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Abstract. We study a network loading problem with applications in lo-
cal access network design. Given a network, the problem is to route flow
from several sources to a sink and to install capacity on the edges to sup-
port flows at minimum cost. Capacity can be purchased only in multiples
of a fixed quantity. All the flow from a source must be routed in a sin-
gle path to the sink. This NP-hard problem generalizes the Steiner tree
problem and also more effectively models the applications traditionally
formulated as capacitated tree problems. We present an approximation
algorithm with performance ratio (psT+2) where psr is the performance
ratio of any approximation algorithm for minimum Steiner tree. When
all sources have the same demand value, the ratio improves to (pst + 1)
and in particular, to 2 when all nodes in the graph are sources.

1 Introduction

We consider a single-sink multiple-source routing and capacity installation prob-
lem where capacity can be purchased in multiples of a fixed quantity. In telecom-
munication network design this corresponds to installing transmission facilities
such as fiber-optic cables on the edges of a network, and in transportation net-
works this applies to assigning vehicles of fixed capacity to routes. Topological
design of communication networks is usually carried in stages due to the com-
plexity of the problem. One of the fundamental stages is the design of a local
access network which links the users to a switching center. The problem we study
models this stage of the planning process.

Problem statement. We are given an underlying undirected graph G =
(V,E),|V| = n. A subset S of nodes is specified as sources of traffic and a single
sink ¢ is specified. Each source node s; € S has a positive integer-valued demand
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dem;. All the traffic of each source must be routed to ¢ via a single path, that
is flow cannot be bifurcated. The edges of G have lengths £ : E — Rt. Without
loss of generality, we may assume that for every pair of nodes v,w, we can use
the shortest-path distance dist(v,w) as the length of the edge between v and
w; Therefore, we take the metric completion of the given graph and assume all
edges from the complete graph are available. Capacity must be installed on the
edges of the network by purchasing one or more copies of a facility, which we
refer to as the “cable” based on the telecommunication application. The cable
has per unit length cost ¢ and capacity u. Without loss of generality we can
assume ¢ = 1.

The problem is to specify for each source s;, a path to ¢t to route demand
dem; such that cables installed on each edge of the network provide sufficient
capacity for the flow on the edge, and total cost of cables installed is minimized.
Notice that we allow paths from different sources to share the capacity on the
installed cables, the only restriction being that the capacity installed on an edge
is at least as much as the total demand routed through this edge.

The problem is NP-hard since the problem with cable capacity large enough
to hold all of the demand is equivalent to a Steiner tree problem with the sources
and the sink as the terminal nodes.

Previous Work. This problem has been studied in the literature as the
network loading problem, together with its variations such as the multicommod-
ity and multiple facility cases. For a survey on exact solution methods see the
chapter on multicommodity capacitated network design by Gendron, Crainic
and Frangioni in [SS99]. In spite of the recent computational progress, the size
of the instances that can be solved to optimality in reasonable time is still far
from the size of real-life instances.

In this paper we focus on obtaining approximation algorithms. A constant
factor approximation for this problem was obtained by Salman et al. in [SCR+97]
by applying the method of Mansour and Peleg [MP 94] to the case of single
sink, and single cable type. The main algorithm of Mansour and Peleg applies to
the multiple-source multiple-sink single cable problem with approximation ratio
O(logn) in an n-node graph. By using a Light Approximate Shortest-Path Tree
(LAST) [KRY 93] instead of a more general-purpose spanner in this algorithm,
Salman et al. obtained a 7-approximation algorithm for the single-sink version.
When all the nodes in the input network except the sink node are source nodes,
the approximation ratio in [SCR+97] reduces to (24/2 + 2). Another constant
factor approximation algorithm for this problem also follows from the work of
Andrews and Zhang [AZ98] who gave an O(k?)-approximation algorithm for the
single sink problem with k cable types, but the resulting constant factor is rather
high.

Results. In this paper, we improve the approximation ratio to (psr + 2) by
routing through a network that is built on an approximate Steiner tree, with
performance ratio psr. The idea is to utilize the Steiner tree when demand is
low compared to the cable capacity and when demand accumulates to a value
close to the cable capacity, it is sent directly to the sink. For the special case



when demand of each source is uniform, the approximation ratio improves to
(psT + 1). When all the nodes in the input network except the sink node are
source nodes, the approximation ratio reduces to 3 with non-uniform demands,
and to 2, for uniform demands.

Our study was also motivated by obtaining better approximation algorithms
for the capacitated MST problem [Pap78,AG88,KB83,CL83,583]: Given an undi-
rected edge-weighted graph with a root node and a positive integer u, the prob-
lem is to find the minimum weight tree such that every subtree hanging off the
root node has at most » nodes in it. This problem has been cited [KR98,AG88]
to model the local access network design problem when every non-sink node is
required to route a single unit of demand to the sink via cables each of capac-
ity at most u. The requirement that every demand has to send its unit flow
via a single path is modeled as requiring a tree as the solution. However, if
routing these demands at nodes is not a concern, we can still enforce the non-
bifurcating requirement for the demands without requiring that the solution be
a tree. This reformulation leads exactly to our single cable problem in the uni-
form case with all nodes being sources. Our 2-approximation algorithm for this
problem is then a better solution than the best-known 3-approximation [AG88]
for the corresponding capacitated MST formulation. In the nonuniform demand
case, our (pgr+2)-approximation is better than the best known 4-approximation
presented in [AG88] in addition to handling the Steiner version that does not
require all non-sink nodes be source nodes.

In the next two sections, we present the algorithms for the case of uniform
and non-uniform demands, respectively. We close with an extension of the local
access design problem.

2 Uniform Demand

We first present an approximation algorithm for the case when every source has
the same demand. Without loss of generality, we assume demand equals one for
each source.

We can outline the algorithm as follows. First we construct an approximate
Steiner tree with terminal set SU{t} and cost dist(e) on each edge e in polynomial
time. Let T be the approximate Steiner tree with worst-case ratio pgr!. Let the
tree T be rooted at the sink node ¢. Next, we identify subtrees of T" such that
total demand in a subtree equals the cable capacity u. We then route the total
demand within a subtree directly to the sink from the node of the subtree closest
to the sink. The subtrees collected by the algorithm may contain common nodes
but have disjoint source sets.

For a formal statement of the algorithm, we need the following definitions.
Let the level of a node be the number of tree edges on its path to the root. The
parent of a node v is the node adjacent to it on the path from v to ¢. For each
node v, let T, denote the subtree of T rooted at v and D(T,) denote the total
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unprocessed demand in T),. Let R be the set of unprocessed source nodes. Then,
D(Ty) = Y ,.crnt, demi = |[RNT,|. The Algorithm Uniform below outputs a
routing for the demand from each source to the sink, and the number of cables
that are installed to support the routing.

Algorithm Uniform:
Initialize: R =S
Main step:
Pick a node v such that D(T,) > u and level of v is maximum.
If v =t or D(T}) < u, then go to the final step.
Pick a node, say w in RN T, such that dist(w, ) is minimum, as a “hub” node.
Let C = {w}.
Collect source nodes in C' (Details given below).
Add edge (w,t) to the network and install one copy of the cable on (w,t).
Route demand of each source in C' to the hub node w via the unique paths in T
Route demand of C at the hub directly to the sink on (w, t).
Remove C from R, and set C' = ().
If R is not empty, repeat the main step.
If R is empty, go to the final step.
Final step:
If R # 0, then route all the demand in R to ¢ via their path in T'.
For all edges e of T',
Cancel the maximal possible amount of flow of equal value in opposite
directions such that total flow will not exceed w.
Install one copy of cable on the edges of T' which have positive flow.

Collect source nodes:
Add v to C, if v € R.
Let vq,...,v; be the children of v.
If w # v, then
Let v, be the child of v such that the hub node w is in T,.
Add T,,N R to C.
While |C] < u,
Pick an unprocessed child of v, say v;.
If D(Ty,) +|C| € u, then
Add T,, N R to C.
Else, (T,, is collected partially)
Scan T, depth-first.
Add sources in RN Ty, to C until |C| = u.
Return C.

Lemma 1. The algorithm routes demand such that flow on any edge of the tree
T is at most the cable capacity u.

Proof. Consider an edge e of T'. Let v be the incident node on e with higher level
(see Figure 1). Flow on e is determined by the total flow coming out of T, and



Fig. 1. Subtree T, and its children.

going into T,,. Our proof is based on these two claims:

Claim 1: Total flow going out of T, is at most u — 1.

Claim 2: Total flow coming into T, is at most u — 1.

To prove claims 1 and 2, we consider two cases based on how the sources in T,
are assigned to hub nodes by the algorithm. A partially assigned subtree has at
least one of its source nodes collected in a set C and has at least one source node
not in C.

a) Partially assigned T, b) Completely assigned T,

Fig. 2. Examples of partially and completely assigned subtrees.

Suppose T, is partially assigned (see Figure 2). The first time flow goes
out of Ty, a subtree T; with © at a smaller level than v is being processed by
the algorithm. Due to the subtree selection rule, we can conclude that T, has
remaining demand strictly less than u. Therefore, total outflow from T, will be
at most u — 1. Hence, Claim 1 holds in this case.



