Skip to main content

An Hybrid Evolutive-Genetic Strategy for the Inverse Fractal Problem of IFS Models

  • Conference paper
Book cover Advances in Artificial Intelligence (IBERAMIA 2000, SBIA 2000)

Abstract

Iterated Function Systems are popular techniques for gene- rating selfsimilar fractals. An important practical problem in this field is that of obtaining the IFS code which approximates a given image with a certain prescribed accuracy (inverse IFS problem). In this paper we present an hybrid evolutive-genetic algorithm to solve the inverse IFS problem in two steps: First, an Evolutive Strategy (ES) is applied to identify a set of affine transformations associated with selfsimilar structures within the image. Then, the best adapted transformations are combined forming an initial population of IFS models and a Genetic Algorithm (GA) is used to find the optimal IFS model. We show that this hybrid algorithm performs significantly better than one-step global evolutive or genetic algorithms which have been recently reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turner, M.J. and Blackledge, J.M., Andrews, P.R.: Fractal Geometry in Digital Imaging. Academic Press, 1998.

    Google Scholar 

  2. Barnsley, M.F.: Fractals everywhere, second edition. Academic Press, 1990.

    Google Scholar 

  3. Fisher, Y.: Fractal Image Compression: Theory and Application. Springer Verlag, 1995.

    Google Scholar 

  4. Gutiérrez, J.M., Iglesias, A., Rodríguez, M.A. and Rodríguez, V.J.: Generating and Rendering Fractal Images. The Mathematica Journal 7(1), 6–14, 1997.

    Google Scholar 

  5. Vyrscay, E.R.: Moment and collage methods for the inverse problem of fractal construction with iterated function systems, In H.O. Peitgen et al. editors. Fractals in the Fundamental and Applied Sciences. Elsevier, 1991.

    Google Scholar 

  6. Abiko, T., Kawamata, M.: IFS coding of non-homogeneous fractal images using Gröbner basis. Proceedings of the IEEE International Conference on Image Processing (1999) 25–29.

    Google Scholar 

  7. Berkner, K.: A wavelet-based solution to the inverse problem for fractal interpolation functions, in L. Véhel et al. editors. Fractals in Engineering’97. Springer Verlag, 1997.

    Google Scholar 

  8. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, second edition, Springer-Verlag, 1994.

    Google Scholar 

  9. Holland, J.H.: Adaptation in natural and artificial systems. The University o Michigan Press, 1975.

    Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989.

    Google Scholar 

  11. Rechenberg, I.: Evolution strategie: Optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog Verlag, 1973.

    Google Scholar 

  12. Lutton, E. et al.: Mixed IFS-resolution of the inverse problem using genetic programming. INRIA Rapport 2631, 1995.

    Google Scholar 

  13. Shonkwiler, R., Mendivil, F., Deliu, A.: Genetic algorithms for the 1-D fractal inverse problem. Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 495–501, 1991.

    Google Scholar 

  14. Goentzel, B.: Fractal image compression with the genetic algorithm. Complexity International 1, 111–126, 1994.

    Google Scholar 

  15. Nettleton, D.J., Garigliano, R.: Evolutionary algorithms and a fractal inverse problem. Biosystems 33, 221–231, 1994.

    Article  Google Scholar 

  16. Evans, A.K. and Turner, M.J.: Specialisation of evolutionary algorithms and data structures for the IFS inverse problem, in M.J. Turner editor. Proceedings of the Second IMA Conference on Image Processing: Mathematical Methods, Algorithms and Applications, 1998.

    Google Scholar 

  17. Klette, R., Zamperoni, P.: Measures of correspondence between binary patters. Image and Vision Computing 5 (1987) 287–295

    Article  Google Scholar 

  18. Rooij, A.J., Jain, L.C.: Neural network training using genetic algorithms. World Scientific, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutiérrez, J.M., Cofiño, A., Ivanissevich, M.L. (2000). An Hybrid Evolutive-Genetic Strategy for the Inverse Fractal Problem of IFS Models. In: Monard, M.C., Sichman, J.S. (eds) Advances in Artificial Intelligence. IBERAMIA SBIA 2000 2000. Lecture Notes in Computer Science(), vol 1952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44399-1_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-44399-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41276-2

  • Online ISBN: 978-3-540-44399-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics