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Abstract. Since the advent of model checking it is becoming more com-
mon for languages to be given a semantics in terms of transition systems.
Such semantics allow to model check properties of programs but are usu-
ally difficult to formally reason about, and thus do not provide a suffi-
ciently abstract description of the semantics of a language. We present
a set of transition system combinators that allow abstract and compo-
sitional means of expressing language semantics. These combinators are
then used to express the semantics of a subset of the Verilog hardware
description language. This approach allows reasoning about the language
using both model checking and standard theorem proving techniques.

1 Introduction

Various benefits can be gained through the formal definition of the semantics of
a language: documentation of the language semantics, enabling of formal reason-
ing, and automatic machine reasoning using techniques which allow (relatively)
efficient automatic property checking. Giving a semantics through which we ben-
efit from all these is usually difficult to achieve. For example, documenting the
full semantics of an industrial strength language tends to yield inelegant se-
mantics that are difficult to reason about, while aiming at automatic machine
reasoning one tends to construct semantics which are impractical for interactive
formal reasoning which may be necessary to verify large systems.

Hardware description languages, such as Verilog and VHDL have a very complex
semantics defined in terms of their simulation behaviour. A lot of work has
been done on the formalisation of these languages but most work manages to
satisfactorily address only one of the desirable aspects of a formal semantics
as listed earlier. Commercial tools for formal verification work only on register
transfer level (RTL) descriptions. Furthermore, the semantics they use is usually
not formally documented. In this paper, we identify a formal domain which
allows us to document the semantics of these languages reasonably elegantly
without sacrificing formal reasoning or model checking.

We are particularly interested in automatic machine verification through the use
of model checking using BDDs [4], or SAT based techniques [1,12]. The formal
domain we use is a variant on standard transition systems since a wide variety



of techniques have been developed to check properties of transition systems
efficiently and automatically. A number of transition system combinators permit
us to express the semantics of languages compositionally and also allow effective
reasoning about programs it the language.

To illustrate the effectiveness of this approach, we present the semantics of a
subset of Verilog [11], which we call VeriSmall. The techniques used for VeriS-
mall readily scale up for larger subsets of Verilog. A more complete subset of
behavioural Verilog has been formalised and implemented in a translator into

SMV [8], details of which can be obtained from the author.

2 Notation

A relation between sets A and B is a set of pairs (a,b) where a € A and b € B.
The type of such a relation will be written as A <+ B. If V4 represents a relation

of type A < B, then ++; U *+¥5 is the union of the two relations. The forward
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composition of the two relations will be written as '+ ; = . '+ is the inverse of

the relation — with type B <> A. The relational image of C' (C' C A) under ++’
is written as +5" (C). The restriction of the domain of ¥ to set C' is written as

¥ C and similarly, ?—f,lf C is the restriction of the relation to the complement
of C.

The overriding of ?'—51 by 1"—52, written as ?'—51 @ An’—;sg relates a with b if, either
a A'l—fg b or a is not in the domain of A'n—fg and a Ab’—>B1 b. We make a relation
total by adding any necessary identity transitions: ()@ = id & +5'. Finally,

(=, ) is the pairwise joining of inputs and outputs of the relations to get a
relation of type (A x C) « (B x D).

3 VeriSmall

Verilog is a large and complex language. Documenting the detailed semantics
of the whole language is beyond the scope of this paper. We thus work with a
syntactic subset of Verilog, which we call VeriSmall. The sub-language is chosen
such that the complexities of Verilog semantics are exposed. It is, however, suf-
ficiently small to be presented in its entirety and reasoned about in this paper.
The syntax of VeriSmall is given in figure 1.

VeriSmall is a concurrent language with steps made along parallel threads non-
deterministically. The #0 construct (read zero delay) blocks a thread until all
other threads are finished or are similarly blocked. The behaviour of the rest of
the language should be intuitively clear.

To illustrate the effect of zero delays, consider the program (initial v =1 ||
initial v = 0). Note that this program is non-deterministic and v can finish
with either value 1 or 0. On the other hand, (initial v =1 || initial begin



(program) = (module)
| {program) || (program)
(module)  ::= initial (statement)
| always (statement)
(statement) ::= skip
| (variable) = (expression)
| wait ( (variable) )
| #0 (statement)
| while ( {ezpression) ) (statement)
| if ( (expression) ) (statement) else (statement)
| begin (block) end
(block) = (statement)
| (block) ; (block)

Fig. 1. The syntax of VeriSmall

#0 v = 0 end) is a deterministic program and always terminates with v carrying
value 0.

Despite the fact that we have stripped Verilog down to its bare essentials, VeriS-
mall is still a substantially complex language.

3.1 The Simulation Cycle

The official documentation of Verilog describes the behaviour of a program in
terms of how it should be interpreted by a simulator. This is also how we will
informally describe the behaviour of VeriSmall programs.

VeriSmall is a concurrent language with a scheduling algorithm which manages
the order of execution of concurrent threads. Each thread can be in one of three
modes: enabled, delayed(0), waitfor(v) or finished. If a state is in mode waitfor(v)
and the value of v is high, the thread is put into enabled mode. If no such threads
exist, then the scheduler executes an enabled thread and the process is repeated.
When no enabled threads are available, all threads in delayed(0) mode are made
enabled and the process repeated from the beginning. The values of variables
are also stored by the simulator. In VeriSmall, variables range over the values 1
(high), 0 (low), z (high impedance) and x (unknown). The simulation cycle is
shown in figure 2.

The actions performed when moving along a thread depend on the instruction
currently pointed at by the thread pointer.

Skip: The thread pointer is moved forward.

Assignments: If the first instruction is an assignment v = e, then the expres-
sion e is evaluated in the current state and v set to the value calculated.
Zero delays: To move along a thread pointing at #0 P we set the thread’s

state to delayed(0) and move the thread pointer to P.
Conditionals: To move along the statement if (e) P else (), e is evaluated
and depending on its value, the thread pointer is moved to point at P or Q.



initialise all variables to X
set all thread states to enabled
forever do
if (there are threads waiting on a true variable) then
set them enabled
elsif (there are enabled threads) then
choose one non-deterministically
move one step along the thread
elsif (any delayed by O modules) then
enable all such modules
end

Fig. 2. VeriSmall simulation cycle

Wait: If the statement is wait(v) then the thread’s state is set to waitfor(v)
and the thread pointer is moved forward.

Loops: To move along the statement while (e) P, e is evaluated and depend-
ing on its value, the thread pointer is set to point at P or the first instruction
after the loop instruction.

Blocks: The instruction pointer is moved to the first instruction in the block.

The top level module instructions are simply syntactic sugar, with always P
corresponding to while (1) P and initial P to P.

4 Layered Transition Systems

Hardware description languages, the languages we are mainly interested in ex-
pressing the semantics of, usually have an inherent concept of priority of execu-
tion. In the case of VeriSmall, for instance, threads blocked by a zero delay get
lower priority than enabled ones.

With this specification in mind, we add extra priority information by placing all
states in one of an ordered set of layers — the higher the the layer, the higher
priority given to that state when composing systems in parallel. We also use stan-
dard transition system combinators such as union and sequential composition,
as intermediate language constructs.

It is important to note that the layering information is only necessary to compose
systems and can be hidden away when we want to check properties of a transition
system.

4.1 Formal Definition

Since we would like to be able to compare the layering information in one machine
to that in another, we will assume the existence of a fixed set of layers LAYFER
over which the total ordering > is defined.



Definition 1: A finite layered transition system (henceforth FLTS), is a 5-tuple
(Q, I, F,—,layer), where:

() finite set of states,

I set of initial states (I C @),

F  set of final states (F C @),

— transition relation between states

layer total function from states to layers

We will use M to represent arbitrary FLTS. If necessary, we will also use sub-
scripts. Unless otherwise stated, M is the FLTS (Q, I, F,—,layer) and M; is

(Qi, I, Fy, v, layer;).

4.2 Transition System Combinators

Definition 2: Given a FLTS M and a predicate r; : Q — bool, then M domain
restricted to r;, is defined by:

ri <M Z(Q, {0 : I | ri(0)}, F,,layer)
Definition 3: Given a FLTS M and a predicate r¢ : () — bool, then M range
restricted to r;, is defined by:

Mory Z(Q,1,{o: F|r¢(a)},,layer)
Definition 4: Given two FLTS M; and Ms, we define the union of the two
systems M; U M, as follows:

My UMy E(Q1UQo, I UTy, Fy U Fy, s U, layer, U layer,)

Note that the two transition systems must agree on the layer of any common
states.

Definition 5: Given two FLTS M; and M, and a relation jn between the final
states of My and the initial of My (jn : Fi < I), we define the catenation of

the two systems M; '7;n Mo:

M Mo = (QiUQs, jn'(1h), Fa, +;jni U W, layer; U layer,)
Thus, whenever a transition can take us from a state o to state ¢’ which is
related (via jn) to o, we add the direct transition from o to o"”. States in My
related to initial states in M; are also initial.

Since we have catenation, we can similarly define the reflexive transitive closure

of a FLTS.

Definition 6: Given a FLTS M and a relation jn between the final states and
initial states (jn : F' + I, with disjoint domain and range) we define the reflezive
transitive closure of M written as M* as follows:
M =(Q, jn™ (1), F'\ dom(jn), —; jn'”, layer)

Given a FLTS we sometimes need to re-map the states  this can be seen as a
form of data abstraction. Given a relation r between the old and the new states,
we can use this relation to create a new FLTS such that there is a transition
between two new states o and o' if and only if they are related (by ) to two old
states between which there was a transition.
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Definition 7: Given a FLTS M and relation r : Q + @' we can define the
remapping of M with r, written as r(M), as follows:

r(M) = ( Q' r(I),r(F),r~";=;r, Ao -max(r';layer(a)) )
Note that in some cases, r may relate several old states with a new one. In this
case the new state assumes the highest priority of its related states.

4.3 Parallel Composition

To compose two systems in parallel we need to define what the result of joining
two states is. It is tempting to always take the Cartesian product of the old state
spaces to be the new state space. However, this will complicate matters when
we have states with overlapping domains. We thus choose to explicitly express
this operation as two relations »; and »>» which join two states together giving
priority to the first and second state respectively.
1,20 (Q1 X Q2) > Q

When we do not care which state is given priority, we will use > defined as
1 U >a.
We will also need to decompose states into separate parts:

<1 Q = (@1 X Q2)
Note that all the following FLTS combinators are parametrised by these func-
tions.

Given two FLTS, we can construct a FLTS acting like the coupling of the two
FLTS  this corresponds to running the two systems together, where for every
transition one system makes, the other also performs exactly one transition.

Definition 8: Given two FLTS M; and M-, we can define the synchronous
parallel composition of the two systems M; || M, as follows:
MMz = (= (St x Sa), = (It x I), = (F1 x Fy),
<; (5, 3); >, <; (layer, , layer, ); max, )
(where maxs relates a pair of numbers with the maximum of the two)
We will write this transition relation as (V> || ).

Sometimes it is necessary to allow the processes to stutter while one of the
processes carries out a transition, the other remains in the same state.
Definition 9: Given two FLTS M; and M, we define the parallel composition
with stuttering of the two systems M ||*M, as follows:
Mi||'Ma = (= (S x Sa), > (I x L), = (Fy x F),
< (B Uid, )0 U <; (2,5 Uid); =1,
<; (layery, layer,); maxs )



We will write this composition of transition relations as (- ||* ).
Sometimes we would like to compose two systems concurrently, with only one
system performing a transition at a time.
Definition 10: Given two FLTS M; and My, we define the interleaving of the
two systems M || My as follows:
M] ‘” M2 = < - (Sl X 52)7>' (Il X IQ)7>' (F1 X F2)7
< (id, ) =9 U <5 (F,id); =1,
<; (layer,, layer,); maxs )

We will write this composed transition relation as (7 || +).

4.4 Layered Parallel Composition

Definition 11: Given two FLTS M; and M, and a function which determines
how the layers will be composed: + : LAYER — {||, ||*, ||}, we define the layered
parallel composition of the two systems M; + M, as follows:
My + Ms &t < - (S] X 52)7
- (I] X 12), b (F] X F2)7|—>7
<; (layer,, layer,); maxs )
where
o o = layer(< o), > layer(< o)y Ao(Fs || 0o’ V
layer(< o)1 < layer(< o)a Aa(D || ©)o’ v
layer(< o)1 = layer(< o)y =i Ao(= +; =)o’
This means that if one of the state components has a higher priority, the other
component is not allowed to perform any transitions (lines 1 and 2) while, if both
components have the same priority, then the transition relation is determined
by the layer in which they lie (line 3).

4.5 FLTS Combinator Expressions

Definition 12: We define T'S= to be the language of all valid combinator expres-
sions over layered transition systems with basic transition systems as terminals.

TSY is the similar language but which may also have variables (elements of V')
as terminals.

A contert C(X) is an expression in TSL¥}. Given an expression M € TS=,
C' (M) is the same as C'(X), but with instances of X replaced by M.

5 Laws of FLTS

The FLTS combinators presented in the previous section allow us to specify the
semantics of VeriSmall and similar languages in a concise and readable manner.
They also satisfy a number of laws which will enable us to reason about VeriSmall
programs more easily. In this section we present a number of such laws.



5.1 Reachability and Inclusion

In this paper the only semantic property of FLTS we are concerned with is
reachability:

Definition 13: Given a FLTS M, we define the set of reachable states from
states X as follows:
def

reachable)¢(X) = —* (X)
If we only care about the reachable states in a particular FLTS (starting from
the initial states), we write this as:
reachable(M) = reachablex¢(1)

Given a projection function 7 : (@1 U @Q2) — @, we say that ¢ and o' are =-
equivalent if w(0) = w(o'). We write this as ¢ =, o'. Similarly, we can extend
this notation to sets of states:

YT Y = n(®) Cn(x)
We will define FLTS containment with respect to a transition function.

Definition 14: A FLTS M, is said to be contained in My with respect to a
projection 7w, written as My T, Mo, if:

— States are contained under m: @1 C; Q2
— Initial states are contained under 7: I} C, I
— Final states are inversely contained under w: Fy, C, F}
— m-equivalent elements in @)1 and in Q5 belong to the same layer:
Vo :Qq, o' : Q-
o =o' = layer, (o) = layer,(d')
This is equivalent to: 7 !; layer, = 7~ !; layer,
— A member of Q3 must be able to emulate (up to m) all transitions of -
equivalent members of Jy:
Y(o1,0)) i, 09 Qo
01 =r 09 = 30y : Qs - 09 »3)0'2/\(71 =, 0}

. . . _ 1 2 —
This is equivalent to: m; 71 C & ma!

Transition system inclusions guarantee containment of reachable states.

Lemma 1: If M; C, M, then, for any set of states X, reachabley, (X) C,
reachabley, (X).

5.2 Monotonicity

Provided that 7 obeys a number of properties (dictating how it distributes over
the relations used in FLTS construction) expressions in 7'S= are monotone with
respect to C,. These proofs follow almost exclusively from the monotonicity
of relational mapping, relational composition and set union. A frequently used

: PR PP
property of functions is m; 7~ ;7 = 7.

Lemma 2: If M; T, M3 and My C, My then:



i. Reduction of initial states: If 4 = ;i then i <My T, i < Ms.
ii. Reduction of final states: If f = 7; f then My > f T Mz > f.
iii. Remapping: If r;m; 71 = m; 7 ;7 then r(My) T, r(M3).
iv. Union: M; UMz C, My U My.
v. Sequential composition: If jn'?;m: 771 = 7;7~1; jn' then M, j;n M3 C,
M % My
vi. Reflexive transitive closure: If jn'®; ;7" = m;7~';jn' and if also 0 =,
o' = (o € dom jn < ¢' € dom jn), then M} C, M.
vii. Synchronous parallel composition: If the relation m; 7!
composition and state decomposition:
iU 7! = (mym
< (mym!
then M, [|[M3 E Ma|[My.
viii. Parallel composition with stuttering: Similarly, if 7; 7~
composition and state decomposition:

1

commutes with state

1 —1
T )5
C—1) e —1.

77-[-77r )77-[-77{ 7-<

I commutes with state

=umr = (ma i mrl) -
moymm = (myr ) -
mr R =< (mr ! mat)

then M] ||LM3 Eﬂ— M2||LM4.
ix. Interleaving: Under the same constraints as case viii, M; || Mz Cr Ma || My.

x. Layered parallel composition: Under the same constraints as case viii, M; +
M3z Ex Mz + My.

Proof: The proofs of the different cases are very similar and thus, we just present
the proof of case ix.

States: Transitions:

m(states of My || Ms) m; L (transition relation of M || M3)
= { definition of interleaving } = { definition of interleaving }

=i m(Q1 % @) mm < (id, 3); 2 U
sim=mr im) m < (=, id); -

=imm (@ X Qs) = { assumptions about 7 }

= { assumption about 7 and > }

-1, - —1. 3
< (m; id, T i) o U
(myr Y, ma ) - (Qr x Qa) P(mmT pid, mr )

— 1 — .
C{ M Cr Ms and Mo Cr Ms } < (ma e, ma id); -
(rim mm imy (1(Qu) x w(Qu))  © M B Mo and M G M
= { refold back } < (mrid, ) -2 U
=7 (Q2 X Q) < (Bymn L ma id);
= { definition of interleaving } = { refold back }
m(states of Mo || M4) < (id, >); =o; T U

<; (B id); -y !
= { definition of interleaving }

(transition relation of Mo || Ma);m; "

Initial and final states information and the layer information proofs proceed
similar to the ones above.

O



Theorem 1: Combinator contexts are monotonic. If My E, My then C(M;) C,
C(My).

Proof: This follows directly using structural induction and lemma 2. O

6 Formal Semantics of VeriSmall

We now document the formal semantics of VeriSmall in terms of FLTS. Note
that the use of layers allows us to avoid having worry about the details of the
complex simulation cycle when describing the semantics of sequential programs.

The state of the transition system corresponds to the state of the simulator: the
values stored by variables, the position in the different threads and the state of
each thread.

The state will be be a store: a ‘function’ from variable names to values!. o(v) is
the value of variable in state 0. We extend this notation to expressions. Thus, for
example, o(e and f) will be defined to be o(e) and o(f). Special variable names
pos and grd (are used to represent the position in the thread and its state
respectively. 0,4, is the store restricted to Verilog variables (that is excluding
the position and state variables).

o[v := e] is the state just like o but with the value of variable v changed to o(e).
The set of all states with Verilog variables in V', the value of pos ranging over P
and that of grd over G will be referred to as Xy pq.

In the course of the language semantics definition, we will sometimes need to
know the size of a statement or statement block. Given a statement P we can
define size(P) using primitive recursion over the structure of P:

size(skip) =] size(P; Q) = size(P) + size(Q)

size(v =€) =] size(begin P end) & 1 + size(P)

size(wait (v)) =] size(#0 P) 1 + size(P)

size(if e P else Q) = 1+ size(P) size(while e P) = 1+ size(P)
+size(Q)

It can be proved that the value of pos in any state of the transition system
produced from a sequential program P will never reach or exceed size(P).

Similarly we can define the function vars(z) which returns the set of variables
occuring in program or expression x.

Layers and Other Preliminaries The subset of Verilog we present uses four
layers: unblocking states waiting on a variable takes highest priority, followed by
transitions on enabled threads are of highest priority, then threads delayed by
zero time and finally, the finished threads. Thus:

! The quotes around the word function are there because different variables in the
domain of a store may return values of different types and therefore it is not, strictly
speaking, a function.



LAYER = {FIRF, ENA, DELg, FIN}
FIRE > ENA > DELg > FIN

These layer names will also be overloaded with the related constant function
for example ENA will also be used for Ao - ENA.

We will often need to combine together different automata but making sure that
the states are disjoint. This will be done by modifying the pos values using a
remapping of the FLTS. If pos,, is the function posy, (o) = o[pos := pos + n|
then the remapping posy, (M) is the renaming we require.