The reason Claim 2 holds is as follows. When there exists an inflow into T5,,
flow is accumulated at a hub node in T,. Since the algorithm accumulates a
flow of exactly u at any hub node, a flow of at most 4 — 1 will go into T,. The
algorithm first picks a subtree and a hub node in it, and collects demand starting
with the subtrees of T,. Therefore, the algorithm will not collect sources out of
T,, unless all the sources in T, have already been collected. This implies that
once flow enters T, none of the nodes in T}, will become a hub node again and
hence flow will not enter T}, again.

Now let us assume that T, is not partially assigned. Then all the sources in
T, are collected in the same set by the algorithm. If these sources are routed
to a hub node out of the subtree, then outflow is at most u — 1. If the sources
are routed to a hub node in the subtree, then inflow is at most v — 1. Inflow or
outflow occurs only once. Thus, Claims 1 and 2 hold in this case, too.

For any edge of T, flow in one direction does not exceed u, by Claims 1 and 2.
When there exists flow in both directions in an edge with total value greater than
u, we cancel flow of equal value in opposite directions such that total flow will
not exceed u. Cancelling flow will lead to reassigning some of the source nodes
to hubs. See Figure 3 for an example.

a) On edge e, sum of flow in both b) Sources are reassigned to hubs after
directions exceeds u, where u=10. flow of value 5 is cancelled on edge e.

Fig. 3. An example of cancelling flow and reassigning sources to hub nodes. Here w;
and ws are hub nodes chosen in the order of their indices.

Theorem 1. There is a (1 + psr)-approzimation algorithm for the single-sink
capacity installation problem with a single cable type and uniform demand.

Proof. Consider Algorithm Uniform. Let Copr be the cost of an optimal solution
and Cygygr be the cost of a solution output by the algorithm. Let Csp denote
the cost of the cables installed on the edges of the approximate Steiner tree



T. Let Cpgr be the cost of cables installed on the direct edges added by the
algorithm.

By Lemma, 1, at most one copy of cable is sufficient to accomodate flow on the
edges of the approximate Steiner tree T'. The cost of a Steiner tree with terminal
set S U {t} is a lower bound on the optimal cost because we must connect the
nodes in S to ¢t and install at least one copy of the cable on each connecting
edge. Therefore, Csr < psrCopr.

For a source set C}, collected at iteration k, since |Ck| = u, the algorithm
installs one copy of the cable on the shortest direct edge from the subtree T,
which contains Cj, to ¢. The term ) ¢ de;”" - dist(s;,t) is a lower bound
on Copr, since dem; must be routed a distance of at least dist(s;,t) and be
charged at least at the rate 1/u per unit length. (In the uniform demand case,
dem; = 1 for all i.) Since source sets collected by the algorithm are disjoint,

Sk Dsico, L - dist(siy t) = Dk Y ccn dist(s::t) ig a lower bound on Copr,

u u
as well. As demand of a set Cy is sent via the source in C}, that is closest to ¢

(the hub node wyg), we get

) dist(s;,t i .
dist(wy,t) = min dist(s;,t) < 2ssC (53,1) = Z M (1)
8;€Ck Zsieck 1 sieCh u
Thus, we finally have
. dist(s;,t
Cpr= Zdwt(wkat) < Z Z % < Copr. (2)
k k 8:€Ck

Therefore, Cyrur = Cst + Cpr < (1 + pST)CopT.

3 Non-uniform Demand

When source nodes have arbitrary demand, dem; for source s;, it is no longer
possible to collect sources with total demand exactly equal to the capacity u. If
we were allowed to split the (integral) demand for any source into single integral
units each of which can be routed in separate paths to the sink, notice that the
algorithm of the previous section can be used by expanding each source s; to
dem; sources connected by zero-length edges in the tree. However, in the more
general case, all the flow of a source must use the same path to the sink. In
this case, we modify Algorithm Uniform so that we send demand directly to the
sink when it accumulates to an amount between u/2 and u. To guarantee that
we don’t exceed u while collecting demand, we send all sources with demand at
least u/2 directly at the beginning of the algorithm.

For a source set C, let dem(C) be the total demand of sources in C. Recall
that D(C) is the total remaining (unprocessed) demand of C, as defined for
the uniform demand case. The modified algorithm, which we call Algorithm
Non-uniform, is as follows.



