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Abstract. In this paper, we determine the complexity of propositional theory
curbing. Theory Curbing is a nonmonotonic technique of common sense reason-
ing that is based on model minimality but unlike circumscription treats disjunc-
tion inclusively. In an earlier paper, theory curbing was shown to be feasible in
PSPACE, but the precise complexity was left open. In the present paper we prove
it to bePSPACE-complete. In particular, we show that both the model checking
and the inferencing problem under curbed theories arePSPACE complete. We
also study relevant cases where the complexity of theory curbing is located – just
as for plain propositional circumscription – at the second level of the polynomial
hierarchy and is thus presumably easier thanPSPACE.

1 Introduction

Circumscription [15] is a well-known technique of nonmonotonic reasoning based on
model-minimality. The (total) circumscriptionCirc(T ) of a theoryT , which is a finite
set of sentences, consists of a formula whose set of models is equal to the set of all
minimalmodels ofT . For various variants of circumscription, see [14].

As noted by various authors [5, 6, 17–20], reasoning under minimal models runs
into problems in connection with disjunctive information. The minimality principle of
circumscription often enforces theexclusiveinterpretation of a disjunctiona ∨ b by
adopting the models in which eithera or b is true but not both. There are many situations
in which aninclusiveinterpretation is desired and seems more natural (for examples,
see Section 2).

To redress this problem, and to be able to handle inclusive disjunctions of positive
information properly, the method oftheory curbingwas introduced in [8]. This method
is based on the notion of agood modelof a theory. Roughly, a good model of a theory
T is either a minimal model, or a model ofT that constitutes a minimal upper bound
of a set of good models ofT . The sentenceCurb(T ) has as its model precisely the
good models ofT . WhenT is a first-order theory,Curb(T ) is most naturally expressed
as a third-order formula. However, in [8], it was shown thatCurb(T ) is expressible in
second-order logic.

Circumscription is usually not applied toall predicates of a theory, but only to the
members of a listp of predicates, where the predicates from a listz disjoint with
p, called thefloating predicates, may be selected such that the predicates inp be-
come as small as possible; the remaining predicates not occurring inp andz (called
fixedpredicates) are treated classically. In analogy to this, in [8], formulas of the form



Curb(T ; p, z) are defined, where curbing is applied to the predicates in listp only,
while those from listz (the floating predicates) are interpreted in the standard way. In
the propositional case, the listsp andq of predicate symbols are lists of propositional
variables (corresponding to zero-ary predicates).

Since its introduction in [8], the curbing technique has been used and studied in a
number of other papers. For instance, Scarcello, Leone, and Palopoli [21], provide a
fixpoint semantics for propositional curbing and derive complexity results for curbing
Krom theories, i.e., clausal theories where each clause contains at most two literals.
Liberatore [11, 12] bases a belief update operator on a restricted version of curbing.
Note that curbing is a purely model-theoretic and thus syntax-independent method. In
particular, for two logically equivalent theoriesT andT ′, it holds thatCurb(T ) is log-
ically equivalent toCurb(T ′). Curbing can be applied to arbitrary logical theories and
not just to logic programs. In the context of disjunctive logic programming, various
syntax-dependent methods of reasoning that do not treat disjunction exclusively were
defined in [5, 18, 17, 19, 20, 6].

In [8], the following two major reasoning problems under curbing where shown to
be inPSPACE:

Curb Model Checking: Given a propositional theoryT , an interpretationM of T , and
disjoint listsp andz of propositional variables, decide whetherM is a good model
of T w.r.t. p andz (i.e., decide whetherM is a model ofCurb(T ; p, z)).

Curb Inference : Given a propositional theoryT , disjoint listsp andz of propositional
variables, and a propositional formulaG, decide whetherCurb(T ; p, z) |= G.

The precise complexity of curbing, for both model checking and inferencing, was
left open in [8]. Note that model checking for propositional circumscription iscoNP
complete [3] and inferencing under propositional circumscription isΠP

2 complete [7].
It was conjectured in [21, 11] that curbing is of higher complexity than circumscription.
This is intuitively supported by a result of Bodenstorfer [2] stating that in an explicitly
given set of models, witnessing that some particular model is good may involve an
exponential number of smaller good models (for a formal statement of this result, see
Section 3).

The main result of this paper answers the above questions. We prove that Curb
Model Checking and Curb Inference arePSPACE-complete. Both problems remain
PSPACE-hard even in case oftotal curbing, i.e., when curbing is applied toall propo-
sitional variables, and thus the listz of floating propositional variables is empty and
no propositional variables are fixed. The proof takes Bodenstorfer’s construction as a
starting point and shows how to reduce the evaluation of quantified Boolean formulas
to theory curbing.

The PSPACE-completeness result strongly indicates that curbing is a much more
powerful reasoning method than circumscription, and that it can not be reduced in poly-
nomial time to circumscription. Thus, circumscriptive theorem provers can not be ef-
ficiently used for curb reasoning. On the other hand, a curb theorem prover could be
based on a QBF solver (see [10, 4, 16, 1, 9]).

After proving our main result, we identify classes of theories for which the com-
plexity of curbing is located at a lower complexity level. Specifically, we show that if a
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theoryT has thelub property, that is, every set of good models ofT has aleast(unique
minimal) upper bound, then propositional Curb Model Checking is inΣP

2 , while Curb
Inference is feasible inΠp

2 . Note that relevant classes of theories have this property. For
example, as shown by Scarcello, Leone, and Palopoli [21], Krom theories enjoy the lub
property. More specifically, in [21] it is shown that theunionof any pair of good models
of a Krom theory is a good model, too. This is clearly a special case of the lub property;
in in [21], this special property is used to show that Curb Model Checking for propo-
sitional Krom theories is inΣP

2 . The lub property can be further generalized. We show
that following less restrictiveweak least upper bound property (weak lub property)also
leads to complexity results at the second level of the polynomial hierarchy:T has the
weak least upper bound (weak lub) property, if every non-minimal good model ofϕ is
the lub ofsomecollectionM of good models ofT . The lub and the weak lub property
are of interest not only in the case of propositional circumscription, but also in case of
predicate logic. We therefore discuss these properties in the general setting.

