Skip to main content

Polynomial Time Approximation Schemes for Class-Constrained Packing Problems

  • Conference paper
  • First Online:
Approximation Algorithms for Combinatorial Optimization (APPROX 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1913))

Abstract

We consider variants of the classic bin packing and multiple knapsack problems, in which sets of items of different classes (colors) need to be placed in bins; the items may have different sizes and values. Each bin has a limited capacity, and a bound on the number of distinct classes of items it can hold. In the class-constrained multiple knapsack (CCMK) problem, our goal is to maximize the total value of packed items, whereas in the class-constrained bin-packing (CCBP), we seek to minimize the number of (identical) bins, needed for packing all the items. We give a polynomial time approximation scheme (PTAS) for CCMK and a dual PTAS for CCBP. We also show that the 0-1 class-constrained knapsack admits a fully polynomial time approximation scheme, even when the number of distinct colors of items depends on the input size. Finally, we introduce the generalized class-constrained packing problem (GCCP), where each item mayh ave more than one color. We show that GCCP is APX-hard, alreadyf or the case of a single knapsack, where all items have the same size and the same value. Our optimization problems have several important applications, including storage management for multimedia systems, production planning, and multiprocessor scheduling.

Author supported in part by Technion V.P.R. Fund - Smoler Research Fund, and by the Fund for the Promotion of Research at the Technion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms for knapsack problems with cardinalityc onstraints. European Journal of Operations Research. To appear.

    Google Scholar 

  2. A.K. Chandra, D.S. Hirschberg, and C.K. Wong. Approximate algorithms for some generalized knapsack problems. Theoretical Computer Science, 3:293–304, 1976.

    Article  MathSciNet  Google Scholar 

  3. C. Chekuri and S. Khanna. A PTAS for the multiple knapsack problem. SODA’ 00. pp. 213–222.

    Google Scholar 

  4. E.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation Algorithms for Bin Packing: A Survey. in Approximation Algorithms for NP-hard Problems. D.S. Hochbaum (Ed.). PWS Publishing Company, 1995.

    Google Scholar 

  5. M. Dawande, J. Kalagnanam, and J. Sethuraman. Variable sized bin packing with color-constraints. TR, IBM, T.J.Watson Research Center, Yorktown Heights, 1999.

    Google Scholar 

  6. L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformlyre lated and identical parallel machines.ESA’ 99, LNCS 1643, pp. 151–162. Springer-Verlag.

    Google Scholar 

  7. C.E. Ferreira, A. Martin and, R. Weismantel. Solving multiple knapsack problems byc utting planes. SIAM J. on Opt., 6:858–877, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.R. Gareyan and D.S. Johnson. Strong NP-completeness results: Motivations, examples, and implications. Journal of the ACM, 25:499–508, 1978.

    Article  Google Scholar 

  9. G.V. Gens and E.V. Levner. Computational complexityof approximation algorithms for combinatorial problems. The 8th International Symp. on Mathematical Foundations of Computer Science, LNCS 74, pp. 292–300. Springer-Verlag, 1979.

    Google Scholar 

  10. L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms for data placement on parallel disks. SODA’00, pp. 223–232.

    Google Scholar 

  11. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems: Practical and theoretical results. Journal of the ACM, 34(1):144–162, 1987.

    Article  MathSciNet  Google Scholar 

  12. M.S. Hung and J.C. Fisk. A heuristic routine for solving large loading problems. Naval Research Logistical Quarterly, 26(4):643–50, 1979.

    MATH  Google Scholar 

  13. T. Ibaraki and N. Katoh. Resource Allocation Problems-Algorithmic Approaches. The MIT Press, 1988.

    Google Scholar 

  14. O.H. Ibarra and C.E. Kim. Fast approximation for the knapsack and the sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Ingargiola and J. F. Korsh. An algorithm for the solution of 0-1 loading problems. Operations Research, 23(6):110–119, 1975.

    Article  MathSciNet  Google Scholar 

  16. N. Karmakar and R.M. Karp. An effcient approximation scheme for the onedimensional bin packing problem. FOCS’82, pp. 312–320.

    Google Scholar 

  17. H. Kellerer. A polynomial time approximation scheme for the multiple knapsack problem. APPROX’99, LNCS 1671, pp. 51–62. Springer-Verlag.

    Google Scholar 

  18. E. Y-H Lin. A bibliographical surveyon some well-known non-standard knapsack problems. Information Systems and Oper. Research, 36:4, pp. 274–317, 1998.

    Google Scholar 

  19. S. Martello and P. Toth. Algorithms for knapsack problems. Annals of Discrete Math., 31:213–258, 1987.

    MathSciNet  Google Scholar 

  20. R. Motwani. Lecture notes on approximation algorithms. Technical report, Dept. of Computer Science, Stanford Univ., CA, 1992.

    Google Scholar 

  21. H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack problem. Algorithmica. To appear.

    Google Scholar 

  22. H. Shachnai and T. Tamir. Scheduling with limited number of machine allotments and limited parallelism. Manuscript, 2000.

    Google Scholar 

  23. H. Shachnai and T. Tamir. Polynomial time approximation schemes for classconstrained packing problems (full version). http://www.cs.technion.ac.il/~hadas.

  24. J. Turek, J. Wolf, and P. Yu. Approximate algorithms for scheduling parallelizable tasks. SPAA’92, pp. 323–332.

    Google Scholar 

  25. W.F. Vega and G.S. Leuker. Bin packing can be solved within 1+ε in linear time. Combinatorica, 1:349–355, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.L. Wolf, P.S. Yu, and H. Shachnai. Disk load balancing for video-on-demand systems. ACM Multimedia Systems Journal, 5:358–370, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shachnai, H., Tamir, T. (2000). Polynomial Time Approximation Schemes for Class-Constrained Packing Problems. In: Jansen, K., Khuller, S. (eds) Approximation Algorithms for Combinatorial Optimization. APPROX 2000. Lecture Notes in Computer Science, vol 1913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44436-X_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-44436-X_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67996-7

  • Online ISBN: 978-3-540-44436-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics