hardware description languages, such as Verilog and VHDL have a very complexsemantics de�ned in terms of their simulation behaviour. A lot of work hasbeen done on the formalisation of these languages but most work manages tosatisfactorily address only one of the desirable aspects of a formal semanticsas listed earlier. Commercial tools for formal veri�cation work only on registertransfer level (RTL) descriptions. Furthermore, the semantics they use is usuallynot formally documented. In this paper, we identify a formal domain whichallows us to document the semantics of these languages reasonably elegantlywithout sacri�cing formal reasoning or model checking.We are particularly interested in automatic machine veri�cation through the useof model checking using BDDs [4], or SAT based techniques [1, 12]. The formaldomain we use is a variant on standard transition systems since a wide variety

of techniques have been developed to check properties of transition systemse�ciently and automatically. A number of transition system combinators permitus to express the semantics of languages compositionally and also allow e�ectivereasoning about programs it the language.To illustrate the e�ectiveness of this approach, we present the semantics of asubset of Verilog [11], which we call VeriSmall. The techniques used for VeriS-mall readily scale up for larger subsets of Verilog. A more complete subset ofbehavioural Verilog has been formalised and implemented in a translator intoSMV [8], details of which can be obtained from the author.2 NotationA relation between sets A and B is a set of pairs (a; b) where a 2 A and b 2 B.The type of such a relation will be written as A$ B. If A;B7! represents a relationof type A$ B, then A;B7! 1 [A;B7! 2 is the union of the two relations. The forwardcomposition of the two relations will be written as A;B7! ; B;C7! . A;B7! �1 is the inverse ofthe relation | with type B $ A. The relational image of C (C � A) under A;B7!is written as A;B7! (C). The restriction of the domain of A;B7! to set C is written asA;B7! � C and similarly, A;B7! 6 � C is the restriction of the relation to the complementof C.The overriding of A;B7! 1 by A;B7! 2, written as A;B7! 1 � A;B7! 2 relates a with b if, eithera A;B7! 2 b or a is not in the domain of A;B7! 2 and a A;B7! 1 b. We make a relationtotal by adding any necessary identity transitions: (A;A7!)id def= id � A;A7! . Finally,(A;B7! ; C;D7!) is the pairwise joining of inputs and outputs of the relations to get arelation of type (A� C)$ (B �D).3 VeriSmallVerilog is a large and complex language. Documenting the detailed semanticsof the whole language is beyond the scope of this paper. We thus work with asyntactic subset of Verilog, which we call VeriSmall. The sub-language is chosensuch that the complexities of Verilog semantics are exposed. It is, however, suf-�ciently small to be presented in its entirety and reasoned about in this paper.The syntax of VeriSmall is given in �gure 1.VeriSmall is a concurrent language with steps made along parallel threads non-deterministically. The #0 construct (read zero delay) blocks a thread until allother threads are �nished or are similarly blocked. The behaviour of the rest ofthe language should be intuitively clear.To illustrate the e�ect of zero delays, consider the program (initial v = 1 kinitial v = 0). Note that this program is non-deterministic and v can �nishwith either value 1 or 0. On the other hand, (initial v = 1 k initial begin

hprogrami ::= hmoduleij hprogrami k hprogramihmodulei ::= initial hstatementij always hstatementihstatementi ::= skipj hvariablei = hexpressionij wait (hvariablei)j #0 hstatementij while (hexpressioni) hstatementij if (hexpressioni) hstatementi else hstatementij begin hblocki endhblocki ::= hstatementij hblocki ; hblockiFig. 1. The syntax of VeriSmall#0 v = 0 end) is a deterministic program and always terminates with v carryingvalue 0.Despite the fact that we have stripped Verilog down to its bare essentials, VeriS-mall is still a substantially complex language.3.1 The Simulation CycleThe o�cial documentation of Verilog describes the behaviour of a program interms of how it should be interpreted by a simulator. This is also how we willinformally describe the behaviour of VeriSmall programs.VeriSmall is a concurrent language with a scheduling algorithm which managesthe order of execution of concurrent threads. Each thread can be in one of threemodes: enabled, delayed(0), waitfor(v) or �nished. If a state is in mode waitfor(v)and the value of v is high, the thread is put into enabled mode. If no such threadsexist, then the scheduler executes an enabled thread and the process is repeated.When no enabled threads are available, all threads in delayed(0) mode are madeenabled and the process repeated from the beginning. The values of variablesare also stored by the simulator. In VeriSmall, variables range over the values 1(high), 0 (low), z (high impedance) and � (unknown). The simulation cycle isshown in �gure 2.The actions performed when moving along a thread depend on the instructioncurrently pointed at by the thread pointer.Skip: The thread pointer is moved forward.Assignments: If the �rst instruction is an assignment v = e, then the expres-sion e is evaluated in the current state and v set to the value calculated.Zero delays: To move along a thread pointing at #0 P we set the thread'sstate to delayed(0) and move the thread pointer to P .Conditionals: To move along the statement if (e) P else Q, e is evaluatedand depending on its value, the thread pointer is moved to point at P or Q.