The rest of this paper is organized as follows. In the next Section 2, we review some
examples from [8] and give a formal definition of curbing. We then prove in Section 3
the main result stating that propositional Curb Model Checking and Curb Inference
are bothPSPACE-complete. In Section 4 we discuss the lub property, and the final
Section 5 the weak lub property.

2 Review of Curbing

In this section, we review the concept of “good model” and give a formal definition of
curbing. The presentation follows very closely the exposition in [8]; the reader familiar
with [8] may skip the rest of this section.

2.1 Good Models

Let us first describe two scenarios in which an inclusive interpretation of disjunction is
desirable. Models are represented by their positive atoms.

Example 1: Suppose there is a man in a room with a painting, which he hangs on
the wall if he has a hammer and a nail. It is known that the man has a hammer or a
nail or both. This scenario is represented by the theoryT1 in Figure 1. The desired
models areh, n, andhnp, which are encircled. CircumscribingT1 by minimizing all
variables yields the two minimal modelsh andn (see Figure 1). Sincep is false in the
minimal models, circumscription tells us that the man does not hang the painting up.
One might argue that the variablep should not be minimized but fixed when applying
circumscription. However, starting with the model ofT1 whereh, n andp are all true
and then circumscribing with respect toh andp while keepingp true, we obtain the
modelshp andnp, which are not very intuitive. If we allowp to vary in minimizingh
andn, the outcome is the same as for minimizing all variables. On the other hand, the
modelhnp seems plausible. This model corresponds to the inclusive interpretation of
the disjunctionh ∨ n. ut
Example 2: Suppose you have invited some friends to a party. You know for certain
that one of Alice, Bob, and Chris will come, but you don’t know whether Doug will
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T1 = {h ∨ n, (h ∧ n)→ p }p

hnp

n

hp nphn

∅

h

Fig. 1.The hammer-nail-painting example

come. You know in addition the following habits of your friends. If Alice and Bob go to
a party, then Chris or Doug will also come; if Bob and Chris go, then Alice or Doug will
go. Furthermore, if Alice and Chris go, then Bob will also go. This is represented by
theoryT2 in Figure 2. Now what can you say about who will come to the party? Look

T2 = { a ∨ b ∨ c,
(a ∧ b)→ (c ∨ d),

(b ∧ c)→ (a ∨ d),

(a ∧ c)→ b }

abcd

cba

bd

ad

cd

bcdabdabc

Fig. 2.The party example

at the models ofT2 in Figure 2. Circumscription yields the minimal modelsa, b, andc,
which interpret the clausea∨b∨c exclusively in the sense that it is minimally satisfied.
However, there are other plausible models. For example,abc. This model embodies an
inclusive interpretation ofa andb within a ∨ b ∨ c; it is also minimal in this respect.
abd is another model of this property. Similarly,bcd is a minimal model for an inclusive
interpretation ofb andc. The modelsad, bd, andcd are not plausible, however, since a
scenario in which Doug and only one of Alice, Bob or Chris are present does not seem
well-supported. ut

In the light of these examples, the question arises how circumscription can be ex-
tended to work satisfactory. An important insight is that such an extension must take dis-
junctions of positive events seriously and allow inclusive (hence non-minimal) models,
even if such models contain positive information that is not contained in any minimal
model. On the other hand, the fruitful principle of minimality should not be abandoned
by adopting models that are intuitively not concise. The idea of curbing is based on
the synthesis of both: adopt the minimal inclusive models. That is, adopt for minimal
modelsM1,M2 any modelM which includes bothM1 andM2 and is a minimal such
model; in other words,M is aminimal upper bound(mub) for M1 andM2.

To illustrate, in Example 1hnp is a mub forh andn (notice thathn is not a model),
and in Example 2abc is a mub fora andc; abd is another one, so several mub’s can
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exist. In order to capture general inclusive interpretations, mub’s of arbitrary collections
M1,M2,M3, . . . of minimal models are adopted.

It appears that in general not all “good” models are obtainable as mub’s of collec-
tions of minimal models. The good modelabcd in Example 2 shows this. It is, however,
a mub of the good modelsa andbcd (as well as ofabc andabd). This suggests that
not only mub’s of collections of minimal models, but mub’s of any collection of good
models should also be good models.

The curbing approach to extend circumscription for inclusive interpretation of dis-
junctions is thus the following: adopt as good models the least set of models which
contains all circumscriptive (i.e. minimal) models and which is closed under including
mub’s. Notice that this approach yields in Examples 1 and 2 the sets of intuitively good
models, which are encircled in Figs. 1 and 2.

2.2 Formal Definition of Curbing

In this section we state the formal semantical definition of good models of a first-order
sentence as defined in [8].

As for circumscription, we need a language of higher-order logic (cf. [22]) over a
set of predicate and function symbols, i.e. variables and constants of finite arityn ≥ 0
of suitable type. Recall that 0-ary predicate symbols are identified with propositional
symbols.

A sentence is a formulaϕ in which no variable occurs free; it is of ordern + 1 if
the order of any quantified symbol occurring in it is≤ n [22]. We use set notation for
predicate membership and inclusion. AtheoryT is a finite set of sentences. As usual,
we identify a theoryT with the sentenceϕT which is the conjunction

∧
ϕ∈T ϕ of all

sentences inT .
A structureM consists of a nonempty set|M | and an assignmentI(M) of pred-

icates, i.e. relations (resp. functions), of suitable type over|M | to the predicate (resp.
function) constants. The object assigned to constantC, i.e. the extension ofC in M , is
denoted by[[C ]]M or simplyC if this is clear from the context. Equality is interpreted
as identity. A model for a sentenceϕ is any structureM such thatϕ is true inM (in
symbols,M |= ϕ).M[ϕ] denotes all models ofϕ.

