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Abstract. We first propose for digital surfaces a notion analogous to
the notion of strong homotopy which exists in 3D [1]. We present an as-
sociated parallel thinning algorithm. The surface of an object composed
of voxels is a set of surfels (faces of voxels) which is the boundary be-
tween this object and its complementary. But this representation is not
the classical one to visualize and to work on 3D objects, in frameworks
like Computer Assisted Geometric Design (CAGD). For this reason we
propose a method for passing efficiently from a representation to the
other. More precisely, we present a three-step algorithm to polyhedrize
the boundary of a voxel object which uses the parallel thinning algorithm
presented above. This method is specifically adapted to digital objects
and is much more efficient than such existing methods [12]. Some exam-
ples are shown, and a method to make the reverse operation (discretiza-
tion) is briefly presented.

Keywords: digital surface, thinning, strong homotopy, parallel algo-
rithm, polyhedrization.

Introduction

To study a three-dimensional object, its surface is often used because it is less
costy (in particular concerning the memory cost) than studying the whole 3D
volume [2,3,4,7,8]. For this reason, the discrete representation of digital surfaces
of 3D objects is of practical interest. Indeed, it allows us to compute easily the
union, intersection and difference (i.e. boolean set operations) of two discrete ob-
jects represented by their surfaces. On the other hand, classical modeling tech-
niques use a continuous representation for surfaces. More precisely, to encode
surfaces, a representation is often used to vizualize and to work on 3D objects:
polyhedrons. This representation has a lot of advantages, particulary in Com-
puter Assisted Geometric Design (CAGD) applications. However, floating points
computations are much less relevant to perform boolean set operations. Indeed,
there are some problems when the objects we want to work on are tangeant to
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each other. This leads us to find a way to pass efficently and quickly from a
discrete representation to a polyhedron representation, and conversely.

The existing methods to polyhedrize the surfaces, except in [12], are not
especially adapted to our initial data structure for the discrete surfaces, namely
a set of surfels.

The purpose of this paper is to introduce an algorithm which enables us to
compute a polyhedrized surface from a discrete surface.

The classical methods, using for exemple the Voronoi diagram and the Delau-
nay triangulation [17], are not effective for the non-euclidien spaces like surfaces.
So, we use a topological approach for the discrete surfaces (see [5] and [6]). This
leads us to define a “topological Voronoi diagram” on these surfaces which allows
us to built the triangular faces of our polyhedrized surface.

In the first part, we present a parallel thinning algorithm to compute the
skeleton of a set of surfels. This algorithm is based on an analogue for the
surfaces of the notion of strong homotopy existing in 3D and introduced by G.
Bertrand ([1,13]).

Then, we present a polyhedrization method which is based on the use of a
germ-obtained skeleton. The germs are particular surfels chosen, with respect
to the maximal curvature, in different locations of our surface; the higher is the
curvature, the more numerous are the germs. Then, using the parallel algorithm
previously presented, we compute the skeleton of the set of surfels composed of
our surface from which the germs are removed. The obtained skeleton enables
us to draw triangles which will be the faces of the polyhedrized surface. These
triangles are built during a cover of the skeleton. Since the germs are more
numerous where the surface is very curved, the number of faces is higher in such
locations. Some examples of the polyhedrization algorithm results are given.

The presented method, which can also be used for (non conservative) data
compression of binary 3D images, is much faster than the method introduced
n [12]. Moreover, it produces more regular faces, which are all triangles, which
makes it much more convenient for CAGD applications.

A method to make the reverse operation (discretization) is briefly presented.
It is based on a particular data structure: an array the cells of which contain
chained lists of surfels. Note that the boolean set operations can easily be per-
formed using this data structure.

1 Notations and Basic Notions

Let X and E be two sets such as X C E. We denote by X the complement of X
in E and by card(X) the number of elements of X. In the sequel, an adjacency
relation on X is an antireflexive symmetric binary relation on X. Given a an
adjacency relation, an «-path in X with length [ is a sequence (xg,x1,...,x;)
in X and such as x;_1 is a-adjacent to x;, for i = 1,...,l. An a-path is called
closed if xy = x; and simple if the x; are pairwise distinct. Two elements y and 7’
of X are said to be a-connected in X if there exists an a-path (zg,z1,...,2;)
contained in X such asy = xg and ¥y’ = x;. The a-connectedness is an equivalence
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relation and its equivalence classes are called a-connected components. We denote
by Caipha(X) the set of connected components of X and X is said to be a-
connected if card(Cy (X)) = 1.

1.1 Surface of a 3D Object

A 3D object O is a set of points in Z3. These points, which we can represent as
unit cubes centered at a point (4, j, k) € Z3, are called vozels. Two voxels are said
to be 6-adjacent if they share a face, 18-adjacent if they share a face or an edge.
We derive from this as above the classical notions of an n-path and n-connected
component, with n € {6,18}, and we denote by C,,(O) the set of n-connected
components of the object O. We define the n-neighborhood of a voxel 2 denoted
by N, (z) by N,(z) = {y € Z3/y is n-adjacent to z}.