initialise all variables to �set all thread states to enabledforever doif (there are threads waiting on a true variable) thenset them enabledelsif (there are enabled threads) thenchoose one non-deterministicallymove one step along the threadelsif (any delayed by 0 modules) thenenable all such modulesend Fig. 2. VeriSmall simulation cycleWait: If the statement is wait(v) then the thread's state is set to waitfor(v)and the thread pointer is moved forward.Loops: To move along the statement while (e) P , e is evaluated and depend-ing on its value, the thread pointer is set to point at P or the �rst instructionafter the loop instruction.Blocks: The instruction pointer is moved to the �rst instruction in the block.The top level module instructions are simply syntactic sugar, with always Pcorresponding to while (1) P and initial P to P .4 Layered Transition SystemsHardware description languages, the languages we are mainly interested in ex-pressing the semantics of, usually have an inherent concept of priority of execu-tion. In the case of VeriSmall, for instance, threads blocked by a zero delay getlower priority than enabled ones.With this speci�cation in mind, we add extra priority information by placing allstates in one of an ordered set of layers | the higher the the layer, the higherpriority given to that state when composing systems in parallel. We also use stan-dard transition system combinators such as union and sequential composition,as intermediate language constructs.It is important to note that the layering information is only necessary to composesystems and can be hidden away when we want to check properties of a transitionsystem.4.1 Formal De�nitionSince we would like to be able to compare the layering information in one machineto that in another, we will assume the existence of a �xed set of layers LAYERover which the total ordering � is de�ned.

De�nition 1: A �nite layered transition system (henceforth FLTS), is a 5-tuplehQ; I; F; 7!; layeri, where:Q �nite set of states,I set of initial states (I � Q),F set of �nal states (F � Q),7! transition relation between stateslayer total function from states to layersWe will use M to represent arbitrary FLTS. If necessary, we will also use sub-scripts. Unless otherwise stated, M is the FLTS hQ; I; F; 7!; layeri and Mi ishQi; Ii; Fi; i7!; layerii.4.2 Transition System CombinatorsDe�nition 2: Given a FLTS M and a predicate ri : Q! bool, then M domainrestricted to ri, is de�ned by:ri /M def= hQ; f� : I j ri(�)g; F; 7!; layeriDe�nition 3: Given a FLTS M and a predicate rf : Q ! bool, then M rangerestricted to ri, is de�ned by:M . rf def= hQ; I; f� : F j rf (�)g; 7!; layeriDe�nition 4: Given two FLTS M1 and M2, we de�ne the union of the twosystems M1 [M2 as follows:M1 [M2 def= hQ1 [Q2; I1 [I2; F1 [F2; 17! [27!; layer1 [layer2iNote that the two transition systems must agree on the layer of any commonstates.De�nition 5: Given two FLTS M1 and M2 and a relation jn between the �nalstates of M2 and the initial of M1 (jn : F1 $ I2), we de�ne the catenation ofthe two systems M1 jn; M2:M1 jn; M2 def= hQ1 [Q2; jnid(I1); F2; 17!; jnid [27!; layer1 [layer2iThus, whenever a transition can take us from a state � to state �0 which isrelated (via jn) to �00, we add the direct transition from � to �00. States in M2related to initial states in M1 are also initial.Since we have catenation, we can similarly de�ne the re
exive transitive closureof a FLTS.De�nition 6: Given a FLTS M and a relation jn between the �nal states andinitial states (jn : F $ I , with disjoint domain and range) we de�ne the re
exivetransitive closure of M | written as M� | as follows:M� def= hQ; jnid(I); F n dom(jn); 7!; jnid; layeriGiven a FLTS we sometimes need to re-map the states | this can be seen as aform of data abstraction. Given a relation r between the old and the new states,we can use this relation to create a new FLTS such that there is a transitionbetween two new states � and �0 if and only if they are related (by r) to two oldstates between which there was a transition.