Let p = p1, . . . , pn be a list of first-order predicate constants andz = z1, . . . , zm a
list of first-order predicate or function constants disjoint withp. For any structureM ,
letMM

p;z be the class of structuresM ′ such that|M | = |M ′|, and[[C ]]M = [[C ]]M ′ for
every constantC not occurring inp or z. The pre-order≤Mp;z onMM

p;z is defined by
M1 ≤Mp;z M2 iff [[pi ]]M1

⊆ [[pi ]]M2
for all 1 ≤ i ≤ n. The pre-order≤p;z is the union

of all ≤Mp;z over all structures. We writeMM
p etc. if z is empty;≤Mp and≤p are partial

orders onMM
p resp. all structures.

The circumscription ofp in a first-order sentenceϕ(p, z) with z floating is the
second-order sentence [13]

ϕ(p, z) ∧ ¬∃p′, z′(ϕ(p′, z′) ∧ (p′ ⊂ p))

which will be denoted byCirc(ϕ(p, z)) (p andz will be always presupposed). Herep′,
z′ are lists of predicate and function variables matchingp andz andp ⊂ p′ stands for
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(p′ ⊆ p) ∧ (p′ 6= p), where(p′ ⊆ p) is the conjunction of all(p′i ⊆ pi), 1 ≤ i ≤ n.
The following is a straightforward consequence of the definitions.

Proposition 2.1. [13] M |= Circ(ϕ(p, z)) iff M is ≤p;z-minimal among the models
ofϕ(p, z).

We formally define the concept of a “good” model as follows. First define the prop-
erty that a set of models is closed under minimal upper bounds.

Definition 2.1. Letϕ(p, z) be a first-order sentence. A setM of models ofϕ(p, z) is
≤p;z-closed iff, for everyM′ ⊆M and any modelM ofϕ(p, z), if M is≤p;z-minimal
among the models ofϕ(p, z) which satisfyM ′ ≤p;z M for all M ′ ∈M′ thenM ∈M.

Clearly the set of all models is closed. Further, every closed set must contain all
≤p;z-minimal models ofϕ(p, z) (letM′ = ∅); the empty set is closed iffϕ(p, z) has
no minimal model. We define goodness as follows.

Definition 2.2. A modelM ofϕ(p, z) is good with respect top; z iff M belongs to the
leastp; z-closed set of models ofϕ(p, z).

Notice that good models only exist if a unique smallest closed set exists. The latter is
immediately evident from the following characterization of goodness.

Proposition 2.2 ( [8]).A modelM ofϕ(p, z) is good with respect top; z iff M belongs
to the intersection of allp; z-closed sets.

In [8], it was shown how to capture goodness by a sentenceCurb(ϕ(p, z); p, z)
whose models are precisely the good models ofϕ(p, z). Similar to circumscription,p
are the minimized predicates (here under theinclusive interpretation of disjunction),
z are the floating predicates, and all other predicates are fixed. Curbing is naturally
formalized as a sentence of third-order logic, given that the definition of the set of good
models of a theory involves sets of sets of models. However, in [8] it was also shown
that curbing can be formalized in second-order logic.

In the present paper we do not need the formal definitions ofCurb(ϕ(p, z); p, z)
in third or second order logic, but we are interested in the problems Curb Inference and
Curb Model Checking as defined in the introduction.

2.3 Previous Complexity Results on Propositional Curbing

Recall that in the propositional case, a structureM is a truth-value assignment to the
propositional variables. The problemsCurb Model CheckingandCurb Inferencewere
described in the introduction. In [8] it was shown that both problems are inPSPACE,
and in fact can be solved in quadratic space.

Two possibilities to approximate the full set of good models by a subset are dis-
cussed in [8]. The first approximation is to limit iterated inclusion of minimal upper
bounds. Let us define the notion ofα-goodness for ordinalsα.
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Definition 2.3. A modelM ofϕ(p, z) is 0-good with respect top andz, if M is≤p;z-
minimal among the models ofϕ.

A modelM of ϕ(p, z) is α-good with respect top andz, if M is a≤p;z minimal
upper bound of a set of modelsM ofϕ, such that for each modelM ′ ∈M there exists
an ordinalβ < α such thatM ′ is β-good w.r.t.p andz.

Informally, in the approximation, one chooses only the models that areα-good for
someα such that‖α‖ ≤ ‖δ‖, where the ordinalδ is a limit on the depth in building
minimal upper bounds. The operator corresponding to such a restricted version of curb-
ing is denoted byCurbδ. Notice that circumscription appears as the caseδ = 0, i.e.
Curb0(ϕ(p, z); p, z) is equivalent toCirc(ϕ(p, z); p, z).

Concerning the computational complexity, the following was shown in [8]:

Theorem 2.1. For Curbδ (with fixed constantδ) the model checking problem isΣP
2

complete, while inferencing isΠP
2 complete.

Thus, the inference problem is in the propositional case for finite constantδ as easy
(and as hard) as circumscription.

Another potential approximation to curbing studied in [8] is to limit the cardinality
of model sets from which minimal upper bounds are formed. Intuitively, this corre-
sponds to limiting the number of inclusively interpreted disjuncts by a cardinalκ > 0.
The concept of closedκ set is defined by adding in the definition of closed set the con-
dition “‖M′‖ ≤ κ”; goodnessκ is the relative notion of goodness.

Clearly, goodness1 is equivalent to circumscription. Forκ ≥ 2, (i.e. |M | is finite)
the following result was proven:

Theorem 2.2 ( [8]).Over finite structures, for everyκ ≥ 2 a model ofϕ(p, z) is goodκ
with respect top; z iff it is good with respect top; z.

This result, which fails for arbitrary structures, implies a dichotomy result on the
expressivity ofκ-bounded disjuncts: Either we get only the minimal models, or all
models obtainable by unbounded disjuncts. Thus the method of bounded disjunction is
not a really useful approximation.

3 Main Result: PSPACE Completeness of Theory Curbing

In this section, we shall prove that inference as well as model checking under curbing is
PSPACE-complete. Intuitively, the problems have this high complexity since checking
whether a model is good requests a “proof”, given by a proper collection of models,
which may have non-polynomial size in general.

That such large proofs are necessary has been shown by Bodenstorfer [2]. Asupport
of a modelM in a collectionF of models is a subsetF ′ ⊆ F containingM such that
everyM ′ ∈ F ′ is in F a mub of some modelsM ⊆ F ′ \ {M ′}. Note that every
minimal modelM ∈ F has a support{M} and that all models in a support are good
models. Furthermore, every good model ofF has some support.

Bodenstorfer has defined a familyFn, n ≥ 0, of sets of models on an alphabet of
O(n) propositional atoms, such thatFn contains exponentially many models (inn), and
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Fn itself is the only support of the unique maximal modelMn of Fn. Informally,F0 =
{{a0}}, and the familyFn is constructed inductively by cloningFn−1 and adding some
sets which ensure that the ¡maximal model needs all models for a proof of goodness (see
Figure 3).

a′(F − {S})a(F − {S})

aSa′

aa′Sb aa′Sb′

aa′Sbb′

a′Sb′aSb

Fig. 3.Cloning a familyF with unique maximal modelS

3.1 Describing the exponential support familyFn

We describe Bodenstorfer’s familyFn by a formulaΦn, such thatFn = mod(Φn). The
letters we use areAtn = {ai, a′i, bi, b′i | 1 ≤ i ≤ n} ∪ {a0}. We define the formulaΦn
inductively, where we setΦ0 = a0 andM0 = {a0}, and forn > 1:

Φn = (Mn−1 ∧ γn) ∨ (¬Mn−1 ∧ Φn−1 ∧ (an ↔ ¬a′n) ∧ ¬bn ∧ ¬b′n),
where

γn = (an ∧ bn ∧ ¬a′n ∧ ¬b′n) ∨ (an ∧ a′n ∧ ¬bn ∧ ¬b′n) ∨
(a′n ∧ b′n ∧ ¬an ∧ ¬bn) ∨ (an ∧ bn ∧ a′n ∧ ¬b′n) ∨
(a′n ∧ b′n ∧ an ∧ ¬bn) ∨ (an ∧ bn ∧ a′n ∧ b′n);

Mn = Mn−1 ∪ {an, a′n, bn, b′n}.

Note that the left disjunct ofΦn gives rise to six models, which extendMn−1 by
the following sets of atoms:

An,1 = {an, bn}, An,0 = {a′n, b′n}, Bn = {an, a′n}, Cn,1 = {an, a′n, bn}, Cn,0 =
{an, a′n, b′n}, andDn = {an, a′n, bn, b′n}.

Informally,An,1 (resp.,An,0) represents the assignment of true (resp., false) to the
atoman. The right disjunct ofΦn generates recursively assignments to the other atoms
an−1, . . . , a1, such that certain minimal models ofΦn represent truth assignments to
the atomsa1, . . . , an (see Figure 4).

Note thatMn = Mn−1 ∪Dn (i.e., all atoms are true) is, as easily seen, the unique
maximal model of the formulaΦn. The set of models ofΦn overAtn, mod(Φn), defines
the familyFn as described in [2]. Thus, each modelM ∈ mod(Φn) is good, andMn

requires an exponential size support.
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a0a1a′1a2a′2b1b
′
1b2b

′
2

¬a1

¬a2 a2

a1a1 ¬a1

a0a1a′1a2a′2b1b
′
1

a0a1a′1a2a′2b1b
′
1b
′
2

a0a1a′1a2b′1 a0a1a′1a2b1a0a1a′1a
′
2b1a0a1a′1a

′
2b
′
1

a0a1a′1a2b1b′1b2a0a1a′1a
′
2b1b

′
1b
′
2

a0a1a′1a2a′2b1b
′
1b2

{a1, a2}

a0a′1a
′
2b
′
1 a0a1a′1a

′
2 a0a1a′1a2 a0a1a2b1

{} {a1} {a2}

a0a1a′2b1 a0a′1a2b′1

Fig. 4.The set of modelsmod(Φ2)

3.2 Evaluating a quantified Boolean formula onmod(Φn)

We now show that a quantified Boolean formula (QBF)

F = QnanQn−1an−1 · · ·Q1a1ϕ,

where eachQi ∈ {∀,∃} andϕ is a Boolean formula over atomsa1, . . . , an, can be
“evaluated” on the collectionmod(Φn) of good models exploiting the curbing principle.

Roughly, the idea is as follows:mod(Φn) can be layered inton overlapping layers
of models, where each layeri contains the models which are recursively generated
by the left disjunct of the formulaΦi. In each layer we have three levels of models.
Neighbored layersi andi− 1 overlap such that the bottom level ofi is the top level of
i−1 (see Figure 5). The minimal models inmod(Φn) are the bottom models of layer 1,
and might be considered as the top model of an artificial layer 0. Similarly, the maximal
modelMn in mod(Φn) might be viewed as a bottom model of an artificial layern+ 1.

In order to “evaluate” the QBFF , we will obtain a formulaΨ(F ) fromF by adding
conjunctively a set of formulasΓ (F ) to Φn. ThusΨ(F ) = Φn ∧ Γ (F ). The formulas
in Γ will be chosen such that the overall structure of the set of good models ofΨ(F )
does not differ from the one of the set of models ofΦn. In particular, each modelM of
Φn will correspond to some good modelf(M) of Ψ(F ) which augmentsM by certain
atoms that describe the truth status of subformulas ofF .

By adjoiningΓ (F ) to Φn, we “adorn” the models inmod(Φn) with additional
atoms which help us in evaluating the formulaF along the layers. At a layeri in
mod(Φn), we have fixed an assignment to the variablesai+1, . . . , an already, where
aj is true if aj occurs in the model, andaj is false if a′j occurs in the model, for all
j ≥ i + 1 (there are some ill-defined assignments in top elements of layeri, in which
bothai+1 anda′i+1 occur; these assignment will be ignored). Then, at two sets at the
bottom of the layeri which correspond to the possible extensions of the assignment to
ai+1, . . . , an by settingai either true (effected by the setAi,1) or to false (byAi,0),
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M ∪ Ci,1

. . . . . .

