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Abstract. The watershed transformation is a powerful tool for segment-
ing images, but its precise definition in discrete spaces raises difficult
problems. We propose a new approach in the framework of orders. We
introduce the tesselation by connection, which is a transformation that
preserves the connectivity, and can be implemented by a parallel algo-
rithm. We prove that this transformation possesses good geometrical
properties. The extension of this transformation to weighted orders may
be seen as a generalization of the watershed transformation.
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1 Introduction

The watershed transformation [1] is a powerful tool for segmenting images. Ini-
tially introduced in the field of topography, the notion of watershed is often
described in terms of steepest slope paths, watercourses and catchment basins.
Here we prefer the following presentation, which is precise enough to be imple-
mented by a computer program.

Consider a grayscale image as a topographic relief: the gray level of each point
corresponds to its altitude. Watersheds may be obtained by piercing a hole at
each minimum of this relief, and immersing the relief into a lake. The water will
progressively fill up the different basins around each minimum. When the waters
coming from different minima are going to merge, a dam is built to prevent the
merging. At the end of this process, the set of points immersed by the water
coming from one minimum mi is called the catchment basin associated to mi,
and the points that have not been immersed, and where dams have been built,
constitute the watersheds.

This transformation may be seen as a set transformation, guided by the gray
levels, which transforms the set of the points belonging to minima into the set
of the points belonging to catchment basins. This set transformation has an
important property: it preserves the connected components of the set (Fig. 1).
On the other hand, the connected components of the complementary set are not
preserved, as shown in Fig. 1(b2, c2). It is important to note that a topology-
preserving transformation, such as an homotopic kernel [2] (which may be seen
as an “ultimate skeleton”), should preserve both the connected components of
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the set and those of the complementary set (see Fig. 1(b1, d1 and b2, d2)), and in
3D, it should also preserve the tunnels of both the set and the complementary
set.

                                                

(a1) (b1) (c1) (d1)
                                                

(a2) (b2) (c2) (d2)

Fig. 1. (ai): original images; (bi): minima of ai (in white); (ci): catchment basins
of ai (in white); di: an upper homotopic kernel of bi (in white)

Many definitions and algorithms for the watershed transformation have been
proposed [3,4,5,6,7]. Particularly difficult is the problem of correctly specifying
the watersheds that are located in plateaus, especially in the discrete spaces. Sev-
eral authors have used a notion of distance in order to impose a “good centering”
of the watersheds in plateaus, but in the usual discrete grids this centering is not
always perfect. Their approach is based on the notion of influence zones: to a
subset X of Zn, which is composed of k connected components X1, . . . , Xk, we
can associate the influence zones V1, . . . , Vk such that a point x belongs to Vi if x
is nearer from Xi than from any other component Xj of X . This constitutes a
set transformation, which does not preserve any topological characteristic (as de-
fined in the framework of digital topology [8]), not even the number of connected
components: see Fig. 2.

Fig. 2. Two regions (in black) and their respective influence zones (shaded) for
the usual 4-distance. We see that the union of the two influence zones is 4-
connected, while the original set (black points) is not 4-connected

This paper extends a work presented in [9], in the framework of graphs. We
propose a new approach based on the notion of order [10]. An order is equiva-
lent to a discrete topological space (in the sense of Alexandroff [11]). In such a
space, we prove that the influence zones transformation, defined thanks to the
“natural” distance and applied to a closed set, preserves the connected compo-
nents. We introduce the notion of uniconnected point, which allows to define a
set transformation that preserves the connected components of the set: the tes-
selation by connection. From this set transformation, we derive a transformation
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on grayscale images, and more generally on weighted orders, that can be seen
as a generalization of a watershed transformation. We propose some parallel al-
gorithms to implement such transformations in orders and weighted orders. We
also show that the link between these transformations and the influence zones
transformation ensures that our algorithms produce a “well centered” result. In
this paper, we give some examples based on orders that “modelize” the discrete
grid Zn. Nevertheless, we emphasize the fact that all the presented properties
and algorithms are valid for any order.