(a) ) (©)
Fig. 1. Examples

Now, a surfel is a couple (v1,v2) of 6-adjacent voxels v; and ve. A surfel
may be seen as an unit square shared by two 6-adjacent voxels, and then we call
surface of an object O C Z? the set of all surfels (vy,v2) such as v; € O and vq €
0. We can define adjacency relations between surfels, and these relations depend
on the one we consider on voxels. We consider the surface X' of an object O. Now,
we call e-adjacency the adjacency relation on surfels considering the edges.
Under this one, a surfel has exactly four neighbors, one per edge. For example,
let call x the grey surfel pointed by a full arrow on the object of the figure 1,
(b). If we consider the 6-adjacency, the object is composed of three 6-connected
sets (the three voxels), and the e-neighbors of = are the four surfels of the lower
voxel which share an edge with x. By contrast, if we consider the object with the
18-adjacency, the three voxels are 18-connected and the four e- neighbors of x
are the two other grey surfels and the two surfels pointed by the dotted arrow.
We are now going to define an adjacency relation associated with the vertices
of the surfels. First, we define a loop in X as an e-connected component of the
set of all surfels in X which share a given vertex (figure 1). One vertex may
define two loops (see figure 1, b) and ¢)), so the loops are a way to duplicate
formaly vertices. Thus, two surfels are called v-adjacent if they belong to a
common loop. Then, e and v are adjacency relations on X' from which follow the
classic notions of n-paths, n-neighborhoods, and e-connected components, with
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Fig. 2. Counter-example Fig. 3. A decentred skeleton

Fig. 4. No parallel strategy

n € {e,v}. The kind of surfaces defined above satisfies the Jordan property [11],
namely a e-connected component of a surface separates the space into two parts:
a 6-connected and a 18-connected one [10].

Afterwards, we will assume that each loop of our surface is a topological disk.
In other words, two v-adjacent surfels which are not e-adjacent cannot belong
simultaneously to two distinct loops. The object of the figure 2 does not satisfy
our hypothesis because the two loops defined by the marked vertices contain
surfels which are v-adjacent but not e-adjacent. (see [9] for a short discution on
this hypothesis).

1.2 Neighborhood Graph of Surfels

Let x € ¥, n € {e,v} and X C X be a set of surfels. We introduce the neighbor-
hood graph of surfels of = as follows. We have assumed that each loop in X' is a
topologic disk, but there exist some v-neighborhoods N, (z) which are not topo-
logical disks (see the surfels of the two loops defined by the marked vertex on fig-
ure 1 (b). Then we have to define an other “topology” under which N, (z)U{z} is
a topological disk. Two surfels s1 and sg in N, (z)U{x} are said to be e,-adjacent
(respectively wv,-adjacent) if they are e-adjacent (respectively wv-adjacent) and
are contained in a common loop which contains z. Then, we denote by G. (z,X)
(respectively G, (x,X)) the graph whose vertices are the surfels of N,(z) N X
and whose edges are the pairs of e, -adjacent (respectively v,-adjacent) surfels
of Ny(z) N X. The set of all connected components of G, (z,X) which are n-
adjacent to z is denoted by CZ (G, (z, X)). Note that C¥(G,(x, X)) is a set of
sets of surfels and not a set of surfels.

A surfel z is said to be n-isolated in X if N,,(z) N X = () and to be n-interior
in X if Np(z)Nn X = 0.
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2 Topology Preservation and Thinning

2.1 P-Simple Surfels
First, we introduce the notion of n-simpleness of surfels [10]:

Definition 1. [I]. Let X C X be a set of surfels of a digital surface X. A surfel
x € X is said to be n-simple in X if and only if x is not n-interior in X and if
card(CE(Gp(xz, X)) = 1.

Intuitively, a surfel is n-simple in X if its deletion from X does not change
the topology of X.

Definition 2. Let Y C X C X. The set Y is said to be (lower) n-homotopic
to X if and only if Y can be obtained from X by sequential deletion of n-simple
surfels.

Thus, we can obtain a skeleton from a set of surfels by a sequential erosion
analogous to classical 2D sequential thining [10,9]. As in the planar 2D case [10],
this method presents some drawbacks : there is no parallel way to test the n-
simplicity of surfels (on figure 4, the surfels s; and so of the set X composed of
grey surfels are n-simple in X, but we cannot remove simultaneously these surfels
without changing the topology). Moreover, the shape of the skeleton depends on
the order with which the n-simplicity of surfels is tested (see figure 3 if we use
the lexicographical order to test the n-simplicity of surfels). Finally, the strategy
using end surfels (surfels which have only one n-neighbor) causes the apparition
of a lot of undesirable branches (see figure 6).