r rDe�nition 7: Given a FLTS M and relation r : Q $ Q0 we can de�ne theremapping of M with r, written as r(M), as follows:r(M) def= h Q0; r(I); r(F); r�1 ; 7!; r; �� �max(r�1; layer(�)) iNote that in some cases, r may relate several old states with a new one. In thiscase the new state assumes the highest priority of its related states.4.3 Parallel CompositionTo compose two systems in parallel we need to de�ne what the result of joiningtwo states is. It is tempting to always take the Cartesian product of the old statespaces to be the new state space. However, this will complicate matters whenwe have states with overlapping domains. We thus choose to explicitly expressthis operation as two relations �1 and �2 which join two states together givingpriority to the �rst and second state respectively.�1;�2: (Q1 �Q2)! QWhen we do not care which state is given priority, we will use � de�ned as�1 [�2.We will also need to decompose states into separate parts:�: Q! (Q1 �Q2)Note that all the following FLTS combinators are parametrised by these func-tions.Given two FLTS, we can construct a FLTS acting like the coupling of the twoFLTS | this corresponds to running the two systems together, where for everytransition one system makes, the other also performs exactly one transition.De�nition 8: Given two FLTS M1 and M2, we can de�ne the synchronousparallel composition of the two systems M1kM2 as follows:M1kM2 def= h � (S1 � S2);� (I1 � I2);� (F1 � F2);�; (17!; 27!);�;�; (layer1; layer2);max2 i(where max2 relates a pair of numbers with the maximum of the two)We will write this transition relation as (17! k 27!).Sometimes it is necessary to allow the processes to stutter { while one of theprocesses carries out a transition, the other remains in the same state.De�nition 9: Given two FLTS M1 and M2, we de�ne the parallel compositionwith stuttering of the two systems M1k�M2 as follows:M1k�M2 def= h � (S1 � S2);� (I1 � I2);� (F1 � F2);�; (17! [id; 27!);�2 [�; (17!; 27! [id);�1;�; (layer1; layer2);max2 i

We will write this composition of transition relations as (17! k� 27!).Sometimes we would like to compose two systems concurrently, with only onesystem performing a transition at a time.De�nition 10: Given two FLTS M1 and M2, we de�ne the interleaving of thetwo systems M1 jjjM2 as follows:M1 jjjM2 def= h � (S1 � S2);� (I1 � I2);� (F1 � F2);�; (id; 27!);�2 [�; (17!; id);�1;�; (layer1; layer2);max2 iWe will write this composed transition relation as (17! jjj 27!).4.4 Layered Parallel CompositionDe�nition 11: Given two FLTS M1 and M2 and a function which determineshow the layers will be composed: + : LAYER! fk; k�; jjjg, we de�ne the layeredparallel composition of the two systems M1 +M2 as follows:M1 +M2 def= h � (S1 � S2);� (I1 � I2);� (F1 � F2); 7!;�; (layer1; layer2);max2 iwhere � 7! �0 def= layer(� �)1 > layer(� �)2 ^ �(17! jjj ;)�0 _layer(� �)1 < layer(� �)2 ^ �(; jjj 27!)�0 _layer(� �)1 = layer(� �)2 = i ^ �(17! +i 27!)�0This means that if one of the state components has a higher priority, the othercomponent is not allowed to perform any transitions (lines 1 and 2) while, if bothcomponents have the same priority, then the transition relation is determinedby the layer in which they lie (line 3).4.5 FLTS Combinator ExpressionsDe�nition 12:We de�ne TS� to be the language of all valid combinator expres-sions over layered transition systems with basic transition systems as terminals.TSV� is the similar language but which may also have variables (elements of V)as terminals.A context C(X) is an expression in TSfXg� . Given an expression M 2 TS�,C(M) is the same as C(X), but with instances of X replaced by M.5 Laws of FLTSThe FLTS combinators presented in the previous section allow us to specify thesemantics of VeriSmall and similar languages in a concise and readable manner.They also satisfy a number of laws which will enable us to reason about VeriSmallprograms more easily. In this section we present a number of such laws.

