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Abstract. The main contribution of this paper is a new “extrinsic” dig-
ital fundamental group that can be readily generalized to define higher
homotopy groups for arbitrary digital spaces. We show that the digital
fundamental group of a digital object is naturally isomorphic to the fun-
damental group of its continuous analogue. In addition, we state a digital
version of the Seifert–Van Kampen theorem.
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1 Introduction

Thinning is an important pre-processing operation in pattern recognition whose
goal is to reduce a digital image into a “topologically equivalent skeleton”. In
particular, thinning algorithms must preserve “tunnels” when processing three–
dimensional digital images. As it was pointed out in [4], this requirement can
be correctly established by means of an appropriate digital counterpart of the
classical fundamental group in algebraic topology; see [11].

The first notion of a digital fundamental group (and even of higher homo-
topy groups) is dued to Khalimsky ([3]). He gave an “extrinsic” definition of this
notion for a special class of digital spaces based on a topology on the set ZZn, for
every positive integer n. However, this approach is not suitable for other kinds
of digital spaces often used in image processing, as the (α, β)-connected spaces,
where (α, β) ∈ {(4, 8), (8, 4)} if n = 2 and (α, β) ∈ {(6, 26), (26, 6), (6, 18), (18, 6)}
if n = 3. Within the graph-theoretical approach to Digital Topology, Kong solved
partially this problem in [4] by defining an “intrinsic” digital fundamental group
for the class of strongly normal digital picture spaces (SN-DPS), which include as
particular cases both the (α, β)-connected spaces and the 2- and 3-dimensional
Khalimsky’s spaces. Nevertheless, Kong’s definition seems not be general enough
to give higher homotopy groups.
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The goal of this paper is to introduce, via the framework of the multilevel
architecture for Digital Topology in [2], a new notion of digital fundamental
group (denoted by πd

1) that, at least from a theoretical point of view, presents
certain advantages over the notions of Khalimsky and Kong. Firstly, the group
πd

1 is defined by using an “extrinsic” setting that can be readily generalized
to define higher digital homotopy groups (see Section 3). Secondly, this group
is available on a larger class of digital spaces than Khalimsky’s and Kong’s
digital fundamental groups, since the digital spaces described in the multilevel
architecture quoted above include as examples all Khalimsky’s spaces and the
(α, β)-connected spaces (see [1]), and even most of the SN-DPS. And finally,
our digital fundamental group of a digital object O turns out to be naturally
isomorphic to the fundamental group of its continuous analogue; that is, of the
continuous object perceived when one looks at O (see Section 4). This isomor-
phism shows that the group πd

1 is an appropriate counterpart of the ordinary
fundamental group in continuous topology. In particular, this fact leads us to
obtain a (restricted) digital version of the Seifert–Van Kampen Theorem (see
Section 5). Although this theorem provides a powerful theoretical tool to obtain
the group πd

1 for certain digital objects, it remains as an open question to find
an algorithm that computes this group for arbitrary objects; that is, to resem-
ble in our framework the well–known algorithm for the fundamental group of
polyhedra ([8]). This problem could be tackled by adapting to our multilevel
architecture the algorithm recently developed by Malgouyres in [7], which com-
putes a presentation of the digital fundamental group of an object embedded in
an arbitrary graph.

2 The Multilevel Architecture

In this section we briefly summarize the basic notions of the multilevel archi-
tecture for digital topology developed in [2] as well as the notation that will be
used through all the paper.

In that architecture, the spatial layout of pixels in a digital image is repre-
sented by a device model, which is a homogeneously n-dimensional locally finite
polyhedral complexK. Each n-cell inK is representing a pixel, and so the digital
object displayed in a digital image is a subset of the set celln(K) of n-cells in K.
A digital space is a pair (K, f), where K is a device model and f is weak lighting
function defined on K. The function f is used to provide a continuous interpre-
tation, called continuous analogue, for each digital object O ⊆ celln(K). Next
we recall the notion of weak lighting function. For this we need the following
notation.

Let K be a device model and γ, σ cells in K. We shall write γ ≤ σ if γ
is a face of σ, and γ < σ if in addition γ �= σ. If |K | denotes the underlying
polyhedron of K, a centroid-map is a map c : K → |K | such that c(σ) belongs
to the interior of σ; that is, c(σ) ∈ σ − ∂σ, where ∂σ = ∪{γ; γ < σ} stands for
the boundary of σ. Given a cell α ∈ K and a digital object O ⊆ celln(K), the
star of α in O and the extended star of α in O are respectively the digital objects
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stn(α;O) = {σ ∈ O;α ≤ σ} and st∗n(α;O) = {σ ∈ O;α ∩ σ �= ∅}. The support
of O, supp(O), is the set of all cells α ∈ K such that α = ∩{σ;σ ∈ stn(α;O)}. To
ease the writing, we shall use the following notation: supp(K) = supp(celln(K)),
stn(α;K) = stn(α; celln(K)) and st∗n(α;K) = st

∗
n(α; celln(K)). Finally, we shall

write P(A) for the family of all subsets of a given set A.
Given a device model K, a weak lighting function (w.l.f.) on K is a map

f : P(celln(K)) × K → {0, 1} satisfying the following five properties for all
O ∈ P(celln(K)) and α ∈ K:

1. if α ∈ O then f(O,α) = 1;
2. if α /∈ supp(O) then f(O,α) = 0;
3. f(O,α) ≤ f(celln(K), α);
4. f(O,α) = f(st∗n(α;O), α); and,
5. if O′ ⊆ O ⊆ celln(K) and α ∈ K are such that stn(α;O) = stn(α;O′),

f(O′, α) = 0 and f(O,α) = 1, then the set of cells α(O′;O) = {β <
α; f(O′, β) = 0, f(O, β) = 1} is not empty and connected in ∂α; moreover,
if O ⊆ O ⊆ celln(K), then f(O, β) = 1 for every β ∈ α(O′;O).

A w.l.f. f is said to be strongly local if f(O,α) = f(stn(α;O), α) for all α ∈ K
and O ⊆ celln(K). Notice that this strong local condition implies both properties
4 and 5 in the definition above.

To define the continuous analogue of a given digital object O in a digital
space (K, f), we need to introduce several other intermediate models (the levels
of this multilevel architecture) as follows.

The device level of O is the subcomplex K(O) = {α ∈ K;α ≤ σ, σ ∈ O}
of K induced by the cells in O. Notice that the map fO given by fO(O′, α) =
f(O,α)f(O′, α), for all O′ ⊆ O and α ∈ K(O), is a w.l.f. on K(O), and we call
the pair (K(O), fO) the digital subspace of (K, f) induced by O.

The logical level of O is an undirected graph, Lf
O, whose vertices are the

centroids of n-cells in O and two of them c(σ), c(τ) are adjacent if there exists
a common face α ≤ σ ∩ τ such that f(O,α) = 1.

The conceptual level of O is the directed graph Cf
O whose vertices are the

centroids c(α) of all cells α ∈ K with f(O,α) = 1, and its directed edges are
(c(α), c(β)) with α < β.

The simplicial analogue of O is the order complex Af
O associated to the

digraph Cf
O. That is, 〈x0, x1, . . . , xm〉 is an m-simplex of Af

O if x0, x1, . . . , xm is
a directed path in Cf

O. This simplicial complex defines the simplicial level for the
object O in the architecture and, finally, the continuous analogue of O is the
underlying polyhedron |Af

O | of Af
O.

For the sake of simplicity, we will usually drop “f” from the notation of the
levels of an object. Moreover, for the whole object celln(K) we will simply write
LK , CK and AK for its levels.

Example 1. In this paper it will be essential the role played by the archetypical
device model Rn, termed the standard cubical decomposition of the Euclidean n-
space IRn. Recall that the device model Rn is the complex determined by the
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collection of unit n-cubes in IRn whose edges are parallel to the coordinate axes
and whose centers are in the set ZZn. The centroid-map we will consider in Rn

associates to each cube σ its barycenter c(σ). In particular, if dimσ = n then
c(σ) ∈ ZZn, where dimσ stands for the dimension of σ. So that, every digital
object O in Rn can be identified with a subset of points in ZZn. Henceforth
we shall use this identification without further comment. In particular, we shall
consider the family of digital spaces (Rn, g), for every positive integer n, where g
is the w.l.f. given by g(O,α) = 1 if and only if stn(α;Rn) ⊆ O, for any digital
object O ⊆ celln(Rn) and any cell α ∈ Rn. Notice that the w.l.f. g induces in Rn

the (2n, 3n − 1)–connectedness (see [1, Def. 11]); that is, the generalization to
arbitrary dimension of the (4, 8)–connectedness on ZZ2.

3 A Digital Fundamental Group

We next introduce an “extrinsic” digital fundamental group that readily gen-
eralizes to higher digital homotopy groups of arbitrary digital spaces. For this
purpose, we will first define a digital-map (Def. 2), and then we will focus our
interest in a special class of such digital-maps termed digital homotopies (Defs. 5
and 6).

Definition 1. Let S ⊆ celln(K) be a digital object in a digital space (K, f). The
light body of K shaded with S is the set of cells

Lb(K/S) = {α ∈ K; f(celln(K), α) = 1, f(S, α) = 0};

that is, Lb(K/S) = {α ∈ K; c(α) ∈ |AK | − |AS |}. Notice that if S = ∅ is the
empty object then Lb(K/∅) = Lb(K) = {α ∈ K; f(celln(K), α) = 1}. Moreover,
Lb(K/celln(K)) = ∅.
Definition 2. Let (K1, f1), (K2, f2) be two digital spaces, with dimKi = ni

(i = 1, 2), and let S1 ⊂ celln1(K1) and S2 ⊂ celln2(K2) be two digital objects.
A map φ : Lb(K1/S1) → Lb(K2/S2) is said to be a (digital) (S1, S2)-map from
(K1, f1) into (K2, f2) (or, simply, a d-map denoted ΦS1,S2 : (K1, f1)→ (K2, f2))
provided

1. φ(celln1(K1)− S1) ⊆ celln2(K2)− S2; and,
2. for α, β ∈ Lb(K1/S1) with α < β then φ(α) ≤ φ(β).

Example 2. (1) Let S′ ⊂ S ⊆ celln(K) be two digital objects and (K(S), fS)
the digital subspace of (K, f) induced by S. Then, the inclusion Lb(K(S)/S′) ⊆
Lb(K/S′) is a (S′, S′)-map from (K(S), fS) into (K, f). And, similarly, the in-
clusion Lb(K/S′) ⊆ Lb(K/∅) defines a (S′, ∅)-map from (K, f) into itself.

(2) Let S1 ⊂ celln1(K1) and σ ∈ celln2(K2). For any digital object S2 ⊆
celln2(K2) − {σ}, the constant map φσ : Lb(K1/S1) → Lb(K2/S2), given by
φσ(α) = σ, for all α ∈ Lb(K1/S1), defines a (S1, S2)-map from (K1, f1) into
(K2, f2) .
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V(2,1) AV(2,1)

Fig. 1. A (2, 1)-window in R2 and its simplicial analogue

(3) The composition of digital maps is a digital map. Namely, if

ΦS1,S2 : (K1, f1)→ (K2, f2) and ΦS2,S3 : (K2, f2)→ (K3, f3)

are d-maps, then their composite ΦS1,S2 ◦ ΦS2,S3 is also a d-map from (K1, f1)
into (K3, f3).

A d-map from (K1, f1) into (K2, f2) naturally induces a simplicial map be-
tween the simplicial analogues of K1 and K2. More precisely, if L1, L2 ⊆ L are
simplicial complexes and L1 \L2 = {α ∈ L1;α∩|L2 | = ∅} denotes the simplicial
complement of L2 in L1, then it is straightforward to show

Proposition 1. Any d-map ΦS1,S2 : (K1, f1) → (K2, f2) induces a simplicial
map A(ΦS1,S2) : AK1 \ AS1 → AK2 \ AS2 .

Given two points x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ IRm, we write x � y
if xi ≤ yi, for all 1 ≤ i ≤ m, while x+y will stand for the point (x1+y1, . . . , xm+
ym) ∈ IRm.

Definition 3. Given two points r, x ∈ ZZm, with ri ≥ 0 for 1 ≤ i ≤ m, we call
a window of size r (or r-window) of Rm based at x to the digital subspace V x

r

of (Rm, g) induced by the digital object Ox
r = {σ ∈ cellm(Rm);x � c(σ) � x+r},

where (Rm, g) is the digital space defined in Example 1.