For these reasons, we are now interested in a new thinning method of sets of
surfels using a parallel strategy. This method is an analogue of a parallel thinning
algorithm existing in 3D introduced by G. Bertrand [1], and using the notion of
P-simple points.

First we must state some theoretical definitions and results.

Definition 3. Let Y C X C Y. The set Y is called strongly n-homotopic to X
if for any Z such that Y C Z C X, the set Z is n-homotopic to X. If Y is
strongly n-homotopic to X, then we call the set S = X\Y a strongly n-simple
set in X.

Note that if Y is strongly n-homotopic to X, then for any set S C X\Y, the
set X\ S is always n-homotopic to X.

Definition 4. Let X C X, P C X and x € X. The surfel x is called P, -simple
in X if, for any set S such that S C P\{z}, the surfels x is n-simple for X\S.
We denote by S, (P) the sets of the P,-simple surfels. A set E C X 1is said
P,-simple in X if E C S,(P).

The P,-simple surfels satisfy a strong constraint, namely a P,-simple surfel
can be removed whatever the set contained in P already removed. Now, we
establish a relationship between the notions of strongly n-simplicity and P,-
simplicity which is directly deduced from the definitions.
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Theorem 1. Let Y C X C X. The setY is strongly lower n-homotopic to X if
and only if the set P = X\Y is P,-simple for X.

Now, we propose a local caracterization of the P,-simple surfels, which makes
effective the notion of a P,-simple surfel.

Definition 5. We denote by A, (x, X) the set of surfels defined by
y € Ap(x, X) & 3 a ng-path in No(x) N X from y to an n-neighbor of x
and we denote by T, (x, X') the number of n,.-connected components of A, (x, X).

In other words, A,(z,X) is the union of all connected components of
G, (z, X) which are n-adjacent to x.

Theorem 2. Let P C X C X and x € P. We denote R = X\P. Then the
surfel x is Py -simple in X if and only if the four following properties are satisfied:

- Tn(xai) = 17'

- Tﬁ(an) = 17'

— Vy € Ny(x) N P, y is n-adjacent to A, (z, R);
T,

— Vy € Ng(z) N P, y is n-adjacent to Ax(z, X).

This theorem enables us to test the P,-simpleness of surfels by an algorithm
using only local considerations, and enables us to define an algorithm using a
parallel strategy.

2.2 Parallel Algorithm and Results

First, we present a sequential thinning algorithm of a subset X of a surface X,
implemented by A. Lenoir [9,4]. The two-step principle is the following one: while
there exist some n-simple surfels in X,

— for all x in X, if x is n-simple, mark x with REMOVABLE;
— for all surfels in X, if = is marked with REMOVABLE, and x is n-simple
in the remaining set, remove z from X.

To preserve the general shape of our initial set of surfels, we impose on the end
surfels to be unremovable (i.e. surfels of X with exactly one neighbor in X).

Now let us present our parallel algorithm (see figure 5). Only the surfels
n-adjacent to X can be be removed from a set X at each step. So, to test
the P,-simplicity of the surfels in X, our set P will be the set of the surfels
in X which are #-adjacent to X. Now, a surfel which is not P,-simple may be n-
simple. So, after using the parallel algorithm, we will use the sequential one to
remove all n-simple surfels which are not end surfels. The parallel algorithm is
presented on figure 5.

The results of this algorithm (see figure 6) are, as in the 3D case, quite
better than the ones obtained by the sequential algorithm. First, there are less
undesirable branches on the final squeleton obtained by the parallel algorithm.
Next, the symmetry of this skeleton is closer to the symmetry of the initial set
of surfels.
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Parallel Algorithm

M = array of all surfels;
P = set of the surfels on the border;
R = set of the interior surfels;
Repeat
made := FALSE;
For all x in P
If (x is P-simple)
Then mark x with REMOVABLE;
made := TRUE;
End For
For all x in P
If (x is marked with REMOVABLE)
Then remove x from M;
End For
Update P;
‘While made;

Fig. 5. Parallel algorithm

3 Polyhedrization

The method of polyhedrization presented here consists of three steps.

3.1 Step One: The Choice of the Germs

The first step consists in choosing some special surfels on the surface of the
object we want to polyhedrize. These surfels, called germs, are distributed ac-
cording to the curvature of the surface: the more curved is the surface, the more
numerous are the germs. First, using the method of A. Lenoir [3,4], we compute
the maximal curvature of all the surfels of the surface, and we choose a surfel at
random, which is our first germ, on the surface. Then:

1. determination of a maximal width [ depending on the maximal curvature of
the surfel;

2. breadth-first exploration (using a FIFO structure) of the e-adjacency graph
from the germ until the width [ is reached; we mark the covered surfels;

3. if there are some non-marked surfels, choice of a new germ among the non-
marked neighbors of the marked surfels, and back to the step 1. Otherwise,
STOP.

At the third step, for better results, the next germ is the one which has the
greater maximal curvature. Indeed, with this choice, we obtain more faces at the
more curvated places.
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Sequential algorithm Parallel algorithm

Fig. 6. Comparison of results

An interesting point is that we can choose a limit width L for the breadth-
first exploration: if the computed width [ is larger than L, then we replace [
by L. Moreover, we use a slowdown strategy at the more curved places during
the breadth-first exploration. So we can have germs more or less dense on the
less curved places of the surface.

We denote by G the set of all germs thus obtained. Some results of this
strategy are presented on figure 7.

3.2 Step 2: Obtaining of a “Topological Voronoi Diagram”

Let X be the surface of the object. To obtain the “topological Voronoi diagram”
(i.e. a skeleton in which there are no more simple surfels), we use the thinning
algorithm presented in the first section on the set X\ G, without the end surfels
conditions. We obtain the skeletons visible on figure 8 for the three previous
presented objects.

The skeletons are obviously more dense where the germs are more numerous.
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Sphere, R=15 Cork Blood vessels

Fig. 7. The choosen germs (in white) on the surfaces of three voxels objects

Sphere, R=15 Cork Blood vessels

Fig. 8. The chosen germs and the “topological Voronoi diagrams”

3.3 Step 3: The Obtaining of the Faces

Now, from the skeleton and the germs, we are going to cover the triangular faces
which will form our polyhedrized surface.

Let consider the figure 9, (a). The germs are represented by the black points,
and the squeleton by the thick black lines. There exist two kinds of surfels
on the skeleton: the surfels of the branches (surfels which have exactly two
neighbors in the skeleton) and the surfels of the intersections (surfels which have
strictly more than two neighbors). So, we cover the skeleton by covering of the
branches from an intersection to an other one. Let I; and I> be the barycenters
of two intersections connected by a branch. The segment I;I5 is the edge of
two triangles, and the other vertices of these triangles are the germs which the
branch separates (see figure 9, (b)).
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(a) (b)

Fig. 9. Obtaining of triangular faces from the skeleton

3.4 Results

The results of the algorithm for the sphere with radius 15, the cork and the
blood vessels are presented on figure 10. The initial numbers of surfels of these
surfaces are respectively 4254, 81066, 10792 and the chosen limit widths L 4, 8
and 4. The numbers of triangular faces obtained by the algorithm are 504, 3914
and 1316. It takes a few seconds to compute the polyhedrized surfaces (for the
bigger example, the cork, it takes about 30 seconds on Ultra Sparc Sun'™ work
stations with bi-processors).

Fig. 10. The polyhedrized surfaces
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As we can see on the figure, these faces are regular, well located and one gets
good quality surfaces, even on thin objects (see the result on the blood vessels).
The worst results are near the angles (see base of the cork), but they remain
satisfying.

4 Discretization

Now, we have an effective tool to obtain a polyhedrized surface from a discrete
one. Here, we present briefly a method to realize the reverse operation.

First, we choose a step of discretization P (smaller than the size of the
surface S we want to discretize). Then, we are going to work according to the
first axis of the classical coordinates space. We define a 2-dimensionnal array
(kP)  (kP), with k € Nx according to the plane containing the second and the
third axis. Each cell of this array contains a chained list of surfels (figure 11). The
method to fill up this array is to study the intersection between the line D;; (the
line coming from the cell (4,j) and parallel to the first axis) and S (figure 12).
During the recover of D;;, for each intersection we have to determine by a parity
rule if we enter into the surface or if we get out. Then, we can compute the
coordinates of the deduced surfels and obtain the discretized surface.

e

Surfel 1 Surfel 2 Surfel 3

) AN S N N N NI N

) NN N N N N N NN

Fig. 11. Data structure Fig. 12. Method

5 Conclusions and Perspectives

Following section 2, we have obtained an analogue of the notion of P,-simplicity
existing in 3D for discrete surfaces. Moreover, the results of thinning using
the parallel strategy are far better than the ones deriving from the sequential
method.

Next, as for the polyhedrization, the obtained surfaces are rather satisfying.
The computing time for results is quite short (a few seconds against several
days for the method of [12]) and the obtained faces are much more regular, in
comparison to what would be obtained by any other pre-existing method [12].
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Note that the boolean set operations between the objects surrounded by

the discretized surface can easily be performed using the obtained discrete data
structure.

In future works, we shall include this work into a multi-scale context. Indeed,

if we have to work with a set of multi-scaled objects, it is more relevant to con-
sider different scales related to these objects. Thus, we will be able to represent
the whole multi-scaled set with one method.
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