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Abstract. In this paper, we determine the complexity of propositional theory
curbing. Theory Curbing is a nonmonotonic technique of common sense reason-
ing that is based on model minimality but unlike circumscription treats disjunc-
tion inclusively. In an earlier paper, theory curbing was shown to be feasible in
PSPACE, but the precise complexity was left open. In the present paper we prove
it to be PSPACE-complete. In particular, we show that both the model checking
and the inferencing problem under curbed theoriesP&/BACE complete. We

also study relevant cases where the complexity of theory curbing is located — just
as for plain propositional circumscription — at the second level of the polynomial
hierarchy and is thus presumably easier tR&ACE.

1 Introduction

Circumscription [15] is a well-known technique of nonmonotonic reasoning based on
model-minimality. The (total) circumscriptio@irc(T) of a theoryT, which is a finite

set of sentences, consists of a formula whose set of models is equal to the set of all
minimalmodels off". For various variants of circumscription, see [14].

As noted by various authors [5, 6, 17—-20], reasoning under minimal models runs
into problems in connection with disjunctive information. The minimality principle of
circumscription often enforces trexclusiveinterpretation of a disjunction Vv b by
adopting the models in which eitheior b is true but not both. There are many situations
in which aninclusiveinterpretation is desired and seems more natural (for examples,
see Section 2).

To redress this problem, and to be able to handle inclusive disjunctions of positive
information properly, the method tifieory curbingwas introduced in [8]. This method
is based on the notion ofgnod modebf a theory. Roughly, a good model of a theory
T is either a minimal model, or a model &f that constitutes a minimal upper bound
of a set of good models df. The sentenc&urb(T) has as its model precisely the
good models of". WhenT is a first-order theoryCurb(T) is most naturally expressed
as a third-order formula. However, in [8], it was shown thairb(T') is expressible in
second-order logic.

Circumscription is usually not applied &l predicates of a theory, but only to the
members of a lisp of predicates, where the predicates from a distlisjoint with
p, called thefloating predicates, may be selected such that the predicatgshe-
come as small as possible; the remaining predicates not occurripguintz (called
fixedpredicates) are treated classically. In analogy to this, in [8], formulas of the form



Curb(T; p,z) are defined, where curbing is applied to the predicates irplistly,
while those from listz (the floating predicates) are interpreted in the standard way. In
the propositional case, the ligisandq of predicate symbols are lists of propositional
variables (corresponding to zero-ary predicates).

Since its introduction in [8], the curbing technique has been used and studied in a
number of other papers. For instance, Scarcello, Leone, and Palopoli [21], provide a
fixpoint semantics for propositional curbing and derive complexity results for curbing
Krom theories, i.e., clausal theories where each clause contains at most two literals.
Liberatore [11, 12] bases a belief update operator on a restricted version of curbing.
Note that curbing is a purely model-theoretic and thus syntax-independent method. In
particular, for two logically equivalent theori@sandT”, it holds thatCurb(T) is log-
ically equivalent toCurb(T"). Curbing can be applied to arbitrary logical theories and
not just to logic programs. In the context of disjunctive logic programming, various
syntax-dependent methods of reasoning that do not treat disjunction exclusively were
defined in [5, 18,17, 19, 20, 6].

In [8], the following two major reasoning problems under curbing where shown to
be inPSPACE:

Curb Model Checking: Given a propositional theor¥, an interpretatiod/ of T', and
disjoint listsp andz of propositional variables, decide whethdris a good model
of T'w.r.t. p andz (i.e., decide whethek¥/ is a model ofCurb(T; p, z)).

Curb Inference : Given a propositional theof¥/, disjoint listsp andz of propositional
variables, and a propositional formutg decide whethe€Curb(T;p,z) = G.

The precise complexity of curbing, for both model checking and inferencing, was
left open in [8]. Note that model checking for propositional circumscriptioeisP
complete [3] and inferencing under propositional circumscriptioff§$complete [7].

It was conjectured in [21, 11] that curbing is of higher complexity than circumscription.
This is intuitively supported by a result of Bodenstorfer [2] stating that in an explicitly
given set of models, witnessing that some particular model is good may involve an
exponential number of smaller good models (for a formal statement of this result, see
Section 3).

The main result of this paper answers the above questions. We prove that Curb
Model Checking and Curb Inference a8 PACE-complete. Both problems remain
PSPACE-hard even in case @btal curbing, i.e., when curbing is applied &l propo-
sitional variables, and thus the ligtof floating propositional variables is empty and
no propositional variables are fixed. The proof takes Bodenstorfer's construction as a
starting point and shows how to reduce the evaluation of quantified Boolean formulas
to theory curbing.

The PSPACE-completeness result strongly indicates that curbing is a much more
powerful reasoning method than circumscription, and that it can not be reduced in poly-
nomial time to circumscription. Thus, circumscriptive theorem provers can not be ef-
ficiently used for curb reasoning. On the other hand, a curb theorem prover could be
based on a QBF solver (see [10, 4, 16, 1, 9]).

After proving our main result, we identify classes of theories for which the com-
plexity of curbing is located at a lower complexity level. Specifically, we show that if a



theoryT has thdub property that is, every set of good modelsBfhas deast(unique
minimal) upper bound, then propositional Curb Model Checking 5§y while Curb
Inference is feasible if7%. Note that relevant classes of theories have this property. For
example, as shown by Scarcello, Leone, and Palopoli [21], Krom theories enjoy the lub
property. More specifically, in [21] it is shown that theionof any pair of good models

of a Krom theory is a good model, too. This is clearly a special case of the lub property;
in in [21], this special property is used to show that Curb Model Checking for propo-
sitional Krom theories is it£f". The lub property can be further generalized. We show
that following less restrictiveveak least upper bound property (weak lub propeatgp

leads to complexity results at the second level of the polynomial hieraiiclmas the
weak least upper bound (weak lub) property, if every non-minimal good modelof

the lub ofsomecollection. M of good models of". The lub and the weak lub property
are of interest not only in the case of propositional circumscription, but also in case of
predicate logic. We therefore discuss these properties in the general setting.

The rest of this paper is organized as follows. In the next Section 2, we review some
examples from [8] and give a formal definition of curbing. We then prove in Section 3
the main result stating that propositional Curb Model Checking and Curb Inference
are bothPSPACE-complete. In Section 4 we discuss the lub property, and the final
Section 5 the weak lub property.

2 Review of Curbing

In this section, we review the concept of “good model” and give a formal definition of
curbing. The presentation follows very closely the exposition in [8]; the reader familiar
with [8] may skip the rest of this section.

2.1 Good Models

Let us first describe two scenarios in which an inclusive interpretation of disjunction is
desirable. Models are represented by their positive atoms.

Example 1 Suppose there is a man in a room with a painting, which he hangs on
the wall if he has a hammer and a nail. It is known that the man has a hammer or a
nail or both. This scenario is represented by the théaryn Figure 1. The desired
models areh, n, andhnp, which are encircled. Circumscribirif by minimizing all
variables yields the two minimal modeisandn (see Figure 1). Sinceis false in the
minimal models, circumscription tells us that the man does not hang the painting up.
One might argue that the variableshould not be minimized but fixed when applying
circumscription. However, starting with the modelBf whereh, n andp are all true

and then circumscribing with respect koand p while keepingp true, we obtain the
modelshp andnp, which are not very intuitive. If we allow to vary in minimizingh

andn, the outcome is the same as for minimizing all variables. On the other hand, the
model hnp seems plausible. This model corresponds to the inclusive interpretation of
the disjunctiom Vv n. O

Example 2 Suppose you have invited some friends to a party. You know for certain
that one of Alice, Bob, and Chris will come, but you don’t know whether Doug will
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Fig. 1. The hammer-nail-painting example

come. You know in addition the following habits of your friends. If Alice and Bob go to
a party, then Chris or Doug will also come; if Bob and Chris go, then Alice or Doug will
go. Furthermore, if Alice and Chris go, then Bob will also go. This is represented by
theoryT5 in Figure 2. Now what can you say about who will come to the party? Look

abed T ={aVbVe,
(anb) — (cVa),
abc abd bed (bAc)— (aVad),
bd cd (anc)—b}
ad
a b c

Fig. 2. The party example

at the models of; in Figure 2. Circumscription yields the minimal modelsh, andc,

which interpret the clauseV bV ¢ exclusively in the sense that it is minimally satisfied.
However, there are other plausible models. For examptle, This model embodies an
inclusive interpretation ofi andb within a v b V ¢; it is also minimal in this respect.

abd is another model of this property. Similarby,d is a minimal model for an inclusive
interpretation ob andc. The modelsid, bd, andcd are not plausible, however, since a
scenario in which Doug and only one of Alice, Bob or Chris are present does not seem
well-supported. O

In the light of these examples, the question arises how circumscription can be ex-
tended to work satisfactory. An important insight is that such an extension must take dis-
junctions of positive events seriously and allow inclusive (hence non-minimal) models,
even if such models contain positive information that is not contained in any minimal
model. On the other hand, the fruitful principle of minimality should not be abandoned
by adopting models that are intuitively not concise. The idea of curbing is based on
the synthesis of both: adopt the minimal inclusive models. That is, adopt for minimal
modelsM;, My any modelM which includes bothl/; and M, and is a minimal such
model; in other words)/ is aminimal upper boundmub for M; and M.

To illustrate, in Example hnp is a mub forh andn (notice thathn is not a model),
and in Example 2ibc is a mub fora andc; abd is another one, so several mub’s can



exist. In order to capture general inclusive interpretations, mub’s of arbitrary collections
My, My, M3, ... of minimal models are adopted.

It appears that in general not all “good” models are obtainable as mub’s of collec-
tions of minimal models. The good modeicd in Example 2 shows this. It is, however,
a mub of the good models andbced (as well as ofabe and abd). This suggests that
not only mub’s of collections of minimal models, but mub’s of any collection of good
models should also be good models.

The curbing approach to extend circumscription for inclusive interpretation of dis-
junctions is thus the following: adopt as good models the least set of models which
contains all circumscriptive (i.e. minimal) models and which is closed under including
mub’s. Notice that this approach yields in Examples 1 and 2 the sets of intuitively good
models, which are encircled in Figs. 1 and 2.

2.2 Formal Definition of Curbing

In this section we state the formal semantical definition of good models of a first-order
sentence as defined in [8].

As for circumscription, we need a language of higher-order logic (cf. [22]) over a
set of predicate and function symbols, i.e. variables and constants of finite: arit9
of suitable type. Recall that 0-ary predicate symbols are identified with propositional
symbols.