Each FLTS produced will handle a particular set of variables. To increase the
set of variables handled by a transition system we use interleaving composition.
If Sis Yv.0,0 then

addy (M) = (S, S, S, 0, FIN) || M
The relations used for this composition are the minimal relations satisfying;:
o < (e[ V,o JV)
(01,09) =1 02 @ 0y
(01,09) =2 01 D 02

Expressions such as addy (pos4,(M)) will be written as My, 4p,.

The Semantics

Skip: The interpretation of skip, [skip] is a FLTS with two states:

Zero delays: Note that all zero delays are followed by a statement. However,
this simply corresponds to normal sequential composition and we can give the
semantics of zero delays as independent statements and then define [#0 P]
to be [#0; P]. The semantics of zero delays [#0] is rather similar to that of
skip:

Assignments: [v = €] is a FLTS with the following set of states:
Q= Evars(v = e),{0},{enabled finished}

The initial states are those in which the thread is enabled:

{o:Q | o(grd) = enabled}
The final states are those in which the thread is finished:

{o:Q | o(grd) = finished}
The system can go from enabled states to finished ones by setting the value
of the variable to that of the expression.

o[grd := enabled] — o[v := e][grd := finished]



Finished states can perform reflexive transitions:

olgrd := finished] — o[grd := finished|
The layer of a state can be deduced from its guard:
ENA if o(grd) = enabled
FIN otherwise

layer(o) =
Below is the FLTS [v =!v]:

The first step the simulator may perform on such a thread is setting the
guard to waitfor(v) and keep the variable value constant. States guarded by
waitfor(v) and in which v is not high can only remain the same state, but if
v is high, the system can proceed to terminate.
Assumptions: To make the presentation of the semantics clearer, we introduce
a new statement in VeriSmall:
(statement) ::= (expression
, read assume e, moves along the thread if e evaluates to 1 but aborts the
thread if not. To complete the definition of the size function: size(e') = 0.
The set of states is:
Q={o: Evars(e){o},{finished} [o(e) =1}
The semantics of assumption:
[eT] =(Q,Q,Q,id, FIN)
Sequential composition: [P; Q] can be expressed in terms of the FLTS [P]

and [Q].

>T
el

def in
[P:Q] = [[P]]V&I"S(Q) ; [[Q]]vars(P)7+size(P)
jn relates states with the same store: o(jn)o’ if and only if 0,4, = 0}, (and
o € Fy and o' € I).



Blocks: It is tempting to define the semantics of a block simply by removing the
outer begin end keywords. Note, however, that the simulator takes one cycle
to proceed to the first instruction. An accurate description of the semantics
is thus:

[begin P end] = [skip; P]

Conditionals: The semantics of conditionals can be expressed using restriction
of initial states. However, the semantics are slightly more complex due to the
fact that the simulator takes one cycle to evaluate the condition:

def

[if (e) P else Q] =
[skip]v '7;n
[e=1)T; P]]vars(Q),H U )

T.

[(e #1) ’Q]]vars(P),+1+size(P)
where V = vars(if (e) P else ()) and the jn relation is the same as the
one used in sequential composition.

While loops: The semantics of while loops are similar:
[while (e) P]<
[skip]v '7;n
(It = 1)T: Piskip]” ULl # 1) Tyara(p)
Again note that the simulator takes a cycle to evaluate the expression and
that the jn relation is the same as the one used in sequential composition.
Parallel composition: Parallel composition can now be defined in terms of
layered composition:
def
[Pl = [Pl + Q]
This layered composition uses:
+rire = || +Ena = +pELy = +EiN =
The state constructor relations are:
(0,0") =1 0L 4rs B Ovars D { pos — (a(pos),d’ (pos))
grd (a(grd), o' (grd))}
(0,0") %2 Opars ® 0L ,.s B {POs = (0(pos), o’ (pos)),
grd — (o(grd),o’(grd))}

)

The state decomposition relation is simply the inverse of these two: < = =1,

7 Reasoning about VeriSmall

Finally, we show how these semantics can be used to prove general theorems
about programs. These may later be used to aid or simplify automatic verification
of programs.