Algorithm Non-uniform:
Initialize: R = S.
Preprocessing: (send large demands directly)
For all sources s; such that dem; > u/2,
Route the demand on (s;,t).
Install fde;”"] copies of cable on (s;, t).
Remove s; from R.
Main step:
Pick a node v such that D(T,) > u/2 and level of v is maximum.
If v = ¢, or D(T}) < u/2, then go to the final step.
Pick a node, say w in RN T, such that dist(w,t) is minimum, as a “hub” node.
Let C = {w}.
Collect source nodes in C' (Details given below).
Add edge (w,t) to the network and install one copy of the cable on (w,t).
Route demand of each source in C' to the hub node via the unique path in T.
Route demand of C at the hub directly to the sink on (w, ).
Remove C from R and set C = 0.
If R is not empty, repeat the main step.
If R is empty, go to the final step.
Final step:
If R # 0, then route all the demand in R to ¢ via the unique paths in T'.
Install one copy of cable on the edges of T' which have positive flow.

Collect source nodes:
Add v to C, if v € R.
Let vq,...,v; be the children of v.
If w # v, then
Let v, be the child of v such that the hub node w is in T,.
Add T,,N R to C.
While dem/(C) < u/2,
Pick an unprocessed child of v, say v;.
Add T,,nR to C.
Return C.

Lemma 2. The algorithm routes demand such that:

1) flow on any edge of the tree T is at most u, and

2) flow on a direct edge added by the algorithm is at least u/2 and at
most u.

Proof. The proof is simpler compared to the uniform-demand case because the
algorithm does not assign any subtree partially. Consider an edge e of T'. Let v
be incident on e such that e is not in T5,. Since all the sources in T, are collected
in the same set by the algorithm, demand of these sources is routed to a hub
node either out of the subtree, or in the subtree, but not both. Thus, flow exists
only in one direction. If the demand of sources is routed to a hub node out of



T,, then outflow is at most u — 1. If the demand is routed to a hub node in the
subtree, then inflow is at most v — 1. Thus, for any edge of T', flow does not
exceed u.

Due to the subtree selection rule in the algorithm, if a subtree T, is selected,
then all the subtrees rooted at its children have remaining demand strictly less
than u/2. Therefore, the first time dem(C) exceeds u/2, it will be at most u
so that total flow on the direct edges added by the algorithm is in the range
[v/2,u].

Theorem 2. There is a (2 + psr)-approzimation algorithm for the single-sink
edge installation problem with a single cable type and non-uniform demand.

Proof. We use the same definitions of Copr, Cygur, Cpr and Cgr as in the
proof of Theorem 1.

By Lemma 2, at most one copy of the cable is sufficient to accommodate flow
on the edges of the approximate Steiner tree T'. Therefore, Csr < psrCopr-

For a source set Cj, collected at iteration k, the algorithm installs one copy
of the cable on the shortest direct edge from the subtree T, which encloses
Cy, to t. By Lemma, 2, at most one copy of cable is sufficient to accommodate
flow on the direct edges from hub nodes to ¢ and dem(Cy) > u/2. The term
D sies de;”" -dist(s;, t) is a lower bound on Cppr as in the uniform demand case.
Since source sets collected by the algorithm have disjoint sources and demand
from a set C}, is sent via the source in Cj, that is closest to ¢t (the hub node wy),

Copr 2 Z Z

dem; dem;
*dist(s;, t) > *(min dist(s;,t)). 3
" dist(s )_Z Z ( min dist(s;,t)) (3)

b sicCh b sicCh u 8;€Ch
Since Zsieck dem; > % and ming, cc, dist(s;,t) = dist(wg,t), we have
Corr >3 Y Sdist(ws,t) = =Cpr. (4)
- k eC 2 , 2
84 k

Therefore, Cypur = Cst + Cpr < (2 + pST)CopT.

4 Extensions

Our methods apply to the following extension of the local access network design
problem: Instead of specifying a single sink node, any node v in the graph can
be used as a node that sinks « units of demand at a cost of f,. A node is allowed
to sink more than » units of demand by paying fd‘;m] - fv cost to sink dem
units of flow. The problem is to open sufficient number of sinks and route all the
demands to these sinks at minimum cable plus sink opening costs.

To model this extension, we extend the metric in two steps: 1) create a new
sink node ¢ with edges to every vertex v of cost f,, 2) take the metric completion
of this augmented network. Notice that the second step may decrease some of
the costs on the edges incident on the new sink ¢ (e.g., if f; + dist(j,4) < f;,




then the cost of the edge (j,t) can be reduced from f; to f; + dist(j,7)), or
between any pair of original nodes (e.g., if dist(i,j) > fi + f;, then we may
replace the former by the latter). Bearing this in mind, it is not hard to see that
any solution in the new graph to the single cable problem with ¢ as the sink and
with the modified costs can be converted to a solution to the original problem
of the same cost. Thus, our algorithms in the previous sections apply to give the
same performance guarantees.
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