A sentence is a formula in which no variable occurs free; it is of order+ 1 if
the order of any quantified symbol occurring in itdsn [22]. We use set notation for
predicate membership and inclusionti#eoryT is a finite set of sentences. As usual,
we identify a theoryl” with the sentenceor which is the conjunctiory\weT o of all
sentences iff'.

A structureM consists of a nonempty set/| and an assignmetit(M) of pred-
icates, i.e. relations (resp. functions), of suitable type ¢d¥éfto the predicate (resp.
function) constants. The object assigned to constante. the extension af’ in M, is
denoted by[CT],, or simply C if this is clear from the context. Equality is interpreted
as identity. A model for a sentencgeis any structure\/ such thatp is true in M (in
symbols,M = ¢). M[y] denotes all models af.

Letp = p1,...,p, be alist of first-order predicate constants and z,...,z,, a
list of first-order predicate or function constants disjoint withFor any structuré//,
let MJ!, be the class of structuréd’ such thatM| = [M’|, and[C] ,, = [C],, for
every constan€ not occurring inp or z. The pre—orderg{‘){z on M%z is defined by
M, gﬁ‘,/{z M, iff [[pi}]M1 C ﬂpi]]M2 forall 1 < i < n. The pre-ordeKy,, is the union
of all gﬁ{z over all structures. We write/ly etc. ifzis empty;ggf and<,, are partial
orders onMy resp. all structures.

The circumscription op in a first-order sentence(p, z) with z floating is the
second-order sentence [13]

¢(p,2z) A—3p', 7' (¢(p',2') A (P’ C p))

which will be denoted byirc(¢(p, z)) (p andz will be always presupposed). Hepé
z' are lists of predicate and function variables matchendz andp C p’ stands for



(p’ € p) A (P # p), Where(p’ C p) is the conjunction of allp; C p;), 1 <i < n.
The following is a straightforward consequence of the definitions.

Proposition 2.1. [13] M = Circ(p(p, z)) iff M is <p.,-minimal among the models
of o(p,2).

We formally define the concept of a “good” model as follows. First define the prop-
erty that a set of models is closed under minimal upper bounds.

Definition 2.1. Let p(p, z) be a first-order sentence. A s&t of models ofp(p, z) is
<p:z-Closed iff, for every\t’ C M and any modeM of p(p, z), if M is <p.,-minimal
among the models ¢f(p, z) which satisfyM’ <., M forall M’ € M’ thenM € M.

Clearly the set of all models is closed. Further, every closed set must contain all
<p:z-minimal models ofp(p, z) (let M’ = ()); the empty set is closed iff(p,z) has
no minimal model. We define goodness as follows.

Definition 2.2. A modelM of ¢(p, z) is good with respect tp; z iff M belongs to the
leastp; z-closed set of models ofp, z).

Notice that good models only exist if a uniqgue smallest closed set exists. The latter is
immediately evident from the following characterization of goodness.

Proposition 2.2 ([8]).A modelM of o (p, z) is good with respect tp; z iff M belongs
to the intersection of alp; z-closed sets.

In [8], it was shown how to capture goodness by a sentetes (o(p, z); p, z)
whose models are precisely the good model®(gf, z). Similar to circumscriptionp
are the minimized predicates (here under ith@usiveinterpretation of disjunction),
z are the floating predicates, and all other predicates are fixed. Curbing is naturally
formalized as a sentence of third-order logic, given that the definition of the set of good
models of a theory involves sets of sets of models. However, in [8] it was also shown
that curbing can be formalized in second-order logic.

In the present paper we do not need the formal definitionSwh(¢(p, z); p, z)
in third or second order logic, but we are interested in the problems Curb Inference and
Curb Model Checking as defined in the introduction.

2.3 Previous Complexity Results on Propositional Curbing

Recall that in the propositional case, a structiifeis a truth-value assignment to the
propositional variables. The probler@sirb Model CheckingndCurb Inferencewnere
described in the introduction. In [8] it was shown that both problems aRSiPACE,
and in fact can be solved in quadratic space.

Two possibilities to approximate the full set of good models by a subset are dis-
cussed in [8]. The first approximation is to limit iterated inclusion of minimal upper
bounds. Let us define the notion@fgoodness for ordinals.



Definition 2.3. A model)M of ¢(p, z) is 0-good with respect tp andz, if M is <p.,-
minimal among the models of

A model)M of p(p,z) is a-good with respect tp andz, if M is a <p., minimal
upper bound of a set of modeld of ¢, such that for each mod@ll’ € M there exists
an ordinal 3 < « such thatM’ is 8-good w.r.t.p andz.

Informally, in the approximation, one chooses only the models that-ayeod for
somea such thatl|a|| < ||0]|, where the ordina is a limit on the depth in building
minimal upper bounds. The operator corresponding to such a restricted version of curb-
ing is denoted byCurb’. Notice that circumscription appears as the case 0, i.e.

Curd® (¢(p, z); p, z) is equivalent toCirc(p(p, z); p, z).
Concerning the computational complexity, the following was shown in [8]:

Theorem 2.1. For Curb® (with fixed constant) the model checking problem sr
complete, while inferencing i complete.

Thus, the inference problem is in the propositional case for finite conétasteasy
(and as hard) as circumscription.

Another potential approximation to curbing studied in [8] is to limit the cardinality
of model sets from which minimal upper bounds are formed. Intuitively, this corre-
sponds to limiting the number of inclusively interpreted disjuncts by a cardinal0.

The concept of closedset is defined by adding in the definition of closed set the con-
dition “|| M| < k”; goodness is the relative notion of goodness.

Clearly, goodnessis equivalent to circumscription. Fer > 2, (i.e. |M] is finite)
the following result was proven:

Theorem 2.2 ([8]).Over finite structures, for every > 2 a model ofp(p, z) is good,
with respect tgp; z iff it is good with respect tp; z.

This result, which fails for arbitrary structures, implies a dichotomy result on the
expressivity ofx-bounded disjuncts: Either we get only the minimal models, or all
models obtainable by unbounded disjuncts. Thus the method of bounded disjunction is
not a really useful approximation.

3 Main Result: PSPACE Completeness of Theory Curbing

In this section, we shall prove that inference as well as model checking under curbing is
PSPACE-complete. Intuitively, the problems have this high complexity since checking
whether a model is good requests a “proof”, given by a proper collection of models,
which may have non-polynomial size in general.

That such large proofs are necessary has been shown by Bodenstorfes(ippért
of a modelM in a collectionF of models is a subse®’ C F containingM such that
every M’ € F'is in F a mub of some modela41 C F' \ {M’}. Note that every
minimal modelM € F has a supporf)M } and that all models in a support are good
models. Furthermore, every good modelfohas some support.

Bodenstorfer has defined a famifyj,, n > 0, of sets of models on an alphabet of
O(n) propositional atoms, such tha}, contains exponentially many models i)y and



F, itselfis the only support of the unique maximal modé}, of 7,,. Informally, 7, =

{{ao}}, and the familyF,, is constructed inductively by cloning, _; and adding some

sets which ensure that the jmaximal model needs all models for a proof of goodness (see
Figure 3).

aa’ Sby’
aa'Sh aa' Sb

aSh aSa’ a’' S
a(F ={S})  d(F-{5}H

Fig. 3. Cloning a familyF with uniqgue maximal mode$

3.1 Describing the exponential support familyF,,

We describe Bodenstorfer's famil§,, by a formulad,,, such thatF,, = mod(®,,). The
letters we use ardt,, = {a;,a},b;, b} | 1 <i <n}U{ag}. We define the formule,,
inductively, where we seb, = ap andMy = {a¢}, and forn > 1:

Dy, = (Mp_1 Ayp) V (= Mp_1 APp_1 A (an < —al)) A =by A =b),
where
Y = (an Aby A=al, A=bL) V (an Aal, A =by, A=D,) V
(al, ANbl, A =an A =by) V (an Aby Aal, A=DL) V
(al, Abl A ay A=bp) V (an Ab, Aal, AL);

M, = M, _1 U{an,a.,, by, b}

Note that the left disjunct ob,, gives rise to six models, which extedd,,_; by
the following sets of atoms:

Apa = A{an,bn}, Ano = {al,, b}, By, = {an,al,}, Cp1 = {an,a),, by}, Cpo =
{an,al,, b}, andD,, = {an,al,, b, b}

Informally, A4,, 1 (resp.,A, o) represents the assignment of true (resp., false) to the
atoma,,. The right disjunct ofp,, generates recursively assignments to the other atoms
an—1, ---,a1, sSuch that certain minimal models &f, represent truth assignments to
the atomsuy, . .., a, (See Figure 4).

Note thatM,, = M,,_, U D, (i.e., all atoms are true) is, as easily seen, the unique
maximal model of the formulg,,. The set of models a@b,, over At,,, mod(®,,), defines
the family 7,, as described in [2]. Thus, each modél € mod(®,,) is good, and\/,,
requires an exponential size support.
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Fig. 4. The set of modelsnod (P2)

3.2 Evaluating a quantified Boolean formula ormod (®.,)

We now show that a quantified Boolean formula (QBF)

F= QnanQn—lan—l e Q1a1907

where each®); € {V,3} andy is a Boolean formula over atoms, . ..,a,, can be
“evaluated” on the collectiomod (®,,) of good models exploiting the curbing principle.

Roughly, the idea is as followsnod (®,,) can be layered inta overlapping layers
of models, where each layércontains the models which are recursively generated
by the left disjunct of the formul&;. In each layer we have three levels of models.
Neighbored layers andi — 1 overlap such that the bottom level ois the top level of
i—1 (see Figure 5). The minimal models+md (®,,) are the bottom models of layer 1,
and might be considered as the top model of an artificial layer 0. Similarly, the maximal
modelM,, in mod(®,,) might be viewed as a bottom model of an artificial layer 1.