Notice that the simplicial analogue of an r-window V x
r of Rm is (simplicially

isomorphic to) a triangulation of a unit n-cube, where n is the number of non-zero
coordinates in r (see Figure 1). Moreover, the set {y ∈ Zm;x � y � x + r} are
the centroids of the cells in Lb(V x

r /∅) which actually span the simplicial analogue
of V x

r . Here Z = 1
2ZZ stands for the set of points {z ∈ IR; z = y/2, y ∈ ZZ}.

For the sake of simplicity, we shall write Vr to denote the r-window of Rm

based at the point x = (0, . . . , 0) ∈ ZZm. Moreover, if Vr is an r-window of R1,
then Lb(Vr/∅) = {σ0, σ1, . . . , σ2r−1, σ2r} consists of 2r+1 cells such that c(σi) =
i/2.

With this notation we are now ready to give “extrinsic” notions of walks
and loops, in a digital object, which will lead us to the definition of a digital
fundamental group.
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Definition 4. Let (K, f) be a digital space and S,O ⊆ celln(K) two disjoint
digital objects in (K, f). A S-walk in O of length r ∈ ZZ from σ to τ is a
digital (∅, S)-map φr : Lb(Vr/∅) → Lb(K(O ∪ S)/S) such that φr(σ0) = σ and
φr(σ2r) = τ . A S-loop in O based at σ is a S-walk φr such that φr(σ0) =
φr(σ2r) = σ.

The juxtaposition of two given S-walks φr, φs in O, with φr(σ2r) = φs(σ0),
is the S-walk φr ∗ φs : Lb(Vr+s/∅)→ Lb(K(O ∪ S)/S) of length r + s given by

φr ∗ φs(σi) =
{
φr(σi) if 0 ≤ i ≤ 2r
φs(σi−2r) if 2r ≤ i ≤ 2(r + s)

Notice that the notion of a S-walk is compatible with the definition of S-
path given in [1, Def. 5]. Actually, each S-walk φr defines a S-path given by the
sequence ϕ(φr) = (φr(σ2i))ri=0. And, conversely, a S-path (τi)ri=0 in O can be
associated with a family Φr of S-walks such that φr ∈ Φr if and only if φr(σ2i) =
τi (0 ≤ i ≤ r) and φr(σ2i−1) ∈ {α ≤ τ2i−2 ∩ τ2i; f(O ∪ S, α) = 1, f(S, α) = 0}
(1 ≤ i ≤ r). However, this “extrinsic” notion of S-walk will be more suitable
to define the digital fundamental group of an object since, together with the
notion of r-window, it allows us to introduce the following definition of digital
homotopy.

Definition 5. Let φ1
r, φ

2
r two S-walks in O of the same length r ∈ ZZ from

σ to τ . We say that φ1
r , φ

2
r are digitally homotopic (or, simply, d-homotopic)

relative {σ, τ}, and we write φ1
r �d φ2

r rel. {σ, τ}, if there exists an (r, s)-window
V(r,s) in R2 and a (∅, S)-map H : Lb(V(r,s)/∅)→ Lb(K(O ∪ S)/S), called a d-
homotopy, such that H(i/2, 0) = φ1

r(σi) and H(i/2, s) = φ2
r(σi), for 0 ≤ i ≤ 2r,

and moreover H(0, j/2) = σ and H(r, j/2) = τ , for 0 ≤ j ≤ 2s. Here we use the
identification H(x, y) = H(α), where c(α) = (x, y) ∈ Z2 is the centroid of a cell
α ∈ Lb(V(r,s)/∅).

Clearly, the previous definition of d-homotopy induces an equivalence relation
between the S-walks in O from σ to τ of the same length. Moreover, it is easy
to show that d-homotopies are compatible with the juxtaposition of S-walks.

The definition of d-homotopy between S-walks of the same length can be
extended to arbitrary S-walks as follows.

Definition 6. Let φr, φs two S-walks in O from σ to τ of lengths r �= s. We
say that φr is d-homotopic to φs relative {σ, τ}, φr �d φs rel. {σ, τ}, if there
exist constant S-loops φτ

r′ and φτ
s′ such that r + r′ = s + s′ and φr ∗ φτ

r′ �d

φs ∗ φτ
s′ rel. {σ, τ}.

Proposition 2. Let φr be a S-walk in O from σ to τ , and φσ
s , φτ

s two constant S-
loops of the same length s. Then, φσ

s ∗ φr �d φr ∗ φτ
s rel. {σ, τ}.

The proof of this proposition, although it is not immediate, can be directly
obtained from definitions by means of an inductive argument. Moreover, from
Proposition 2 and the remarks above, it can be easily derived that d-homotopy
defines an equivalence relation in the set of S-walks in O of arbitrary length. So,
we next introduce the digital fundamental group as follows.
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Definition 7. Let O be a digital object in a digital space (K, f). The digital
fundamental group of O at σ is the set πd

1(O, σ) of d-homotopy classes of ∅-
loops in O based at σ provided with the product operation [φr] · [ψs] = [φr ∗ ψs].

Remark 1. Definition 7 can be easily extended to the definition of a digital
fundamental group for the complement of an object S in a digital space us-
ing the notion of S-loop. Moreover, this last notion readily generalizes to give
higher digital homotopy groups by replicating the same steps as above but
starting with a suitable notion of m-dimensional S-loop. More explicitly, let
r ∈ ZZm be a point with positive coordinates, and call boundary of an r-
window Vr to the set of cells ∂Vr = {α ∈ Lb(Vr/∅); c(α) ∈ ∂AVr}. Notice
that the boundary ∂AVr is well-defined since AVr triangulates the unit m-cube.
Then define an m-dimensional S-loop in O of size r at σ as any (∅, S)-map
φr : Lb(Vr/∅)→ Lb(K(O ∪ S)/S) such that φr|∂Vr= σ.

4 Isomorphism with the Continuous Fundamental Group

As usual the fundamental group of a topological space X , π1(X,x0), is defined
to be the set of homotopy classes of paths ξ : I = [0, 1]→ X that send 0 and 1
to some fixed point x0 (loops at x0). The set π1(X,x0) is given the structure of
a group by the operation [α] · [β] = [α∗β], where α∗β denotes the juxtaposition
of paths. However, for a polyhedron |K | there is an alternative definition of
the fundamental group π1(|K |, x0) that is more convenient for our purposes,
so we next explain it briefly. Recall that an edge–path in |K | from a vertex v0

to a vertex vn is a sequence α of vertices v0, v1, . . . , vn, such that for each k =
1, 2, . . . , n the vertices vi−1, vi span a simplex in K (possibly vi−1 = vi). If v0 =
vn, α is called an edge–loop.

Given another edge–path β = (vj)m+n
j=n whose first vertex is the same as the

last vertex of α, the juxtaposition α ∗ β = (vi)m+n
i=0 is defined in the obvious way.

The inverse of α is α−1 = (vn, vn−1, . . . , v0).
Two edge–paths α and β are said to be equivalent if one can be obtained

from the other by a finite sequence of operations of the form:

(a) if vk−1 = vk, replace . . . , vk−1, vk, . . . by . . . , vk, . . ., or conversely replace
. . . , vk, . . . by . . . , vk−1, vk, . . .; or

(b) if vk−1, vk, vk+1 span a simplex of K (not necessarily 2-dimensional), replace
. . . , vk−1, vk, vk+1, . . . by . . . , vk−1, vk+1, . . ., or conversely.

This clearly sets up an equivalence relation between edge–paths, and the set
of equivalence classes [α] of edge–loops α in K, based at a vertex v0, forms a
group π1(K, v0) with respect to the juxtaposition of edge–loops. This group will
be called the edge–group of K. Moreover it can be proved

Theorem 1. (Maunder; 3.3.9) There exists an isomorphism π1(|K |, v0) →
π1(K, v0) which carries the class [f ] to the class [αf ], where αf is an edge–loop
defined by a simplicial approximation of f .
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Corollary 1. Let O,S be two disjoint digital objects of a digital space (K, f).
Then π1(AO∪S \ AS , c(σ)) ∼= π1(|AO∪S | − |AS |, c(σ)) for any σ ∈ O.

The proof of this corollary is a consequence of Theorem 1 and next lemma.

Lemma 1. Let K,L ⊆ J be two full subcomplexes. Then |K\L | = |K\K ∩ L |
is a strong deformation retract of |K | − |L | = |K | − |K ∩ L |.

This lemma is actually Lemma 72.2 in [9] applied to the full subcomplex
K ∩ L ⊆ K (this fact is shown using that L is full in J).

We are now ready to prove the main result of this paper. Namely,

Theorem 2. Let O be a digital object in the digital space (K, f). Then there
exists an isomorphism h : πd

1(O, σ)→ π1(|AO |, c(σ)).
The function h is defined as follows. Let φr be any ∅-loop in O based at σ.

Then the sequence c(φr) = (c(φr(σi)))2r
i=0 defines and edge–loop in AO based at

c(σ), and so we set h([φr ]) = [c(φr)]. Lemma 2 below, and the two immediate
properties (1), (2), show that the function h is a well defined homomorphism of
groups.

(1) c(φr ∗ φ′
s) = c(φr) ∗ c(φ′

s)
(2) if φr is a constant ∅-loop then c(φr) is also a constant edge–loop.

Lemma 2. If φr �d φ′
s are equivalent ∅-loops then c(φr) and c(φ′

s) define both
the same element in π1(|AO |, c(σ)).
Proof. According to (2) above and the definition of equivalence between two
∅-loops it will be enough to show that any d-homotopy H : Lb(V(r,s)/∅) →
Lb(K(O)/∅) between two ∅-loops φr, φ′

r of the same length r induces a contin-
uous homotopy H̃ : [0, 1]× [0, 1] → |AO | between c(φr) and c(φ′

r). This fact is
readily checked since Proposition 1 yields a simplicial map A(H) : AV(r,s) → AO,
and AV(r,s) is (simplicially isomorphic to) a triangulation of the unit square (see
Figure 1). Moreover A(H) restricted to the top and the bottom of that unit
square define c(φr) and c(φ′

r) respectively, and the result follows.

Now, let γ be any loop in |AO | based at c(σ). By Corollary 1 we can assume
that γ = (c(γi))ki=0 is an edge–loop based at c(σ) in AO. After applying equiv-
alence operations (a) and (b) above we can reduce the edge–loop γ to a new
edge–loop γ = (c(γi))

2r
i=0 equivalent to γ and such that γ2i−1 are k-cells in K

with k < n and γ2i−1 ≤ γ2i−2 ∩ γ2i (1 ≤ i ≤ r). By the use of γ we define the
following set F (γ) of ∅-loops at σ of length r.

The set F (γ) consists of all ∅-loops φr for which φr(σ0) = φ(σ2r) = σ,
φr(σ2i−1) = γ2i−1 (1 ≤ i ≤ r) and φr(σ2i) ∈ stn(γ2i;O) (0 ≤ i ≤ r). Notice that
stn(γ2i;O) = {γ2i} if and only if γ2i ∈ O, while stn(γ2i;O) contains at least
two elements otherwise. This is clear since c(γ2i) ∈ AO yields γ2i ∈ supp(O)
by Axiom 2 of w.l.f.’s. Notice that F (γ) = {γ} if and only if γ2i ∈ O for all
0 ≤ i ≤ r; and moreover, in any case, F (γ) �= ∅ is a non-empty set.
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Lemma 3. For each φr ∈ F (γ), c(φr) is homotopic to the loop γ. Hence h is
onto.

Proof. Let us consider the set F (γ) of edge–loops α = (αi)2r
i=0 at c(σ) such

that α0 = α2r = c(σ), α2i−1 = γ2i−1 (1 ≤ i ≤ r) and α2i ∈ stn(γ2i;O) ∪
{γ2i}. Notice that {c(φr);φr ∈ F (γ)} ∪ {γ} ⊆ F (γ). Since γ was obtained from
γ by transformations of types (a) and (b), they are equivalent edge–loops by
Theorem 1. So, it will suffice to show that α is homotopic to γ, for any α ∈ F (γ).
This will be done by induction on the number t(α) of vertices α2i �= γ2i in α.

For t(α) = 0 we get α = γ. Assume that α ∈ F (γ) is equivalent to γ if
t(α) ≤ t − 1. Then, for an edge–loop α ∈ F (γ) with t(α) = t let α2i any vertex
in α such that α2i �= γ2i. Then we have γ2i+1, γ2i−1 < γ2i < α2i, and we obtain
a new edge–loop α̃ ∈ F (γ), replacing α2i by γ2i in α, with t(α̃) = t − 1 and
two equivalence transformations of type (b) relating α and α̃. Hence α is an
edge–loop equivalent to α̃ and, by induction hypothesis, to γ.

Lemma 4. Any two ∅-loops φ1
r, φ

2
r in F (γ) are d-homotopic.

Proof. It is enough to observe that the map H : Lb(V(r,1)/∅) → Lb(K(O)/∅)
given by H(i/2, 0) = φ1

r(σi), H(i/2, 1) = φ2
r(σi) and H(i/2, 1/2) = γi, for 0 ≤

i ≤ 2r, and H(i − 1/2, k) = γ2i−1, for 1 ≤ i ≤ 2r and k ∈ {0, 1/2, 1}, is a d-
homotopy relating φ1

r and φ2
r. Here we use again the identification H(x, y) =

H(α), where c(α) = (x, y) ∈ Z2 is the centroid of a cell α ∈ Lb(V(r,1)/∅).
Lemma 5. Let γ1 and γ2 be two edge–loops at c(σ) in AO such that they are
related by an equivalence transformation of type (a) or (b). Then there exist
∅-loops φi

ri
∈ F (γi) (i = 1, 2) and a d-homotopy such that φ1

r1
�d φ2

r2
rel. σ.

Hence h is injective.

Proof. In case γ1 is related to γ2 by a transformation of type (a), it is readily
checked that γ1 = γ2. Hence F (γ1) = F (γ2) and the result follows. And it
suffices to check the essentially distinct twelve ways for deriving γ2 from γ1 by
transformations of type (b) to complete the proof.

5 A Digital Seifert–Van Kampen Theorem

The Seifert–Van Kampen Theorem is the basic tool for computing the funda-
mental group of a space which is built of pieces whose groups are known. The
statement of the theorem involves the notion of push–out of groups, so we begin
by explaining this bit of algebra. A group G is said to be the push–out of the
solid arrow commutative diagram
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if for any group H and homomorphisms ϕ1, ϕ2 with ϕ1f1 = ϕ2f2 there exists a
unique homomorphism ϕ such that ϕf̃i = ϕi (i = 1, 2). Then, the Seifert–Van
Kampen Theorem is the following

Theorem 3. (Th. 7.40 in [10]) Let K be a simplicial complex having connected
subcomplexes K1 and K2 such that K = K1∪K2 and K0 = K1∩K2 is connected.
If v0 ∈ K0 is a vertex then π1(K, v0) is the push–out of the diagram

�1(K0; v0)
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i1�

j2�

i2� j1�

where ik∗ and jk∗ are the homomorphisms of groups induced the obvious inclu-
sions.

By using explicit presentations of the groups π1(Ki, v0) (i = 0, 1, 2) the
Seifert–Van Kampen Theorem can be restated as follows. Suppose there are pre-
sentations π1(Ki, v0) ∼= (xi

1, x
i
2, . . . ; r

i
1, r

i
2, . . .) (i = 0, 1, 2) Then the fundamental

group of K has the presentation

π1(K, v0) ∼= (x1
1, x

1
2, . . . , x

2
1, x

2
2, . . . ;

r1
1 , r

1
2 , . . . , r

2
1 , r

2
2 , . . . , i1∗(x

0
1) = i2∗(x0

1), i1∗(x
0
2) = i2∗(x0

2), . . .).

In other words, one puts together the generators and relations from π1(K1, v0)
and π1(K2, v0), plus one relation for each generator x0

i of π1(K0, v0) which says
that its images in π1(K1, v0) and π1(K2, v0) are equal.

The digital analogue of the Seifert–Van Kampen Theorem is not always true
as the following example shows.

Example 3. Let O1, O2 be the two digital objets in the digital space (R2, g)
shown in Figure 2. It is readily checked that both πd

1(O1, σ) and πd
1(O2, σ) are

trivial groups, but πd
1(O1 ∪ O2, σ) = ZZ despite of O1, O2 and O1 ∩ O2 are

connected digital objects.

However we can easily derive a Digital Seifert–Van Kampen Theorem for
certain objects in a quite large class of digital spaces. Namely, the locally strong
digital spaces; that is, the digital spaces (K, f) for which the lighting function f
satisfies f(O,α) = f(stn(α;O), α). We point out that all the (α, β)-connected
digital spaces on ZZ3 defined within the graph-theoretical approach to Digital
Topology, for α, β ∈ {6, 18, 26}, are examples of locally strong digital spaces; see
[1, Example 2].

Theorem 4. (Digital Seifert–Van Kampen Theorem) Let (K, f) be a locally
strong digital space, and let O ⊆ celln(K) be a digital object in (K, f) such that
O = O1∪O2, where O1, O2 and O1∩O2 are connected digital objects. Assume in
addition that AO1∩O2 ⊆ AO1 ∩AO2 and AOi ⊆ AO (i = 1, 2). Moreover assume
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that for each cell σ ∈ O1 − O2 any cell τ ∈ O which is adjacent to σ in O lies
in O1. Then, for σ ∈ O1 ∩O2, πd

1(O, σ) is the push–out of the diagram
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where the homomorphisms are induced by the obvious inclusions.

The proof of this theorem is immediate consequence of Theorem 2 and
Theorem 3 if we have at hand the equalities |AO1∩O2 | = |AO1 | ∩ |AO2 | and
|AO | = |AO1 | ∪ |AO2 |. We devote the rest of this section to check these equali-
ties.

Lemma 6. If f(O,α) = 1 then one of the following statements holds:

(1) stn(α;O) = stn(α;O1 ∩O2) = stn(α;O1) = stn(α;O2); or
(2) stn(α;O) = stn(α;Oi) and stn(α;Oj) = stn(α;O1 ∩O2), {i, j} = {1, 2}.
Proof. In case stn(α;O) = stn(α;O1 ∩O2), we obtain (1) from the inclusions

stn(α;O1 ∩O2) ⊆ stn(α;Oi) ⊆ stn(α;O), (i = 1, 2).

Otherwise, there exists σ ∈ O − (O1 ∩ O2) with α ≤ σ. Assume σ ∈ O1 − O2,
then for all τ ∈ stn(α;O) we have τ ∈ O1 by hypothesis and hence stn(α;O) =
stn(α;O1). Moreover stn(α;O2) ⊆ stn(α;O) = stn(α;O1) yields stn(α;O1 ∩
O2) = stn(α;O2) ⊂ stn(α;O).

The case σ ∈ O2−O1 is similar since then τ ∈ O2 (τ /∈ O2 yields τ ∈ O1−O2

and hence σ ∈ O1 by hypothesis).

Lemma 7. AO1 ∩ AO2 ⊆ AO1∩O2 and AO ⊆ AO1 ∪ AO2 . And so the equalities
follow by hypothesis.

Proof. Let c(α) ∈ AO1∩AO2 , then f(Oi, α) = 1 for i = 1, 2 and hence stn(α;O1∩
O2) = stn(α;Oi) for some i by Lemma 6. Thus f(O1 ∩O2, α) = 1 by the strong
local condition of f , and so c(α) ∈ AO1∩O2 . Finally AO1 ∩ AO2 ⊆ AO1∩O2 since
AO1∩O2 is a full subcomplex.

Now let γ = 〈c(γ0), . . . , c(γk)〉 ∈ AO. Then stn(γk;O) ⊆ stn(γk−1;O) ⊆ · · · ⊆
stn(γ0;O). By Lemma 6 and the strong local condition we easily obtain γ ∈ AOi

whenever stn(γ0;O) = stn(γ0;Oi) (i = 1, 2).

6 Future Work

The Digital Seifert–Van Kampen Theorem provides us a theoretical tool that,
under certain conditions, computes the digital fundamental group of an object.
Nevertheless, the effective computation of the digital fundamental group requires
an algorithm to compute a presentation of this group directly at the object’s
logical level. In a near future we will intend to develop such an algorithm for
general digital spaces, as well as to compare the digital fundamental group in
Def. 7 with those already introduced by Khalimsky [3] and Kong [4].
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O1 O2 O1 ∪ O2

AO1 AO2 AO1∪O2

Fig. 2. A digital object for which the Digital Seifert–Van Kampen Theorem does
not hold
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