. . .

. . . . . .

M ∪ Ci,0

M ∪BiM ∪Ai,0

layeri+ 1

layeri

layeri− 1

M ∪Ai,1

. . . . . .

M ∪Di ∪Ai+1,0 M ∪Di ∪Bn+1 M ∪Di ∪Ai+1,1

Fig. 5.Layers inmod(Φn)

we “evaluate” the formulaQi−1ai−1 · · ·Q1a1ϕ(ai, ai+1, . . . , an) where the variables
ai, . . . , an are fixed to the assignment. If that formula evaluates to true, then ifai is
true an atomvi is included (resp., ifai is false an atomv′i) at this bottom element. The
quantifierQi is then evaluated by including in the top element “above” the two bottom
sets an atomti if, in case ofQi = ∃, eithervi or v′i occurs in one of the two bottom
elements, and in case ofQi = ∀, vi resp.v′i occur in the bottom elements. The top
element is itself a bottom element at the next layeri + 1, and the atomti is used there
to see whether the formulaQiai · · ·Q1a1ϕ(ai+1, . . . , an) evaluates to true.

In what follows, we formalize this intuition. We introduce a set of new atomsAt′n =
{vi, v′i, ti | 1 ≤ i ≤ n} ∪ {t0}.

The following formulas are convenient for our purpose:

assi = ai ↔ ¬a′i, 1 ≤ i ≤ n;
λi = (¬bi+1 ∨ ¬b′i+1) ∧ (ai+1 ∧ a′i+1 → ¬bi+1 ∧ ¬b′i+1), 1 ≤ i ≤ n;
Λi = λi ∧ ¬λi−1, 2 ≤ i ≤ n;
Λ1 = λ1.

Informally, assi tells whether the model considered assigns the atomai legally a truth
value. The formulaλi says that the model is at layeri or below. The formulaΛi says
that the model is at layeri. The models at the bottom of layeri which are of interest to
us are those in whichassi is true; all other models of the entire layer violateassi.

At layer i ≥ 1, we evaluate the formula using the following formulas:

Λi ∧ assi ∧ ti−1 ∧ ai → vi

Λi ∧ assi ∧ ti−1 ∧ a′i → v′i
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For i = 1, we add
ϕ→ t0,

which under curbing evaluates the quantifier-free part after assigning all variables. De-
pending on the quantifierQi, we add a clause as follows. IfQi = ∃, then we add

Λi ∧ (vi ∨ v′i)→ ti;

otherwise, ifQi = ∀, then we add

Λi ∧ vi ∧ v′i → ti.

For “garbage collection” of the new atoms used at lower layers, we use a formulas
trapi which adds all valuesvj , v′j , t

′
j of lower layers to all elements of layeri which

correspond to an illegal assignment toai:

trapi = Λi ∧ ¬assi → t0 ∧
i−1∧
j=1

vj ∧ v′j ∧ tj .

Informally, models corresponding to different extensions of an assignment will always
have a mub which is upper bounded by the bottom model at layeri which is an illegal
assignment.

Let the conjunction of all formulas introduced for layeri, where1 ≤ i ≤ n, beΓi,
and letΓ (F ) =

∧n
i=1 Γi. Then we define

Ψ(F ) = Φn ∧ Γ (F ).

Note thatΦ(F ) has a unique maximal modelMF , which is given byMF = Mn ∪
{vi, v′i, ti | 1 ≤ i ≤ n} (i.e., all atoms are true).

Let us call a modelM ∈ mod(Ψ(F )) anassignment model, if eitherM ∩ Atn =
Mn, or (b)M |= Λi ∧ assi, i.e., eitherM extends the maximal model ofΦn orM is
at the bottom of layeri and assignsai a unique truth value. In case (a), we viewM
at the bottom of an artificial layern + 1. M represents a (partial) assignmentσM to
ai,. . . ,an defined byσM (aj) = true if aj ∈ M andσM (aj) = false ifa′j ∈ M , for all
j = i, . . . , n.

We show the following

Lemma 3.1. For each modelM ∈ mod(Φn), there exists a good modelf(M) of
mod(Ψ(F )), such that:

1. f(M) ∩Atn = M (i.e.,f(M) coincides withM on the atoms ofΦn);
2. ifM is an assignment model at layeri ∈ {1, . . . , n+ 1}, thenf(M) containsti−1

iff the formula

Fi = Qi−1ai−1Qi−2a2 · · ·Q1a1ϕ(a1, . . . , ai−1, σM (ai), . . . , σM (an))

is true
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3. IfM is at layeri ∈ {1, . . . , n} but not an assignment model, then

f(M) =

{
M ∪At′i−1, if M = Mn−1 ∪Bn;

f(Mn−1 ∪An,k) ∪ f(Mn−1 ∪Bn), if M = Mn−1 ∪ Cn,k, k∈{0, 1}.

4. f(Mn) is the unique maximal good model ofΨ(F ), and ifQn = ∀, thentn ∈
f(Mn) iff f(Mn) = Atn ∪At′n.

An example of the construction off(·) for the formulaF = ∀a2∃a1(a2 → a1) is
shown in Figure 6.

t0v1v′1t1v2v′2t2

¬a1

¬a2 a2

a1a1 ¬a1

t0v1v′1t1

t0v1v′1t1v
′
2

t0 t0v1t1t0v1t1t0v′1t1

t0v1t1v2t0v1v′1t1v
′
2

t0v1v′1t1v2

{a1, a2}

t0v′1t1 t0 t0 t0v1t1

{} {a1} {a2}

t0v1t1

Fig. 6.EvaluatingF = ∀a2∃a1(a2 → a1): ExtendingM to f(M) = M ∪X (X shown)

Proof. We first note that each modelM ′ of Ψ(F ) is of the formM ∪ S, whereM ∈
mod(Φn) andS ⊆ At′n, and eachM ∈ mod(Φn) gives rise to at least one suchM ′

(just addAt′n toM ).
We prove the lemma showing by induction onn ≥ 0 how to construct such a

correspondencef(M).
The base casen = 0 (in whichF contains no variables and is either truth or falsity)

is easy:mod(Φ0) = {{a0}} and, if F is truth, thenmod(Ψ(F )) = {{a0, t0}} and
f({a0}) = {a0, t0}, and if F is falsity, thenmod(Ψ(F )) = {{a0}, {a0, t0}} and
f({a0}) = {a0}.

Consider the casen > 1 and suppose the statement holds forn − 1. Let M ∈
mod(Φn). We consider two cases.

(1) M |= λn−1 andM 6|= ana
′
n. Then,M |= an ↔ ¬a′n, and eitherM is an

assignment model at the bottom of layern (in which case,M satisfies the left disjunct
of Φn) or some model not at layern (in which caseM satisfies the right disjunct of
M ). In any case,N = M \ {an, a′n, bn, b′n} is a model ofΦn−1. By the induction
hypothesis, it follows that forN we have a good model̂f(N) of Ψ(F ′), whereF ′ =

12



Qn−1an−1 · · ·Q1a1ϕ
′ andϕ′ = ϕ[an/>] (where> is truth) if an ∈ M andϕ′ =

ϕ[an/⊥] (where⊥ is falsity) if a′n ∈M (i.e.,an /∈M ), such that̂f(N) fulfills the items
in the lemma. We definef(M) as follows. IfN ⊂ Mn−1, thenf(M) := M ∪ f̂(N);
otherwise, ifN = Mn−1, thenf(M) = M ∪ f(N) ∪ SM , where

SM =



∅, if ti−1 /∈ f̂(N);
{vn, tn}, if ti−1 ∈ f̂(N), Qn = ∃, andai ∈M ;
{v′n, tn}, if ti−1 ∈ f̂(N), Qn = ∃, anda′i ∈M ;
{vn}, if ti−1 ∈ f̂(N), Qn = ∀, andai ∈M ;
{v′n}, if ti−1 ∈ f̂(N), Qn = ∀, anda′i ∈M.

As easily checked,f(M) is a model ofΨ(F ). Furthermore,f(M) is either a minimal
model ofΨ(F ) (if n = 1), or the mub of good modelsf(M1) andf(M2) such that
M1,M2 ∈ mod(Φn−1),M1,M2 ⊂M , andM is a mub ofM1,M2 in mod(Φn−1). (If
not, thenf̂(N) were not a mub of̂f(N1), f̂(N2) in mod(Ψ(F ′)), which is a contradic-
tion.) We can see thatf(M) fulfills the items 1-3 in the lemma.

(2)M 6|= λn−1 orM |= ana
′
n, i.e.,M is at layern but not an assignment model at

its bottom. We consider the following possible cases forM :
(2.1)M = Mn−1 ∪Bn: If n = 1, thenM is a minimal model ofΦn, andf(M) =

M ∪{t0} is a minimal model ofΨ(F ), thusf(M) is a good model ofΨ(F ); otherwise
(i.e.,n > 2), M is a mub of any arbitrary modelsM1, M2 ∈ mod(Φn) such thatM1

containsan andM2 containsa′n, respectively, andMi \ {an, a′n, bn, b′n} ⊂ Mn−1, for
i ∈ {1, 2}. Since, by construction,̂f(Mi) ⊆ Mn−1 ∪ At′n−1 =: f(M), this set is an
upper bound off(M1) andf(M2) in mod(Ψ(F )); from formulatrapn−1 it follows
thatf(M) is a mub off(M1),f(M2). Thus,f(M) is a good model ofΨ(F ).

(2.2)M = Mn−1∪Cn,k, k ∈ {0, 1}: As easily checked,f(M) = f(Mn−1 ∪An,k)∪
f(Mn−1 ∪Bn) (=Mn−1 ∪ Bn ∪ SMn−1∪An,k ) is a model ofΨ(F ). Since, as already
shown, bothf(Mn−1 ∪An,k) andf(Mn−1 ∪Bn) are good models ofΨ(F ), clearly
f(M) is a mub of them and thus a good model ofΨ(F ).

(2.3)M = Mn: We define

f(M) = f(Mn−1 ∪ Cn,0) ∪ f(Mn−1 ∪ Cn,1) ∪
{
{tn}, if Qn = ∀ andvn, v′n ∈ X;
∅, otherwise.

Observe thatf(M) = Mn ∪ At′n−1 ∪ X, whereX ⊆ {vn, v′n, tn}. Then, as easily
checked,f(M) is a model ofΨ(F ). Clearly,f(M) is a mub off(Mn−1 ∪ Cn,0) and
f(Mn−1 ∪ Cn,1), and thus,f(M) is a good model ofΨ(F ).

We now show thatf(M) in (2.1)–(2.3) satisfies items 1-3 in the lemma. Obviously,
this is true for (2.1) and (2.2). For the case (2.3), from the definitions off(·) in (1) and
(2.1)–(2.2) it follows thattn ∈ f(M) if and only if tn−1 ∈ f(Mn−1 ∪An,k) holds for
for somek ∈ {0, 1} if Qn = ∃ and for bothk ∈ {0, 1} if Qn = ∀. By the induction
hypothesis,tn−1 ∈ f(Mn−1 ∪An,k) is true iff the QBFQn−1an−1 · · ·Q1a1ϕ

′, where
ϕ′ = ϕ[an/>] if k = 1 andϕ′ = ϕ[an/⊥] if k = 0, is true. Thus,tn ∈ f(M) iff the
QBFF is true. Hence,f(M) satisfies items 1-3 of the lemma.

As for property 4, Furthermore, in the case whereQn = ∀, we have by definition of
f(M) thattn ∈ f(M) iff f(M) = Mn ∪At′n−1 ∪ {vn, v′n, tn} = Atn ∪At′n.
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Finally, it remains to show thatf(Mn) is the unique maximal good model ofΨ(F ).
As easily seen, every finite propositional theory which has a unique maximal model
has a unique maximal good model, thusΨ(F ) has a unique maximal good modelM ′.
From the induction hypothesis, it follows thatMk = f(Mn−1 ∪An,k) is the unique
maximal good modelM ′k of Ψ(F ) such thatM ′∩Atn ⊆Mn−1∪An,k, for k ∈ {0, 1}.
SinceM2 = f(Mn−1Bn) is the unique maximal good modelN of Ψ(F ) such that
N ∩ Atn ⊆ Mn−1 ∪ Bn, we conclude from the structure of layern, which has the
lub property (see Section 4), thatM ′ is a mub ofM0,M1,M2. Since, by construction,
f(M) is an upper bound ofM1,M2,M3, it followsM ′ = f(M).

This proves that the claimed statement holds forn, and completes the induction.
ut

We thus obtain the following result.

Theorem 3.1. 1. Given a propositional formulaG and a modelM of G, deciding
whetherM is a good model ofG is PSPACE-hard.

2. Given a propositional formulaG and an atomp, deciding whetherCurb(G) |= p
is PSPACE-hard.

Proof. By items 2 and 4 in Lemma 3.1,M = Atn ∪ At′n is a good model ofΨ(F ) for
a QBFF = ∀anQn−1an−1 · · ·Q1a1ϕ iff F is true. Furthermore,F is false if and only
if no good model ofΨ(F ) containstn. Deciding whether any given QBF of this form
is true (resp. false) is clearly PSPACE-hard, and the formulaΨ(F ) is easily constructed
in polynomial time fromF . This proves the result. ut

Combined with the previous results [8] that Curb Inference and Curb Model Check-
ing are in PSPACE, we obtain the main result of this section.

Theorem 3.2. 1. Curb Model Checking, i.e., given a propositional theoryT and sets
p, z of propositional letters, deciding whetherM is a p; z-good model ofT is
PSPACE-complete.

2. Curb-Inference, i.e., given a propositional theoryT , setsp; z of propositional let-
ters, and a propositional formulaG, deciding whetherCurb(T ; p, z) |= G is
PSPACE-complete.

4 The Lub Property

While curbing of general theories isPSPACE-complete, it is possible to identify spe-
cific classes of theories on which curbing has lower complexity. In this section, we
identify a relevant fragment of propositional logic for which curb-inference is inΠP

2 .

Definition 4.1. A theoryT has the lub property iff every nonempty setS of good models
has a least upper bound (lub)M .

Lemma 4.1. LetS1,S2 be nonempty sets of good models of theoryT such thatS1 ⊆
S2, and letM1, M2 be mubs ofS1 andS2, respectively. IfM1 is the lub ofS1, then
M1 ≤M2.
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Theorem 4.1. If theoryT has the lub property, then a model is good iff it is 1-good.

Proof. Prove by induction onα that if modelM is α-good, then it is 1-good. Obvious
for α ≤ 1. Assumeα > 1. Then,M is a mub ofS = {M ′ : (< α)-good(M ′),M ′ ≤
M}. Now, by the hypothesis, eachM ′ ∈ S is the mub of someS ′ ⊆ S which contains
only minimal models. LetSm be the minimal models fromS. If Sm = ∅, thenM is a
minimal model and the statement holds. ElseSm has a lubMm. From the unique mub
property and Lemma 4.1, it follows thatM ′ ≤ Mm for eachM ′ ∈ S. ThusMm is an
upper bound ofS, henceM ≤Mm. On the other hand, sinceSm ⊆ S, it follows from
Lemma 4.1 thatMm ≤M . Since≤ is a partial order, it followsMm = M . ThusM is
1-good and the statement holds. ut

Corollary 4.1. For propositional theoriesT having the lub property,Curb Inferenceis
in ΠP

2 , andCurb Model Checkingis inΣP
2 .

Proof. To showCurb(T ) 6|= F , guess a modelM of Curb(T ) such thatM 6|= F . To
verify M , guessk from {0, . . . , |V |}, whereV is the variable set, and minimal models
M1, . . . ,Mk of T such thatM is a mub of them. Use an NP oracle for testing whether
Mi is minimal (is in coNP) and for testing ifM is a mub of theMi (is in coNP). ut

Notice the following characterization of lub theories.

Definition 4.2. A theoryT is mub-compact over a domain iff every good model is a
mub of a finite set of good models.

Theorem 4.2. LetT be a mub-compact theory over some domain. ThenT has the lub
property iff every pair of good models has a lub.

Proof. (Sketch) To show theif direction, demonstrate by induction on finite cardinality
κ that every setS such that‖S‖ ≤ κ has a lub. Forκ ≤ 2, this is obvious. Forκ > 2,
letM ∈ S be a maximal element inS. By the hypothesis,S − {M} has a lubM ′. M
andM ′ have a lubM ′′, which must (Lemma 4.1) be the lub ofS. ut

Corollary 4.2. If the domain is finite and the models ofT form an upper semi-lattice,
thenT has the lub property and a model isgoodiff it is 1-good.

As already mentioned in the introduction, Scarcello, Leone, and Palopoli [21] de-
rived complexity results for curbing Krom theories, i.e., clausal theories where each
clause contains at most two literals. They showed that Curb Model Checking for propo-
sitional Krom theories is inΣP

2 . To establish this result, they showed that theunionof
any pair of good models of a propositional Krom theory is also a good model. From
this it clearly follows that propositional Krom theories enjoy the (more general) lub
property. Hence theirΣP

2 upper bound and, in addition, aΠP
2 upper bound for curb

inferencing can also be derived via our more general results.
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5 Good Models and Least Upper Bounds

The lub property defined in Section 4 requires thatall nonempty collections of good
models of a theory have a lub. Let us weaken this property by requiring merely that for
every non-minimal good modelM there exists a collection of models whose lub isM .

Definition 5.1. A theorT has the weak least upper bound (weak lub) property, if every
non-minimal good model ofT is the lub of some collectionM of good models ofT .

Notice that the lub property implies the weak lub property, but not vice versa. This
is shown by the following example.