In order to “evaluate” the QBF’, we will obtain a formulaZ (F') from F by adding
conjunctively a set of formulas'(F) to &,,. Thus¥(F) = &,, A I'(F). The formulas
in I will be chosen such that the overall structure of the set of good moddi$ 1of
does not differ from the one of the set of modelgbgf In particular, each modeéll of
&,, will correspond to some good modg{M ) of ¥(F') which augmentd/ by certain
atoms that describe the truth status of subformulas.of

By adjoining I'(F’) to @,,, we “adorn” the models immod(®,,) with additional
atoms which help us in evaluating the formulaalong the layers. At a layer in
mod(®,), we have fixed an assignment to the variahles,, ..., a,, already, where
a; is true if a; occurs in the model, and; is false ifa’; occurs in the model, for all
j > i+ 1 (there are some ill-defined assignments in top elements of fayekvhich
botha;,1 anda;j, occur; these assignment will be ignored). Then, at two sets at the
bottom of the laye# which correspond to the possible extensions of the assignment to
ait+1,- - .,an DY settinga; either true (effected by the set; ;) or to false (byA; o),
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Fig. 5. Layers inmod (®y)

we “evaluate” the formul&);_1a;_1 - - - Q1a1p(a;, ai11, - - -, an ) Where the variables
ag, - - ., ay are fixed to the assignment. If that formula evaluates to true, thenig
true an atom; is included (resp., ifi; is false an atomy) at this bottom element. The
quantifierQ; is then evaluated by including in the top element “above” the two bottom
sets an aton; if, in case ofQ; = 3, eitherv; or v; occurs in one of the two bottom
elements, and in case ¢f; = V, v; resp.v; occur in the bottom elements. The top
element is itself a bottom element at the next layerl, and the aton; is used there
to see whether the formu@;a; - - - Q1a1¢(a;41, - . ., a,) evaluates to true.

In what follows, we formalize this intuition. We introduce a set of new ataitjs=
{vi,vg,ti | 1 § ) S ’fl} U {to}

The following formulas are convenient for our purpose:

ass; = a; < —a,, 1<i<mn;
Ai = (Fbi1 V mbig) Aaivr Al — mbipn Abiyy), 1<i<ng
Ay =X A=, 2<i<my
AL = A

Informally, ass; tells whether the model considered assigns the atplegally a truth
value. The formula\; says that the model is at layeor below. The formula; says
that the model is at layer The models at the bottom of layewhich are of interest to
us are those in whichss; is true; all other models of the entire layer violates;.

At layeri > 1, we evaluate the formula using the following formulas:

/12' A ass; A\ ti—l AN a; — U;

A; Nassi Nti—1 N al, — v,

10



For: =1, we add
» — to,

which under curbing evaluates the quantifier-free part after assigning all variables. De-
pending on the quantifi&p,;, we add a clause as follows.@; = 3, then we add

Ai A (’Ui V U;) — ti;
otherwise, ifQ); =V, then we add
Ai/\vi/\’U; Hti.

For “garbage collection” of the new atoms used at lower layers, we use a formulas
trap; which adds all values;, fu;-,t;- of lower layers to all elements of layeémwhich
correspond to an illegal assignmentito

i—1
trap; = Ay A —ass; — to A /\ vj A v‘; Nty
j=1

Informally, models corresponding to different extensions of an assignment will always
have a mub which is upper bounded by the bottom model at layich is an illegal
assignment.

Let the conjunction of all formulas introduced for layiewherel < i < n, beI},
and letI"(F') = A}, I;. Then we define

U(F) = &, AT (F).

Note that®(F') has a unique maximal modélr, which is given byMr = M, U
{vi,vi,t; | 1 < i <n}(i.e., all atoms are true).

Let us call a modelM € mod(¥(F')) anassignment modgif either M N At,, =
M, or (b) M = A; A ass;, i.e., eitherM extends the maximal model g%, or M is
at the bottom of layef and assigng; a unique truth value. In case (a), we vié
at the bottom of an artificial layet + 1. M represents a (partial) assignmeny; to
@;,. . . an, defined byoas(a;) =trueifa; € M andoys(a;) = false ifafj € M, for all
J=1,...,N.

We show the following

Lemma 3.1. For each modelM € mod(®,,), there exists a good modgl( M) of
mod (¥ (F)), such that:

1. f(M)N At, = M (i.e., f(M) coincides with\/ on the atoms ob,,);
2. if M is an assignment model at layee {1,...,n+ 1}, thenf (M) containst; 4
iff the formula

Fi = Qi—10i-1Qi—2az - - - Qrayp(ay, . .., ai—1,00m(a;), ..., o0 (an))

is true

11



3. If M is atlayeri € {1,...,n} but not an assignment model, then
(M MU At,_,, if M = M,_1UBy;
S f(Myy UAL ) U F(My 1 UB,), if M =M,y UCpy, ke{0,1}.

4. f(M,) is the unique maximal good model &fF’), and if @,, = V, thent,, €
f(My,) iff f(M,) = At,, U At),.

An example of the construction g¢f-) for the formulaF = Vas3a;(as — a;) is
shown in Figure 6.

tovi ’U/ltl ’U2’Ul2t2
t0U1’U/1t1Ué tov1v’1t1vg
ﬁa2 a2
t()Ul’Uitl
tovlvitlvé tovitive
to’Uﬂtl tovity to tovity
—ay a —ay a
t(J'Uitl to tovity to tovity
{3 {a1} {a2} {a1,a2}

Fig. 6. EvaluatingF’ = Vaz3a1 (a2 — a1): ExtendingM to f(M) = M U X (X shown)

Proof. We first note that each mod@&{’ of ¥ (F) is of the formM U S, whereM €
mod(P,,) andS C At!,, and eachM/ € mod(P,,) gives rise to at least one sudf’
(just addAt), to M).

We prove the lemma showing by induction en> 0 how to construct such a
correspondencg(M).