5.1 Reachability and InclusionIn this paper the only semantic property of FLTS we are concerned with isreachability:De�nition 13: Given a FLTS M, we de�ne the set of reachable states fromstates � as follows: reachableM(�) def= 7!� (�)If we only care about the reachable states in a particular FLTS (starting fromthe initial states), we write this as:reachable(M) def= reachableM(I)Given a projection function � : (Q1 [Q2) ! Q, we say that � and �0 are �-equivalent if �(�) = �(�0). We write this as � =� �0. Similarly, we can extendthis notation to sets of states:� �� �0 def= �(�) � �(�0)We will de�ne FLTS containment with respect to a transition function.De�nition 14: A FLTS M1 is said to be contained in M2 with respect to aprojection �, written as M1 v� M2, if:{ States are contained under �: Q1 �� Q2{ Initial states are contained under �: I1 �� I2{ Final states are inversely contained under �: F2 �� F1{ �-equivalent elements in Q1 and in Q2 belong to the same layer:8� : Q1; �0 : Q1�� =� �0 =) layer1(�) = layer2(�0)This is equivalent to: ��1; layer1 = ��1; layer2{ A member of Q2 must be able to emulate (up to �) all transitions of �-equivalent members of Q1:8(�1; �01) : 17!; �2 : Q2��1 =� �2 =) 9�02 : Q2 � �2 27! �02 ^ �01 =� �02This is equivalent to: �;��1; 17! � 27!;�;��1Transition system inclusions guarantee containment of reachable states.Lemma 1: If M1 v� M2 then, for any set of states �, reachableM1(�) ��reachableM2(�).5.2 MonotonicityProvided that � obeys a number of properties (dictating how it distributes overthe relations used in FLTS construction) expressions in TS� are monotone withrespect to v�. These proofs follow almost exclusively from the monotonicityof relational mapping, relational composition and set union. A frequently usedproperty of functions is �;��1;� = �.Lemma 2: If M1 v� M3 and M2 v� M4 then:

i. Reduction of initial states: If i = �; i then i /M1 v� i /M3.ii. Reduction of �nal states: If f = �; f then M1 . f v� M3 . f .iii. Remapping: If r;�;��1 = �;��1; r then r(M1) v� r(M3).iv. Union: M1 [M3 v� M2 [M4.v. Sequential composition: If jnid;�;��1 = �;��1; jnid then M1 jn; M3 v�M2 jn; M4.vi. Re
exive transitive closure: If jnid;�;��1 = �;��1; jnid and if also � =��0 =) (� 2 dom jn, �0 2 dom jn), then M�1 v� M�2.vii. Synchronous parallel composition: If the relation �;��1 commutes with statecomposition and state decomposition:�;�;��1 = (�;��1; �;��1);��; (�;��1; �;��1) = �;��1;�then M1kM3 v� M2kM4.viii. Parallel composition with stuttering: Similarly, if �;��1 commutes with statecomposition and state decomposition:�1;�;��1 = (�;��1; �;��1);�1�2;�;��1 = (�;��1; �;��1);�2�;��1;� = �; (�;��1; �;��1)then M1k�M3 v� M2k�M4.ix. Interleaving: Under the same constraints as case viii,M1 jjjM3 v� M2 jjjM4.x. Layered parallel composition: Under the same constraints as case viii, M1+M3 v� M2 +M4.Proof: The proofs of the di�erent cases are very similar and thus, we just presentthe proof of case ix.States:�(states of M1 jjj M3)= f de�nition of interleaving g�;�(Q1 �Q3)= f � = �;��1;� g�;�;��1;�(Q1 �Q3)= f assumption about � and � g(�;��1; �;��1);�;�(Q1 �Q3)� f M1 v� M3 and M2 v� M4 g(�;��1; �;��1);�; (�(Q2)� �(Q4))= f refold back g�;�(Q2 �Q4)= f de�nition of interleaving g�(states of M2 jjj M4)
Transitions:�;��1; (transition relation of M1 jjj M3)= f de�nition of interleaving g�;��1;�; (id; 37!);�2 [�;��1;�; (17!; id);�1= f assumptions about � g�; (�;��1; id; �;��1; 37!);�2 [�; (�;��1; 17!; �;��1; id);�1� f M1 v� M2 and M3 v� M4 g�; (�;��1; id; 47!;�;��1);�2 [�; (27!;�;��1; �;��1; id);�1= f refold back g�; (id; 47!);�2; �;��1[�; (27!; id);�1; �;��1= f de�nition of interleaving g(transition relation of M2 jjj M4);�;��1Initial and �nal states information and the layer information proofs proceedsimilar to the ones above. 2