Example 5.1.Suppose the models of a propositional theoryT are the ones shown in
Figure 7. All models are good, andM1 = {a, b, c}, M2 = {b, c, d} are the lubs of

abc bcd

dcba

Fig. 7.The weak lub property does not imply the lub property

the collections{{a}, {b}, {c}} and{{b}, {c}, {d}}, respectively. However, the good
models{b} and{c} do not have a lub; thus, the theory satisfies the weak lub property
but not the lub property.

Intuitively, if a theory satisfies the weak lub property, then any good modelM in a
collectionM of good models can be replaced by a collectionM′ of good models whose
lub isM , without affecting the mubs of the collection, i.e.,M has the same mubs as
M\{M}∪M′. By repeating this replacement,M can be replaced by a collectionM∗
of minimal models that has the same mubs asM. This is actually the case, provided
that the collection of good models has the following property.

Definition 5.2. The collection of good models of a sentenceϕ is well-founded if every
decreasing chainM0 ⊇M1 ⊇ · · · of good models has a smallest element.

Notice that in the context of circumscription, theories were sometimes called well-
founded if every modelM of a sentenceϕ includes a minimal model ofϕ [14]. That
notion of well-foundedness is different from the one employed here.

The collection of good models of a theory is not necessarily well-founded, as shown
by the following example.
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Example 5.2.Consider the theoryT on the domainZ of all integers:

ϕ = (∀x)(p(x)←→ x < 0)) ∨ (∃x ≥ 0)(∀y)(p(y)←→ ¬(1 ≤ y ≤ x)) ∨
(∃x ≥ 0)(∀y)(p(y)←→ (y > x) ∨ (−x ≤ y ≤ 0))

Informally, T says that the numbers having propertyp are either all the negative num-
bers(Z− = {−1,−2, . . .}), all numbers except some interval[1, 2, . . . , k], k ≥ 0,
or all nonnegative numbers where the interval[0, k], k ≥ 0, is replaced by the in-
terval [−k,−0]. All models ofT are good. The minimal models areZ− andNk =
(N0 \ [0, k]) ∪ [−k,−0], k ≥ 0; every modelMk = Z \ [1, k], k ≥ 0, is a mub of the
modelsZ− andNk (see Figure 8). Clearly,M0 ⊇M1 ⊇ · · · ⊇Mi ⊇ · · · , i ∈ ω, forms

· · ·

.

.
.

M1 = Z \ [1, 1]

M2 = Z \ [1, 2]

M0 = Z = {. . . ,−2, 1, 0, 1, 2, . . .}

N2 = {−2,−1, 0, 3, 4, . . .}N1 = {−1, 0, 2, 3, . . .}N0 = {0, 1, 2, . . .} Z
− = {. . . ,−3,−2,−1}

Fig. 8.A collection of good models that is not well-founded.

a decreasing chain of good models. This chain has no smallest element, and hence the
collection of good models ofT is not well-founded. ut

Theorem 5.1. Letϕ be a first-order sentence such that the collection of good models
of ϕ is well-founded. Ifϕ hast the weak lub property, then every good model is either
minimal or the lub of some collection of minimal models.

Proof. We show this by contradiction. Assume the contrary holds. LetB be the set of
good models which are not the lub of some collection of minimal models; note thatB is
not empty. Since the collection of good models is well-founded,B must have a minimal
elementM . (To obtain such anM , construct a maximal chain inB, and take the unique
minimal element of this chain, which must exist). Sinceϕ has the weak lub property,
M is the mub of some collectionS of good models. The definition ofB and the weak
lub property ofϕ imply that everyM ′ ∈ S is the lub of a collectionSM ′ of minimal
models. LetS ′ be the union of all theseSM ′ . We show thatM is the lub ofS ′. Clearly,
M is an upper bound ofS ′. Assume then thatM is not a minimal. Then there exists a
good modelM ′ < M which is an upper bound ofS ′. But thisM ′ is also an upper bound
of S. This means thatM is not a mub ofS, which is a contradiction. It follows thatM
is a mub ofS ′. On the other hand, every upper boundM ′ of S ′ must satisfyM ≤M ′.
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Therefore,M is the unique mub ofS ′. Consequently,M is the unique minimal upper
bound of a collection of minimal models. By definition, this meansM /∈ B. This is a
(global) contradiction. ut

The converse of this theorem (which is equivalent to the statement that a theory, if
every good model is either minimal or the lub of some collection of minimal models,
is well-founded) is not true. This is shown by Example 5.2. Furthermore, this theo-
rem does not hold if the collection of good models is arbitrary. This is shown by the
following example.

Example 5.3.Replace in Example 5.2 every modelMi, i ∈ ω, by the two models
Ma
i = Mi ∪ {a} andM b

i = Mi ∪ {b} and extend the domain with the new elementsa
andb.

In the resulting collection of models, which is clearly axiomatizable by a first-order
sentenceϕ, every model is good and the lub of some collection of good models (Ma

i is
the lub of{Ni,Ma

i+1}, andM b
i of {Ni,M b

i+1}; all other models are minimal). How-
ever, noMa

i is the lub of a collection of minimal models. Notice that each good model
is the lub of two good models and 1-good. ut

From Theorems 5.1 and 2.1, we immediately get the following complexity results
for propositional theories.

Theorem 5.2. For propositional theories which enjoy the weak lub property, the prob-
lemCurb Model Checkingis inΣP

2 , while the problemCurb Inferenceis inΠP
2 .

A possible attempt to strengthen the weak-lub property is to use ordinals. Say that
the collection of good models of a theory has theinductive weak-lub property, if every
non-minimalα-good model is the lub of a collection of(< α)-good models. Notice that
collection of good models in Example 5.2 has the inductive weak-lub property (which,
as a consequence, does not imply well-foundedness). However, the following result is
an easy consequence of our results from above.

Theorem 5.3. Letϕ be a first-order sentence whose collection of good models is well-
founded. Then, it has the inductive weak-lub property if and only if it has the weak-lub
property.

Proof. Theonly if direction is trivial. Theif direction follows from Theorem 5.1. ut
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