The base case = 0 (in which F' contains no variables and is either truth or falsity)
is easy:mod(®y) = {{ao}} and, if F' is truth, thenmod(¥(F)) = {{ao,to}} and
f{ao}) = {ao,to}, and if F is falsity, thenmod(¥(F)) = {{ao}, {ao,t0}} and
f({ao}) ={ao}.

Consider the case > 1 and suppose the statement holdsfor 1. Let M €
mod(®,,). We consider two cases.

1) M = A—1 and M ¥ anal,. Then,M = a, < -a,, and eitherM is an
assignment model at the bottom of laye(in which caseM satisfies the left disjunct
of &,,) or some model not at layer (in which caseM satisfies the right disjunct of
M). In any caseN = M \ {an,a,,b,,b,} is a model of®,_;. By the induction
hypothesis, it follows that folV we have a good modegi(N) of ¥ (F’), whereF’ =

12



Qn-1Gn-1---Qra1¢’ andy’ = ¢la,/T| (WhereT is truth) if a,, € M andy’ =
ola,/ L] (where.L is falsity) if a, € M (i.e.,a,, ¢ M), suchthaff () fulfills the items
in the lemma. We defing()) as follows. IfN  M,,_y, thenf(M) := M U f(N);
otherwise, ifN = M,,_1, thenf(M) = M U f(N) U Sy, where

@, |ft7 1¢f(N)7
{vn,tn}, ifti_1 € f(N),Qn 3, anda; € M;
Sy =1 {vl,tn}, iftiq € f(N),Qn 3, anda} € M;
{vn}, ifti_1€ f(N),Qn V, anda; € M;
{v/}, ifti_1 € f(N),Q, =V, anda), € M.

As easily checkedf (M) is a model of# (F'). Furthermore f(M) is either a minimal
model of ¥ (F) (if n = 1), or the mub of good modelg(A/;) and f (M) such that
Ml, M,y € mod(@n_l), ]\4—17 My C M, andM is a mub Oth M in mod( n— 1) (lf
not, thenf (V) were not a mub of (Ny), f(Ns) in mod(¥(F")), which is a contradic-
tion.) We can see that(M) fquiIIs the items 1-3 in the lemma.

2)M E N1 0r M = a,al,,i.e., M is at layern but not an assignment model at
its bottom. We consider the foIIowmg possible casesitar

21)M = M,_1 U B,: If n =1, thenM is a minimal model of?,,, andf (M) =
M U {to} is a minimal model ot (F'), thusf (M) is a good model o¥ (F); otherwise
(i.e.,n > 2), M is a mub of any arbitrary model&/;, M, € mod( n) Such thatd;
containsa,, and M, containsa), respectwely, and/; \ {an,al,,b,, b} € M,,_q, for
i € {1,2}. Since, by construction}(M;) C M,_, U At/, | =: f(M), this set is an
upper bound off (M;) and f(Mz) in mod(¥(F)); from formulatrap,,_; it follows
that f (M) is a mub off (M),f(Ms). Thus,f(M) is a good model o¥ (F).

(2.2)M = M,,_1UC,, i, k € {0,1}: As easily checkedf (M) = f(M,—1 U A, )U
f(Mp—1UB,) (FM,—1 U B, USy, _,ua, ) is a model of (F). Since, as already
shown, bothf(M,,_1 U A, x) and f(M,,_; U B,,) are good models af (F), clearly
f(M) is a mub of them and thus a good modellfF’).

(2.3) M = M,,: We define

if = ! X:
FM) = f(Mp—1 U Cho) U f(My_1UCypq)U {{t&}, IOtthanisveandvn,vne :

Observe thatf (M) = M,, U At!,_, U X, whereX C {v,,v),t,}. Then, as easily
checkedf(M) is a model of# (F). Clearly, f(M) is a mub off( n—1UCy o) and
f(M,,—1 UC, 1), and thusf(M) is a good model o¥ (F).

We now show thaf (M) in (2.1)—(2.3) satisfies items 1-3 in the lemma. Obviously,
this is true for (2.1) and (2.2). For the case (2.3), from the definition& 9fin (1) and
(2.1)-(2.2) it follows that,, € f(M) ifand only if¢,,_1 € f(M,,—1 U A, ) holds for
for somek € {0,1} if @, = 3 and for bothk € {0,1} if Q,, = V. By the induction
hypothe5|st7, 1€ f(Myu—1UA,y)istrue iff the QBFQ,—1an—1 - - - Q1a1¢’, Where
¢ = play/T]if k=1andy’ = ¢la,/L]if k=0, is true. Thustn € f(M) iff the
QBF Fis true. Hencef (M) satisfies items 1-3 of the lemma.

As for property 4, Furthermore, in the case wh@re= vV, we have by definition of
f(M)thatt, € f(M)iff f(M)= M, UAt,_;U{v,,v,, tn} = At, U At,.
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Finally, it remains to show that(AZ,,) is the unique maximal good model &{ F').
As easily seen, every finite propositional theory which has a unique maximal model
has a uniqgue maximal good model, thi&F') has a unique maximal good model’.
From the induction hypothesis, it follows thaf;, = f(M,_1 U A, ) is the unique
maximal good modeM;, of ¥(F') such thatM’' N At,, C M,,_1UA, x, fork € {0,1}.
Since My = f(M,_1B,) is the unique maximal good modal of ¥(F') such that
N N At, € M,_1 U B,, we conclude from the structure of layer which has the
lub property (see Section 4), that’ is a mub ofM,, My, Ms. Since, by construction,
f(M) is an upper bound aif;, M, Mj, it follows M’ = f(M).