Theorem 1: Combinator contexts are monotonic. IfM1 v� M2 then C(M1) v�C(M2).Proof: This follows directly using structural induction and lemma 2. 26 Formal Semantics of VeriSmallWe now document the formal semantics of VeriSmall in terms of FLTS. Notethat the use of layers allows us to avoid having worry about the details of thecomplex simulation cycle when describing the semantics of sequential programs.The state of the transition system corresponds to the state of the simulator: thevalues stored by variables, the position in the di�erent threads and the state ofeach thread.The state will be be a store: a `function' from variable names to values1. �(v) isthe value of variable in state �. We extend this notation to expressions. Thus, forexample, �(e and f) will be de�ned to be �(e) and �(f). Special variable namespos and grd (are used to represent the position in the thread and its staterespectively. �var is the store restricted to Verilog variables (that is excludingthe position and state variables).�[v := e] is the state just like � but with the value of variable v changed to �(e).The set of all states with Verilog variables in V , the value of pos ranging over Pand that of grd over G will be referred to as �V;P;G.In the course of the language semantics de�nition, we will sometimes need toknow the size of a statement or statement block. Given a statement P we cande�ne size(P) using primitive recursion over the structure of P :size(skip) def= 1 size(P ;Q) def= size(P) + size(Q)size(v = e) def= 1 size(begin P end) def= 1 + size(P)size(wait (v)) def= 1 size(#0 P) def= 1 + size(P)size(if e P else Q) def= 1 + size(P) size(while e P) def= 1 + size(P)+size(Q)It can be proved that the value of pos in any state of the transition systemproduced from a sequential program P will never reach or exceed size(P).Similarly we can de�ne the function vars(x) which returns the set of variablesoccuring in program or expression x.Layers and Other Preliminaries The subset of Verilog we present uses fourlayers: unblocking states waiting on a variable takes highest priority, followed bytransitions on enabled threads are of highest priority, then threads delayed byzero time and �nally, the �nished threads. Thus:1 The quotes around the word function are there because di�erent variables in thedomain of a store may return values of di�erent types and therefore it is not, strictlyspeaking, a function.

LAYER def= ffire; ena;del0; fingfire > ena > del0 > finThese layer names will also be overloaded with the related constant function |for example ena will also be used for �� � ena.We will often need to combine together di�erent automata but making sure thatthe states are disjoint. This will be done by modifying the pos values using aremapping of the FLTS. If pos+n is the function pos+n(�) = �[pos := pos+ n],then the remapping pos+n(M) is the renaming we require.Each FLTS produced will handle a particular set of variables. To increase theset of variables handled by a transition system we use interleaving composition.If S is �V;;;; then addV (M) def= hS; S; S; ;; fini jjjMThe relations used for this composition are the minimal relations satisfying:� � (� � V; � 6 � V)(�1; �2) �1 �2 � �1(�1; �2) �2 �1 � �2Expressions such as addV (pos+n(M)) will be written as MV;+n.The SemanticsSkip: The interpretation of skip, [[skip]] is a FLTS with two states:
pos=0

grd=
pos=0

grd=finena
ENA FINZero delays: Note that all zero delays are followed by a statement. However,this simply corresponds to normal sequential composition and we can give thesemantics of zero delays as independent statements and then de�ne [[#0 P]]to be [[#0;P]]. The semantics of zero delays [[#0]] is rather similar to that ofskip:

grd=findel(0)

pos=0
pos=0
grd=

grd=ena
pos=0

DEL0ENA FINAssignments: [[v = e]] is a FLTS with the following set of states:Q = �vars(v = e);f0g;fenabled;�nishedgThe initial states are those in which the thread is enabled:f� : Q j �(grd) = enabledgThe �nal states are those in which the thread is �nished:f� : Q j �(grd) = �nishedgThe system can go from enabled states to �nished ones by setting the valueof the variable to that of the expression.�[grd := enabled] 7! �[v := e][grd := �nished]

Finished states can perform re
exive transitions:�[grd := �nished] 7! �[grd := �nished]The layer of a state can be deduced from its guard:layer(�) = �ena if �(grd) = enabledfin otherwiseBelow is the FLTS [[v =!v]]:
grd=ena

pos=0

=v z

pos=0
grd=fin

grd=ena grd=ena
v 0=

grd=ena

pos=0
grd=fin

pos=0
grd=fin

=v z

pos=0

=

v 1 =v 0=

pos=0

v x

v x

=

pos=0
grd=fin

v 1

pos=0

=
ENA

FIN

ENA

FIN

ENA

FIN
FIN

ENA

Wait: The semantics of wait(v) are given by the FLTS in the diagram below:
grd=ena

pos=0

=v z

grd=ena grd=ena
v 0=

grd=wt(v) grd=wt(v)grd=wt(v)

grd=ena

fin

pos=0

=v 1

grd=wt(v)