Programs are usually built in different parts which are eventually joined together.
It is therefore important to be able to show that individual parts satisfy certain
properties whatever is plugged into them. The question thus arises: How can we
prove such properties of our programs using model checking?

The scenario depicted in the previous paragraph corresponds to a program being
a context with variables pointing out where other programs are to be plugged



in. Thus, for example, one may be given the program context C(P): initial
begin x=0; P; x=!y end and be asked to prove that if P is a program using
only variable y, then x and y are never high at the same time.

The technique we use is to substitute P with the most non-deterministic program
possible and prove the property of this new program. If we can prove that:

o € reachable([C(chaos ({y}))]) = o(x#1Vy#1)

then it should follow that for any program P which has alphabet {y}:
o € reachable([C(P)]) = o(x#1Vy#1)

Note that if we define the FLTS semantics of chaos (V), the first statement can
be checked automatically using standard reachability techniques.

7.1 Chaos

The semantics of chaos(V), where V is a set of variables, is straightforward to
define.

The states are: @ = EV,{O},{enabIed,deIayed(0),finished}

The initial states are those enabled: {o : Q | o(grd) = enabled}
The final states are those which are finished: {0 : @ | o(grd) = finished}
States can do anything, but once finished they must remain so:

id U((Q\ F) xQ)

The layer can be deduced from the mode:

ENA if o(grd) = enabled
layer(c) = ¢ DELg if o(grd) = delayed(0)
FIN if o(grd) = finished

def

Also, size(chaos (V)) = 1 and vars(chaos(V)) = V

7.2 The Theorem

It is quite easy to formulate the result we desire incorrectly. For example, in
the example given earlier, the safety condition that the thread position never
exceeds 4 can be proved of C'(chaos (V)) but this will not be true for long enough
instances of P. It is thus important to restrict safety conditions to variables and
guards. Similarly we must make sure that P uses no variables other than those
in V.

vars(P) =V

Yo - o(prop) = (red; o)(prop)

Vo - o € reachable([C(chaos (V))])

= o(prop)
Yo - o € reachable([C(P)]) = o(prop)

def

where red(c) = (o[grd := if (grd = waitfor(v)) then grd' else grd]) J pos, and
grd" = (layer(s) = FIRE) then enabled else delayed(0).

Lemma 3: If vars(P) = V, then [P] C,,; [chaos (V)].



Lemma 4: VeriSmall programs are monotone with inclusions with variables

projections: If [P] C,..; [Q] then [C(P)] C,,4 [C(Q)].

This result follows by checking that all relations used in the semantics commute
with red as specified in lemma 2, and using structural induction over the program
context C.

From lemmata 3 and 4, it follows that [C'(P)] C,,.47 [C(chaos (V))]. The desired
result then follows from lemma 1.

8 A Small Example

The following example shows how the techniques shown in this paper can be
applied to a small example. Consider the following VeriSmall program:
initial begin v=0; P1; v=1; wait(w); P2; end;
initial begin w=0; Q1l; w=1; wait(v); Q2; end;
It should be intuitively clear that if programs P1, P2, Q1 and Q2 do not write to
variables v and w, the programs P1 and Q2 are never executed at the same time.
Similarly for P2 and Q1. A proof of this property for Verilog programs is given
in [9] using Duration Calculus. However, we can obtain this result more easily
by using theorem 1.

Using the semantics given in this paper we obtain a FLTS for the following
program:

initial initial
begin begin
v=0; w=0;
inP1=1; chaos(a,b,c); inP1=0; inQ1=1; chaos(a,b,c); inQ1=0;
v=1; wait(w); w=1; wait(v);
inP2=1; chaos(a,b,c); inP2=0; inQ2=1; chaos(a,b,c); inQ2=0;
end; end;

The FLTS is encoded in SMV using a translator we have written (recall that the
semantics of a FLTS are independent of the layer information), through which we
check that it satisfies the CTL safety property: AG(—(inQ1 A inP2) A =(inP1 A
inQ2)) — “In every reachable state, inQ1 and inP2 are mutually exclusive.
Similarly for inP1 and inQ2”2. The desired result then follows for programs
which use no variables other than a, b and ¢ from theorem 1.

This is not more than a toy example. It is clear that for the actual result we
desire, we need a stronger theorem namely that the programs we replace
chaos (V) by, may also use variables which are not used in the program context.

2 One may object that we have also added the extra assignments in the program,
however one can obtain propositions for in@1, in)2, etc in terms of pos in the
states of the FLTS. Theorem 1 would then also need to be strengthened to allow
reasoning about position variables. In our tool, blocks of code can be named so as
to automatically produce SMV macros for such properties.



This example only serves to demonstrate how chaos (V) can be used to provide
more than a simply unconstrained global environment.

Our Verilog to SMV translator can handle a much larger subset of Verilog than
VeriSmall. In particular it handles non-blocking assignments and edge guards
(eg @(posedge v)) which allow more interesting examples to be constructed.
Some other examples specified and verified include counters, simple arithmetic
circuits and small algorithms like the one shown above.

9 Related Work

A number of model checkers come together with an abstract language in which
transition systems can be specified. Thus, for example, the SMV [8] input lan-
guage provides a number of high level mechanisms which can be used to specify
transition systems. However, while the language allows means of describing com-
plex transition relations, it is rather limited when it comes to means by which
transition systems can be combined together. Similarly, Verus [2] provides a high
level language in which transition systems can be specified. However, due to the
high level nature of the language, one is then left unsure as to whether the se-
mantics specified match those of a Verilog simulator precisely. Since we also view
our language semantics specification as a documentation of the semantics, this
is undesirable. Another problem is that the the priority levels inherent in Ver-
ilog would have to be encoded within the language, introducing another possible
source of errors.

The concept of layers corresponds very closely to the idea of priority in process
algebra [5]. Usually, however, priorities are associated to tramsitions or partic-
ular language operators, as opposed to particular states. It would be useful to
compare our approach to these alternative ones.

The semantics of Verilog have been expressed in terms of a number of variants
of transition systems. It is important to note that Verilog has two different se-
mantic interpretations: simulation semantics (which we deal with) and synthesis
semantics (which is used in tools which synthesise Verilog code into hardware).
Fiskio-Lasserer et al [6] express the simulation semantics in terms of an op-
erational semantics while Sasaki [10] has expressed the semantics in terms of
abstract state machines. Both provide an excellent documentation of the seman-
tics of the language but do not seem to be particularly suited for proofs about
large programs. Gordon et al [7] gives the synthesis semantics of the language
in terms of transition systems, and the end result of the interpretation is very
similar to the one we present. However, the semantics are expressed in terms of
a rather complex compilation process which would be rather difficult to prove
that it is semantic preserving with respect to other published semantics. The
same problem can be found in [3], where a compilation procedure is given to
translate programs into finite state machines.



10 Conclusions

We have presented a set of combinators for enriched transition systems. The most
important features of our approach are the compositionality and the abstraction
which allowed us to express the semantics of VeriSmall so easily. Also, the full
semantics of Verilog are just a scaled up version of the semantics of VeriSmall we
give here, which is encouraging when one considers the intricate semantics the
language has. This work offers us a myriad of opportunities to explore. One of the
priorities is the derivation of a number of laws which allow a guaranteed correct
implementation of the combinators used. We have implemented a Verilog—to—
transition system translator based on these semantics, which is available upon
request, from the author. The translator supports a substantially larger subset of
Verilog than the one presented in this paper, including non-blocking assignments
and guards.

It is generally accepted that any realistic verification of Verilog or VHDL seman-
tics can only be effectively performed at the synthesis level. It is however the
case, that simulation is used extensively, and synthesis semantics are different,
from the related simulation semantics. We are not advocating the verification of
large designs at simulation level, but attempt to provide a framework in which
the simulation semantics of languages like VHDL and Verilog can be formally
reasoned about.

As can be seen from the main theorem in this paper, certain problem solving
techniques seem to recur in different languages. The use of a chaos constructor,
for example, seems to be applicable to most languages. Furthermore, the proof
of correctness of the theorem corresponding to the one we give would, in most
cases follow the exact same steps. We hope this also to be the case with other
results, especially ones related to the generation of a compiler from the source
language to transition systems from a given semantics.
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