This proves that the claimed statement holdssfpand completes the induction.

O

We thus obtain the following result.

Theorem 3.1. 1. Given a propositional formulé and a modelM of G, deciding
whether)M is a good model of? is PSPACEhard.
2. Given a propositional formul& and an atonp, deciding whetheCurb(G) E p
is PSPACEhard.

Proof. By items 2 and 4 in Lemma 3.3/ = At,, U A¢/, is a good model o¥ (F') for
aQBFF =Va,Q,_1a,_1---Qia1¢ iff Fistrue. Furthermore}’ is false if and only
if no good model of# (F') containst,,. Deciding whether any given QBF of this form
is true (resp. false) is clearly PSPACE-hard, and the fornigla) is easily constructed
in polynomial time fromF'. This proves the result. ad

Combined with the previous results [8] that Curb Inference and Curb Model Check-
ing are in PSPACE, we obtain the main result of this section.

Theorem 3.2. 1. Curb Model Checkingi.e., given a propositional theof¥ and sets
p, z of propositional letters, deciding whethér is a p;z-good model ofl" is
PSPACEcomplete.

2. Curb-Inferencei.e., given a propositional theor¥, setsp; z of propositional let-
ters, and a propositional formul&, deciding whetherCurb(T;p,z) = G is
PSPACEcomplete.

4 The Lub Property

While curbing of general theories BRSPACE-complete, it is possible to identify spe-
cific classes of theories on which curbing has lower complexity. In this section, we
identify a relevant fragment of propositional logic for which curb-inference &jn

Definition 4.1. AtheoryT has the lub property iff every nonempty Saif good models
has a least upper bound (luBy.

Lemma 4.1. Let Sy, S; be nonempty sets of good models of theBrsuch thatS; C
Sa, and let My, M, be mubs ofS; and S,, respectively. I\ is the lub ofS;, then
My < Ms.

14



Theorem 4.1. If theoryT has the lub property, then a model is good iff it is 1-good.

Proof. Prove by induction om that if modelM is a-good, then it is 1-good. Obvious
for a < 1. Assumex > 1. Then,M is a mub ofS = {M' : (< «a)-good M"), M’ <
M}. Now, by the hypothesis, eadll’ € S is the mub of somé&’ C S which contains
only minimal models. Lef,,, be the minimal models frorS. If S,,, = 0, thenM is a
minimal model and the statement holds. Efs¢ has a lubM,,,. From the unique mub
property and Lemma 4.1, it follows that’ < M,,, for eachM’ € S. ThusM,, is an
upper bound o, henceM < M,,. On the other hand, sincg,, C S, it follows from
Lemma 4.1 that\l,,, < M. Since< is a partial order, it follows\/,,, = M. ThusM is
1-good and the statement holds. O

Corollary 4.1. For propositional theoried" having the lub propertyCurb Inferences
in 1711, andCurb Model Checkings in X1

Proof. To show Curb(T) [~ F, guess a model! of Curb(T') such thatM (= F'. To
verify M, guessk from {0, ..., |V|}, whereV is the variable set, and minimal models
My, ..., My of T such thatM is a mub of them. Use an NP oracle for testing whether
M; is minimal (is in coNP) and for testing i¥/ is a mub of theV/; (isin coNP). O

Notice the following characterization of lub theories.

Definition 4.2. A theoryT is mub-compact over a domain iff every good model is a
mub of a finite set of good models.

Theorem 4.2. LetT" be a mub-compact theory over some domain. Théras the lub
property iff every pair of good models has a lub.

Proof. (Sketch) To show thi direction, demonstrate by induction on finite cardinality
« that every se8 such that|S|| < « has a lub. Fork < 2, this is obvious. Fok > 2,
let M € S be a maximal element i§. By the hypothesisS — {M} has a lubM’. M
andM’ have a lubM”’, which must (Lemma 4.1) be the lub &f O

Corollary 4.2. If the domain is finite and the modelsBfform an upper semi-lattice,
thenT has the lub property and a modelgsodiff it is 1-good

As already mentioned in the introduction, Scarcello, Leone, and Palopoli [21] de-
rived complexity results for curbing Krom theories, i.e., clausal theories where each
clause contains at most two literals. They showed that Curb Model Checking for propo-
sitional Krom theories is £, To establish this result, they showed that timon of
any pair of good models of a propositional Krom theory is also a good model. From
this it clearly follows that propositional Krom theories enjoy the (more general) lub
property. Hence thei&l” upper bound and, in addition, dZ" upper bound for curb
inferencing can also be derived via our more general results.
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5 Good Models and Least Upper Bounds

The lub property defined in Section 4 requires tathnonempty collections of good
models of a theory have a lub. Let us weaken this property by requiring merely that for
every non-minimal good modél/ there exists a collection of models whose lubdis

Definition 5.1. A theorT" has the weak least upper bound (weak lub) property, if every
non-minimal good model &f is the lub of some collectioMm of good models df'.

Notice that the lub property implies the weak lub property, but not vice versa. This
is shown by the following example.

Example 5.1.Suppose the models of a propositional the@rare the ones shown in
Figure 7. All models are good, and; = {a,b,c}, My = {b,c,d} are the lubs of

abc bed

Fig. 7. The weak lub property does not imply the lub property

the collections{{a}, {b}, {c}} and{{b}, {c}, {d}}, respectively. However, the good
models{b} and{c} do not have a lub; thus, the theory satisfies the weak lub property
but not the lub property.

Intuitively, if a theory satisfies the weak lub property, then any good mbfiegt a
collectionM of good models can be replaced by a collecidd of good models whose
lub is M, without affecting the mubs of the collection, i.&4 has the same mubs as
M\ {M} UM . By repeating this replacemeurit/ can be replaced by a collectiow*
of minimal models that has the same mubsAds This is actually the case, provided
that the collection of good models has the following property.

Definition 5.2. The collection of good models of a sentepcs well-founded if every
decreasing chaid, O M; D --- of good models has a smallest element.

Notice that in the context of circumscription, theories were sometimes called well-
founded if every modelM of a sentence includes a minimal model op [14]. That
notion of well-foundedness is different from the one employed here.

The collection of good models of a theory is not necessarily well-founded, as shown
by the following example.
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Example 5.2.Consider the theory” on the domair¥ of all integers:

¢ = (Va)(p(z) — = <0)) V (Jz =2 0)(Vy)(p(y) — ~(1 <y <z)) V
(Fz = 0)(Vy)(p(y) «— (y > 2) V(-2 <y < 0))

Informally, T' says that the numbers having propestgre either all the negative num-
bers(Z— = {-1,-2,...}), all numbers except some intenfal 2,...,k], & > 0,
or all nonnegative numbers where the interf@alk], & > 0, is replaced by the in-
terval [k, —0]. All models of T are good. The minimal models ate~ and N, =
(No \ [0, k]) U[—k,—0], k > 0; every modelM}, = Z \ [1,k], k > 0, is a mub of the
modelsZ~ and Ny (see Figure 8). Clearfo D M1 D --- D M; O ---,i € w, forms

Mo=7=4{...,-2,1,0,1,2,...}
My =7\ [1,1]
My =17\ [1,2]
No =1{0,1,2,...} Ny ={-1,0,2,3,...} Np={-2,-1,0,3,4,...} 2z~ ={...,-3, -2, -1}

Fig. 8. A collection of good models that is not well-founded.

a decreasing chain of good models. This chain has no smallest element, and hence the
collection of good models df is not well-founded. O

Theorem 5.1. Let ¢ be a first-order sentence such that the collection of good models
of ¢ is well-founded. Ifp hast the weak lub property, then every good model is either
minimal or the lub of some collection of minimal models.

Proof. We show this by contradiction. Assume the contrary holds.A.be the set of
good models which are not the lub of some collection of minimal models; not&tisat
not empty. Since the collection of good models is well-foundeohust have a minimal
element)M . (To obtain such af/, construct a maximal chain i, and take the unique
minimal element of this chain, which must exist). Sincéas the weak lub property,
M is the mub of some collectiof of good models. The definition & and the weak
lub property ofp imply that everyM’ € S is the lub of a collectiorS,;, of minimal
models. LetS’ be the union of all thes8&,,.. We show thaf\/ is the lub ofS’. Clearly,
M is an upper bound a$’. Assume then that/ is not a minimal. Then there exists a
good modelM’ < M which is an upper bound . But thisM’ is also an upper bound
of S. This means that/ is not a mub ofS, which is a contradiction. It follows that/

is a mub ofS’. On the other hand, every upper boubd of S’ must satisfyM < M’.
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Therefore, M is the uniqgue mub of’. Consequently) is the unique minimal upper
bound of a collection of minimal models. By definition, this medds¢ B. This is a
(global) contradiction. O

The converse of this theorem (which is equivalent to the statement that a theory, if
every good model is either minimal or the lub of some collection of minimal models,
is well-founded) is not true. This is shown by Example 5.2. Furthermore, this theo-
rem does not hold if the collection of good models is arbitrary. This is shown by the
following example.

Example 5.3.Replace in Example 5.2 every mod&l;, i € w, by the two models
M¢® = M; U{a} andM} = M; U {b} and extend the domain with the new elements
andb.

In the resulting collection of models, which is clearly axiomatizable by a first-order
sentencep, every model is good and the lub of some collection of good modé]5i6
the lub of {V;, M¢,,}, andM? of {N;, M? ,}; all other models are minimal). How-

ever, noM? is the lub of a collection of minimal models. Notice that each good model
is the lub of two good models and 1-good. O

From Theorems 5.1 and 2.1, we immediately get the following complexity results
for propositional theories.

Theorem 5.2. For propositional theories which enjoy the weak lub property, the prob-
lemCurb Model Checkings in 1, while the problenCurb Inferencas in 177 .

A possible attempt to strengthen the weak-lub property is to use ordinals. Say that
the collection of good models of a theory has itductive weak-lub propertyf every
non-minimala-good model is the lub of a collection 0 «)-good models. Notice that
collection of good models in Example 5.2 has the inductive weak-lub property (which,
as a consequence, does not imply well-foundedness). However, the following result is
an easy consequence of our results from above.

Theorem 5.3. Lety be a first-order sentence whose collection of good models is well-
founded. Then, it has the inductive weak-lub property if and only if it has the weak-lub

property.

Proof. Theonly if direction is trivial. Theif direction follows from Theorem 5.1. O
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