pos=0

=

v x

= v 1

pos=0

=v x
grd=

pos=0 pos=0

=

=

=

pos=0pos=0pos=0

v z v 0 v 1
0 00 DELDEL FINDEL

ENAENA ENAENA

FIREThe �rst step the simulator may perform on such a thread is setting theguard to waitfor(v) and keep the variable value constant. States guarded bywaitfor(v) and in which v is not high can only remain the same state, but ifv is high, the system can proceed to terminate.Assumptions: To make the presentation of the semantics clearer, we introducea new statement in VeriSmall:hstatementi ::= hexpressioni>e>, read assume e, moves along the thread if e evaluates to 1 but aborts thethread if not. To complete the de�nition of the size function: size(e>) def= 0.The set of states is:Q = f� : �vars(e);f0g;f�nishedg j �(e) = 1gThe semantics of assumption:[[e>]] def= hQ;Q;Q; id; finiSequential composition: [[P ;Q]] can be expressed in terms of the FLTS [[P]]and [[Q]]. [[P ;Q]] def= [[P]]vars(Q) jn; [[Q]]vars(P);+size(P)jn relates states with the same store: �(jn)�0 if and only if �var = �0var (and� 2 F1 and �0 2 I2).

Blocks: It is tempting to de�ne the semantics of a block simply by removing theouter begin end keywords. Note, however, that the simulator takes one cycleto proceed to the �rst instruction. An accurate description of the semanticsis thus: [[begin P end]] def= [[skip; P]]Conditionals: The semantics of conditionals can be expressed using restrictionof initial states. However, the semantics are slightly more complex due to thefact that the simulator takes one cycle to evaluate the condition:[[if (e) P else Q]] def=[[skip]]V jn; [[(e = 1)>;P]]vars(Q);+1 [[[(e 6= 1)>;Q]]vars(P);+1+size(P)!where V = vars(if (e) P else Q) and the jn relation is the same as theone used in sequential composition.While loops: The semantics of while loops are similar:[[while (e) P]] def=[[skip]]V jn;([[(e = 1)>;P ; skip]]� [[[(e 6= 1)>]]vars(P))Again note that the simulator takes a cycle to evaluate the expression andthat the jn relation is the same as the one used in sequential composition.Parallel composition: Parallel composition can now be de�ned in terms oflayered composition: [[PkQ]] def= [[P]] + [[Q]]This layered composition uses:+fire = k +ena = jjj +del0 = k +fin = kThe state constructor relations are:(�; �0) �1 �0vars � �vars � fpos 7! (�(pos); �0(pos));grd 7! (�(grd); �0(grd))g(�; �0) �2 �vars � �0vars � fpos 7! (�(pos); �0(pos));grd 7! (�(grd); �0(grd))gThe state decomposition relation is simply the inverse of these two:� def= ��1.7 Reasoning about VeriSmallFinally, we show how these semantics can be used to prove general theoremsabout programs. These may later be used to aid or simplify automatic veri�cationof programs.Programs are usually built in di�erent parts which are eventually joined together.It is therefore important to be able to show that individual parts satisfy certainproperties whatever is plugged into them. The question thus arises: How can weprove such properties of our programs using model checking?The scenario depicted in the previous paragraph corresponds to a program beinga context with variables pointing out where other programs are to be plugged

in. Thus, for example, one may be given the program context C(P): initialbegin x=0; P; x=!y end and be asked to prove that if P is a program usingonly variable y, then x and y are never high at the same time.The technique we use is to substitute P with the most non-deterministic programpossible and prove the property of this new program. If we can prove that:� 2 reachable([[C(chaos(fyg))]]) =) �(x 6= 1 _ y 6= 1)then it should follow that for any program P which has alphabet fyg:� 2 reachable([[C(P)]]) =) �(x 6= 1 _ y 6= 1)Note that if we de�ne the FLTS semantics of chaos(V), the �rst statement canbe checked automatically using standard reachability techniques.7.1 ChaosThe semantics of chaos(V), where V is a set of variables, is straightforward tode�ne.The states are: Q = �V;f0g;fenabled;delayed(0);�nishedgThe initial states are those enabled: f� : Q j �(grd) = enabledgThe �nal states are those which are �nished: f� : Q j �(grd) = �nishedgStates can do anything, but once �nished they must remain so:id [((Q n F)�Q)The layer can be deduced from the mode:layer(�) = 8<:ena if �(grd) = enableddel0 if �(grd) = delayed(0)fin if �(grd) = �nishedAlso, size(chaos(V)) def= 1 and vars(chaos(V)) def= V7.2 The TheoremIt is quite easy to formulate the result we desire incorrectly. For example, inthe example given earlier, the safety condition that the thread position neverexceeds 4 can be proved of C(chaos(V)) but this will not be true for long enoughinstances of P . It is thus important to restrict safety conditions to variables andguards. Similarly we must make sure that P uses no variables other than thosein V . vars(P) = V8� � �(prop) = (red;�)(prop)8� � � 2 reachable([[C(chaos(V))]])=) �(prop)8� � � 2 reachable([[C(P)]]) =) �(prop)where red(�) def= (�[grd := if (grd = waitfor(v)) then grd0 else grd]) 6 � pos, andgrd0 = (layer(�) = fire) then enabled else delayed(0).Lemma 3: If vars(P) = V , then [[P]] vred [[chaos(V)]].

Lemma 4: VeriSmall programs are monotone with inclusions with variablesprojections: If [[P]] vred [[Q]] then [[C(P)]] vred [[C(Q)]].This result follows by checking that all relations used in the semantics commutewith red as speci�ed in lemma 2, and using structural induction over the programcontext C.From lemmata 3 and 4, it follows that [[C(P)]] vred [[C(chaos(V))]]. The desiredresult then follows from lemma 1.8 A Small ExampleThe following example shows how the techniques shown in this paper can beapplied to a small example. Consider the following VeriSmall program:initial begin v=0; P1; v=1; wait(w); P2; end;initial begin w=0; Q1; w=1; wait(v); Q2; end;It should be intuitively clear that if programs P1, P2, Q1 and Q2 do not write tovariables v and w, the programs P1 and Q2 are never executed at the same time.Similarly for P2 and Q1. A proof of this property for Verilog programs is givenin [9] using Duration Calculus. However, we can obtain this result more easilyby using theorem 1.Using the semantics given in this paper we obtain a FLTS for the followingprogram:initial initialbegin beginv=0; w=0;inP1=1; chaos(a,b,c); inP1=0; inQ1=1; chaos(a,b,c); inQ1=0;v=1; wait(w); w=1; wait(v);inP2=1; chaos(a,b,c); inP2=0; inQ2=1; chaos(a,b,c); inQ2=0;end; end;The FLTS is encoded in SMV using a translator we have written (recall that thesemantics of a FLTS are independent of the layer information), through which wecheck that it satis�es the CTL safety property: AG(:(inQ1 ^ inP2) ^ :(inP1 ^inQ2)) | \In every reachable state, inQ1 and inP2 are mutually exclusive.Similarly for inP1 and inQ2"2. The desired result then follows for programswhich use no variables other than a, b and c from theorem 1.This is not more than a toy example. It is clear that for the actual result wedesire, we need a stronger theorem | namely that the programs we replacechaos(V) by, may also use variables which are not used in the program context.2 One may object that we have also added the extra assignments in the program,however one can obtain propositions for inQ1, inQ2, etc in terms of pos in thestates of the FLTS. Theorem 1 would then also need to be strengthened to allowreasoning about position variables. In our tool, blocks of code can be named so asto automatically produce SMV macros for such properties.

This example only serves to demonstrate how chaos(V) can be used to providemore than a simply unconstrained global environment.Our Verilog{to{SMV translator can handle a much larger subset of Verilog thanVeriSmall. In particular it handles non-blocking assignments and edge guards(eg @(posedge v)) which allow more interesting examples to be constructed.Some other examples speci�ed and veri�ed include counters, simple arithmeticcircuits and small algorithms like the one shown above.9 Related WorkA number of model checkers come together with an abstract language in whichtransition systems can be speci�ed. Thus, for example, the SMV [8] input lan-guage provides a number of high level mechanisms which can be used to specifytransition systems. However, while the language allows means of describing com-plex transition relations, it is rather limited when it comes to means by whichtransition systems can be combined together. Similarly, Verus [2] provides a highlevel language in which transition systems can be speci�ed. However, due to thehigh level nature of the language, one is then left unsure as to whether the se-mantics speci�ed match those of a Verilog simulator precisely. Since we also viewour language semantics speci�cation as a documentation of the semantics, thisis undesirable. Another problem is that the the priority levels inherent in Ver-ilog would have to be encoded within the language, introducing another possiblesource of errors.The concept of layers corresponds very closely to the idea of priority in processalgebra [5]. Usually, however, priorities are associated to transitions or partic-ular language operators, as opposed to particular states. It would be useful tocompare our approach to these alternative ones.The semantics of Verilog have been expressed in terms of a number of variantsof transition systems. It is important to note that Verilog has two di�erent se-mantic interpretations: simulation semantics (which we deal with) and synthesissemantics (which is used in tools which synthesise Verilog code into hardware).Fiskio-Lasserer et al [6] express the simulation semantics in terms of an op-erational semantics while Sasaki [10] has expressed the semantics in terms ofabstract state machines. Both provide an excellent documentation of the seman-tics of the language but do not seem to be particularly suited for proofs aboutlarge programs. Gordon et al [7] gives the synthesis semantics of the languagein terms of transition systems, and the end result of the interpretation is verysimilar to the one we present. However, the semantics are expressed in terms ofa rather complex compilation process which would be rather di�cult to provethat it is semantic preserving with respect to other published semantics. Thesame problem can be found in [3], where a compilation procedure is given totranslate programs into �nite state machines.

10 ConclusionsWe have presented a set of combinators for enriched transition systems. The mostimportant features of our approach are the compositionality and the abstractionwhich allowed us to express the semantics of VeriSmall so easily. Also, the fullsemantics of Verilog are just a scaled up version of the semantics of VeriSmall wegive here, which is encouraging when one considers the intricate semantics thelanguage has. This work o�ers us a myriad of opportunities to explore. One of thepriorities is the derivation of a number of laws which allow a guaranteed correctimplementation of the combinators used. We have implemented a Verilog{to{transition{system translator based on these semantics, which is available uponrequest from the author. The translator supports a substantially larger subset ofVerilog than the one presented in this paper, including non-blocking assignmentsand guards.It is generally accepted that any realistic veri�cation of Verilog or VHDL seman-tics can only be e�ectively performed at the synthesis level. It is however thecase, that simulation is used extensively, and synthesis semantics are di�erentfrom the related simulation semantics. We are not advocating the veri�cation oflarge designs at simulation level, but attempt to provide a framework in whichthe simulation semantics of languages like VHDL and Verilog can be formallyreasoned about.As can be seen from the main theorem in this paper, certain problem solvingtechniques seem to recur in di�erent languages. The use of a chaos constructor,for example, seems to be applicable to most languages. Furthermore, the proofof correctness of the theorem corresponding to the one we give would, in mostcases follow the exact same steps. We hope this also to be the case with otherresults, especially ones related to the generation of a compiler from the sourcelanguage to transition systems from a given semantics.Acknowledgements: Thanks to Koen Claessen and Mary Sheeran for theirinvaluable comments. Thanks also to the anonymous referees for their helpfulcomments about the paper and how to improve it. Finally, thanks also must goto Walid Taha without whom the language formalised in this paper would nothave been `VeriSmall' but `a subset of Verilog'.References1. P. A. Abdulla, P. Bjesse, and N. E�en. Symbolic reachability analysis based onSAT-solvers. In TACAS00, 2000.2. S. Campos, E. Clarke, and M. Minea. The Verus tool: A quantitative approach tothe formal veri�cation of real-time systems. Lecture Notes in Computer Science,1254, 1997.3. S. Cheng, R. Brayton, R. York, K. Yelick, and A. Saldanha. Compiling Veriloginto timed �nite state machines. In 1995 IEEE International Verilog Conference(Washington 1995), pages 32{39. IEEE Press, 1995.

4. E. M. Clarke. Automatic veri�cation of �nite-state concurrent systems. LectureNotes in Computer Science, 815, 1994.5. R. Cleaveland, G. L�uttgen, and V. Natarajan. Priority in process algebra. InJ.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra.Elsevier, 2000. To appear.6. John Fiskio-Lasseter and Amr Sabry. Putting operational techniques to the test:A syntactic theory for behavioural Verilog. In The Third International Workshopon Higher Order Operational Techniques in Semantics (HOOTS'99), 1999.7. Mike Gordon, Thomas Kropf, and Dirk Ho�man. Semantics of the intemedi-ate language IL. Technical Report D2.1c, PROSPER, 1999. available fromhttp://www.cl.cam.ac.uk in /users/mjcg/IL/IL15.ps.8. K. McMillan. Symbolic model checking: An approach to the state explosion problem.Kluwer Academic Publishers, 1993.9. Gordon J. Pace and Jifeng He. Formal reasoning with Verilog HDL. In Proceedingsof the Workshop on Formal Techniques in Hardware and Hardware-like Systems,Marstrand, Sweden, June 1998.10. H. Sasaki. A Formal Semantics for Verilog-VHDL Simulation Interoperability byAbstract State Machine. In Proceedings of DATE'99 (Design, Automation andTest in Europe), ICM Munich, Germany, March 1999.11. IEEE Computer Society. IEEE Standard Hardware Description Language Basedon the Verilog Hardware Description Language. IEEE Computer Society Press,Piscataway, USA, 1996.12. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagramsand SAT procedures for e�cient symbolic model checking. In CAV00, 2000.

View publication statsView publication stats

https://www.researchgate.net/publication/2371514