2 Basic Notions

In this section, we introduce some basic notions relative to orders (see also [10]).
If X is a set, P(X) denotes the set composed of all subsets of X , if S is a

subset of X , S denotes the complement of S in X . If S is a subset of T , we
write S ⊆ T , the notation S ⊂ T means S ⊆ T and S �= T . If γ is a map
from P(X) to P(X), the dual of γ is the map ∗γ from P(X) to P(X) such
that, for each S ⊆ X , ∗γ(S) = γ(S). Let δ be a binary relation on X , i.e., a
subset of X ×X . We also denote by δ the map from X to P(X) such that, for
each x of X , δ(x) = {y ∈ X, (x, y) ∈ δ}. We define δ✷ as the binary relation
δ✷ = δ \ {(x, x);x ∈ X}.

An order is a pair |X | = (X,α) where X is a set and α is a reflexive, anti-
symmetric, and transitive binary relation on X . An element of X is also called
a point. The set α(x) is called the α-adherence of x, if y ∈ α(x) we say that y is
α-adherent to x.

Let (X,α) be an order. We denote by α the map from P(X) to P(X) such
that, for each subset S of X , α(S) = ∪{α(x); x ∈ S}, α(S) is called the α-
closure of S, ∗α(S) is called the α-interior of S. A subset S of X is α-closed if
S = α(S), S is α-open if S = ∗α(S).

Let (X,α) be an order. We denote by β the relation β = {(x, y); (y, x) ∈ α},
β is the inverse of the relation α. We denote by θ the relation θ = α ∪ β. The
dual of the order (X,α) is the order (X, β).
Note that ∗α(S) = {x ∈ S; β(x) ⊆ S}, and ∗β(S) = {x ∈ S; α(x) ⊆ S}.

The set Oα composed of all α-open subsets of X satisfies the conditions for
the family of open subsets of a topology, the same result holds for the set Oβ

composed of all β-open subsets of X ; we denote respectively by Tα = (X,Oα)
and by Tβ = (X,Oβ) these two topologies. These topologies are Alexandroff
topologies, i.e., topologies such that every intersection of open sets is open [11].

An order (X,α) is countable if X is countable, it is locally finite if, for each
x ∈ X , θ(x) is a finite set. A CF-order is a countable locally finite order.

If (X,α) is an order and S is a subset of X , the order relative to S is the
order |S| = (S, α ∩ (S × S)).

Let (X,α) be a CF-order. Let x0 and xk be two points of X . A path from x0

to xk is a sequence x0, x1, ..., xk of elements of X such that xi ∈ θ(xi−1), with
i = 1, ..., k. The number k is called the length of the path. We consider the
relation {(x, y); there is a path from x to y}. It is an equivalence relation, its
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equivalence classes are called the connected components of X . We say that (X,α)
is connected if it has exactly one connected component.

Let |X | = (X,α) be a CF-order. The α-rank of a point x is the length of a
longest α-path having x as origin. It is denoted by r(x).

Let (X,α) be an order. An element x such that α✷(x) = ∅ (i.e., such that
r(x) = 0) is said to be α-terminal (for X).

3 Orders Associated to Zn

We give now a presentation of some orders which may be associated to Zn [12,10].
Let Z be the set of integers. We consider the families of sets H1

0 , H1
1 , H1

such that, H1
0 = {{a}; a ∈ Z}, H1

1 = {{a, a + 1}; a ∈ Z}, H1 = H1
0 ∪H1

1 .
A subset S of Zn which is the Cartesian product of exactly m elements of H1

1

and (n − m) elements of H1
0 is called a m-cube of Zn. We denote Hn the set

composed of all m-cubes of Zn, m = 0, ..., n.
An m-cube of Zn is called a singleton if m = 0, a unit interval if m = 1, a unit
square if m = 2, a unit cube if m = 3.

In this paper, the basic order associated to Zn is the order (Hn, α), where
α =⊇, thus y ∈ α(x) if x ⊇ y. In Fig. 3(a), an example of a subset S of H2 is
given. The object S is made of two connected components S1 (to the left) and S2

(to the right). It may be seen that S1 contains one singleton (α-terminal, α-rank
0), two unit intervals (α-rank 1), and two unit squares (β-terminals, α-rank 2).
In Fig. 3(b), an alternative representation of the same object is presented, we
call it the array representation. We use the following conventions: a singleton is
depicted by a circle ( ), a unit interval by a rectangle ( ), and a unit square
by a square ( ).

(a) (b)

Fig. 3. (a): a subset S of H2, and (b): its array representation

In order to build consistent topological notions for a subset S of Zn, we
associate to S a subset Ψ(S) of Hn; thus we recover the structure of a (dis-
crete) topological space by considering the order (Hn,⊇). In this paper, the
transformation Ψ is chosen in such a way that the induced topological notions
may be seen as “compatible” with the notions derived from the digital topology
framework. A natural idea for defining Ψ is to consider “hit or miss” transfor-
mations [13]. Thus we consider the set Sh composed of all elements of Hn which
have a non-empty intersection with S. In a dual way, we consider the set Sm

composed of all elements of Hn which are included in S:
Ψh(S) = Sh = {x ∈ Hn, x ∩ S �= ∅} ; Ψm(S) = Sm = {x ∈ Hn, x ⊆ S}
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(a) (b) (c)
Fig. 4. (a): a subset S of Z2 (black disks), (b): Sh = Ψh(S), (c): Sm = Ψm(S)

Fig. 4(a) presents an object S of Z2 (in black). The adjacency used for the
object is denoted by a, the adjacency used for the background is denoted by
a (see [8]). Note that if (a, a) = (4, 8), then S is composed of two connected
components and S is connected. On the other hand if (a, a) = (8, 4), then S
is connected and S is composed of two connected components. The images Sh

and Sm are shown in Fig. 4(b) and (c) respectively. We note that in Sh we
retrieve the connectivity that corresponds to (8, 4), and in Sm we retrieve the
connectivity that corresponds to (4, 8). For a more complete discussion about a
model of the digital topology notions in the framework of orders, see [14].

Note also that Sh is always an α-open set (i.e., a β-closed set), and that Sm

is always an α-closed set.

4 Distance and Influence Zones

Let (X,α, β) be a CF-order, let x and y be two points of X . Let π = (x0, . . . , xk),
with x = x0, y = xk, be a path from x to y. The length of π is denoted by l(π)
and is equal to k. We denote by Πx,y the set of all the paths from x to y, and
we define d(x, y) = min{l(π), π ∈ Πx,y}, the distance between x and y. A path
σ from x to y such that l(σ) = d(x, y) is a shortest path from x to y.

It may be easily checked that d is a (discrete) distance on X , that is, a map
from X×X to N that verifies the properties of symmetry, separation (d(x, y) = 0
implies x = y) and triangular inequality (d(x, y) ≤ d(x, z) + d(z, y)).

If Y is a subset of X , we define d(x, Y ) = min{d(x, y), y ∈ Y }, and call this
value the distance between x and Y . A path σ from x to a point y ∈ Y such that
l(σ) = d(x, Y ) is called a shortest path from x to Y .

Let R be a subset of X , and let {R1, . . . , Rm} be the connected components
of R. For each Ri, i = 1, . . . ,m, we define the influence zone Vi associated to Ri:
Vi = {x ∈ X/∀j ∈ [1, . . . ,m], j �= i, d(x,Ri) < d(x,Rj)}.

Ideally, the influence zones should possess the following, desirable properties:
first, they should be connected sets, and second, they should be mutually discon-
nected, i.e. any union of two different influence zones should be a non-connected
set. If we consider the discrete plane Z2, and the classical 4- or 8-distance, the
property of mutual disconnection is not verified (see Fig. 2).

Here, we prove that the influence zones associated to a family of α-closed
or β-closed subsets of a CF-order possess these two fundamental properties. We
have to prove first these two intermediate lemmas:
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Lemma 1 Let (X,α, β) be a CF-order, and let π = (x0, . . . , xk) be a path. If π
is a shortest path from x0 to xk, then ∀i = 0, . . . , k − 2 we have:
xi+1 ∈ α✷(xi) ⇒ xi+2 ∈ β✷(xi+1), and xi+1 ∈ β✷(xi) ⇒ xi+2 ∈ α✷(xi+1).

Proof: clearly, ∀i = 0, . . . , k − 1; xi �= xi+1. Suppose that xi+1 ∈ α✷(xi)
and xi+2 /∈ β✷(xi+1). We know that π is a path, hence we have xi+2 ∈ α✷(xi+1).
Thus, xi+2 ∈ α✷(xi), and we see that the path (x0, . . . , xi, xi+2, . . . , xk) is shorter
than π, a contradiction. ✷

Lemma 2 Let (X,α, β) be a CF-order, let R be an α-closed subset of X, let x
be a point of X \R. Then, there exists a shortest path π from x to R such that
the last point y of π is an α-terminal.

Proof: let π be a shortest path from x to R, let w, y be the two last points of
π (y ∈ R). We have y ∈ α(w), because if we suppose w ∈ α(y), then w belongs
to R (R is α-closed), which contradicts the hypothesis “π is a shortest path
from x to R”.

Suppose that y is not an α-terminal, i.e. α(y) �= ∅. As R is α-closed, we
have α(y) ⊆ R and α(y) contains α-terminals, let y′ be one of them. We have
y ∈ α(w) and y′ ∈ α(y), thus y′ ∈ α(w). Let us consider the path π′ identical to
π except that y is replaced by y′: it is also a shortest path from x to R, and its
last point is an α-terminal. ✷

We are now ready to prove the aforementioned properties:

Property 3 Let (X,α, β) be a CF-order, let R be a subset of X, let R1, . . . , Rm

be the connected components of R, and let V1, . . . , Vm be the influence zones asso-
ciated to R1, . . . , Rm, respectively. For each i = 1, . . . ,m, the set Vi is connected.

Proof: we shall prove that for any x in Vi, a shortest path between x and Ri

is entirely included in Vi. The property follows immediately from this result and
from the connectedness of Ri.

Let x ∈ Vi. Following the definition of influence zones, there exists a short-
est path π from x to Ri such that l(π) = d(x,Ri) and l(π) < d(x,Rj), ∀j ∈
[1, . . . ,m], j �= i. Let y be any point in π, and suppose that y /∈ Vi, which means
that there is a k ∈ [1, . . . ,m], k �= i, such that d(y,Rk) ≤ d(y,Ri).

As π is a shortest path from x to Ri, the subpath π′ of π from y to Ri is a
shortest path from y to Ri, hence l(π′) = d(y,Ri). Also, the subpath π′′ of π
from x to y is a shortest path from x to y, hence l(π′′) = d(x, y).

Let σ be a shortest path from y to Rk, we have l(σ) = d(y,Rk) and hence
l(σ) ≤ l(π′). Then using the triangular inequality: d(x,Rk) ≤ l(π′′) + l(σ) ≤
l(π′′) + l(π′), that is d(x,Rk) ≤ d(x,Ri), a contradiction. ✷

Property 4 Let (X,α, β) be a CF-order, let R be an α-closed subset of X,
let R1, . . . , Rm be the connected components of R, and let V1, . . . , Vm be the in-
fluence zones associated to R1, . . . , Rm, respectively. Then, the Vi’s are mutually
disconnected, i.e. ∀i, j ∈ [1, . . . ,m], i �= j, Vi ∪ Vj is not connected.



Tesselations by Connection in Orders 21

Proof: suppose that there is an x in Vi and a y in Vj such that x ∈ θ(y).
We shall: a. prove that d(x,Ri) = d(y,Rj), and b. raise a contradiction using
lemmas 1 and 2.

a. Suppose that d(x,Ri) < d(y,Rj). Let π be a shortest path from Ri to x,
and let σ be a shortest path from Rj to y, we have: l(π) = d(x,Ri), l(σ) =
d(y,Rj). The sequence πy is a path from Ri to y, and we have l(πy) = l(π) + 1,
hence l(πy) ≤ l(σ). But d(y,Ri) ≤ l(πy) (by definition of d) , hence d(y,Ri) ≤
d(y,Rj), a contradiction with the fact that y ∈ Vj . A symmetric argument shows
that d(x,Ri) > d(y,Rj) is also false, hence d(x,Ri) = d(y,Rj).

b. Let π be a shortest path from Ri to x, begining by an α-terminal (see
lemma 2) and ending by the sequence (x′, x). Let σ be a shortest path from Rj

to y, begining by an α-terminal and ending by the sequence (y′, y). These two
paths having the same length (see a.), and beginning by α-terminals, we deduce
from lemma 1: x ∈ α(x′) ⇔ y ∈ α(y′). Our hypothesis x ∈ θ(y) implies either
x ∈ α(y) or y ∈ α(x). For example, if x ∈ α(y) and y ∈ α(y′), then we have
x ∈ α(y′), hence l(σx) = l(σ) = l(π). This implies that d(x,Rj) ≤ d(x,Ri), a
contradiction with the fact that x ∈ Vi. There are three other possibilities, that
lead to a contradiction in similar ways. ✷

(a) (b)

(c) (d)

Fig. 5. Examples of families of α-closed (a,d) or β-closed (b,c) sets (in black),
and their influence zones (in gray)
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5 Tesselation by Connection

In Fig. 5, we show some examples of families of α-closed (Fig. 5(a), in black) and
β-closed (Fig. 5(b), in black) subsets of H2, and their influence zones (in gray).
In these cases, the complementary of the influence zones is “thin”; nevertheless,
we cannot guarantee such a property in the general case. Fig. 5(c,d) shows
counter-examples. In many image analysis applications, we need “thin” frontiers
between the influence zones, this motivates the introduction of the following
notions. Intuitively, a point is uniconnected if its addition preserves the connected
components, in other terms, it preserves a connection in the sense of [15].

Let (X,α, β) be a finite CF-order, let R ⊆ X , and let x ∈ R. The point x
is uniconnected (for R) if the number of connected components of R equals the
number of connected components of R ∪ {x}. The point x is α-uniconnected
(for R) if x is uniconnected for R and if α(x) ∩R �= ∅.

We can easily see that a point x ∈ R is uniconnected if and only if θ(x)
intersects exactly one connected component of R. A point x ∈ R is said to
be multiconnected (for R) if θ(x) intersects at least two different connected
components of R. It is isolated (for R) if θ(x) ∩R = ∅.

1 x2x

2

1

1

1

1

1 1 1

1

1

1

1 2

2

2

2

(a) (b) (c)
Fig. 6. (a): x1 is uniconnected, x2 is multiconnected; (b): labeling the compo-
nents makes the local checking possible; (c): uniconnected points (in gray) cannot
be added in parallel without changing the number of connected components

In Fig. 6, we can see that the information contained in θ(x) is not sufficient to
check whether a point x is uniconnected or multiconnected. On the other hand,
if we assume that the points of each connected component of R are labeled with
an index which represents this component, then we can check whether a point x
is uniconnected or not by counting the number of different indexes carried by
the points in θ(x) (see Fig. 6(b)). Furthermore, a uniconnected point x is α-
uniconnected if α(x) contains at least one labeled point.

Let R ⊆ X , we say that T ⊆ X is a thickening by connection of R if T may
be derived from R by iterative addition of uniconnected points. We say that T
is a tesselation by connection of R if T is a thickening by connection of R and if
all the points of X \ T are not uniconnected.

In general, there are several tesselations by connection for a set R. This is
due to the iterative nature of the definition: depending on the order of selection
of the uniconnected points, one can get different results. Nevertheless, in many
applications we want to obtain a “well centered” result, that could be uniquely
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defined. This is why we introduce, by the way of a parallel algorithm, a particular
tesselation by connection that possesses good geometrical properties.

We can see in Fig. 6(c) that, in general, uniconnected points cannot be added
in parallel to a set R without changing the number of connected components of R.
In fact, α-uniconnected points can indeed be added in parallel to R without
changing the number of connected components of R. This can be proved by
induction thanks to the following property.

Property 5 Let (X,α, β) be a CF-order, let R ⊆ X, and let x, y ∈ R be two
α-uniconnected points for R. Then, x is α-uniconnected for R ∪ {y}.

Proof: if y /∈ θ(x), then the property is obvious. If y ∈ α(x) or x ∈ α(y),
then the component of R which is α-adherent to y is clearly the same as the
component of R which is α-adherent to x. Thus in both cases, adding the point y
to R does not change the fact that x is α-uniconnected.✷

The following algorithm computes a tesselation by connection of a closed
subset of X .

Algorithm 1
Input data:

(X,α, β), a finite CF-order,
R1, . . . , Rm, the m connected components of an α-closed subset R of X

Output: a tesselation by connection T associated to R
Initialization:

T 0 := R; B0 := ∅; n := 1; label the points of each Ri with the index i
Repeat until stability:

Compute the set Sn of the points that are uniconnected for T n−1,
and the set Un of the points that are multiconnected for T n−1

(this can easily be done using the indexes)
Label the points x of Sn with the index of the component found in θ(x)
Label the points y of Un with the index 0
T n := T n−1 ∪ Sn ; Bn := Bn−1 ∪ Un ; n := n + 1

End Repeat
T := T n

It can be easily seen that for any even (resp. odd) value of n, the set T n

is α-closed (resp. β-closed) in |X \ Bn|. From this, it follows that Sn+1 is only
composed of α-uniconnected (resp. β-uniconnected) points if n is even (resp.
odd). Thus (Prop. 5), the result T of this algorithm is a thickening by connec-
tion of the original α-closed set R. In addition, at the end of this algorithm no
uniconnected point remains. Thus, the result T is a tesselation by connection of
the original set R.

The following property makes a link between the tesselation by connection
computed by algorithm 1 an the influence zones, ensuring that this tesselation
by connection is “well centered”.

The following lemma and the following property derive from the fact that
the labeling process is guided by a breadth-first strategy.
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Lemma 6 Every point x that receives an index during the step n of the algo-
rithm, is such that d(x,R) = n.
Every point x that receives an index i > 0 during the step n of the algorithm, is
such that d(x,Ri) = n.

Property 7 Let (X,α, β) be a CF-order, let R1, . . . , Rm be the m connected
components of an α-closed subset R of X, let V1, . . . , Vm be the influence zones
associated to R1, . . . , Rm, respectively, and let T1, . . . , Tm be the connected com-
ponents of the tesselation by connection of R computed by algorithm 1. Then we
have : ∀i = 1, . . . ,m, Vi ⊆ Ti.

This property establishes that the influence zones are included in the com-
ponents of the tesselation by connection computed by algorithm 1. The converse
is true only in some cases, like in Fig. 5(a,b,d); but it is not true in general, as
shown by the counter-examples of Fig. 7.

(a) (a′)

(b) (b′)
Fig. 7. (a,b): some objects (in black) and their influence zones (in gray). (a’,b’):
the same objects (in black) and their tesselation by connection (in gray)

6 Tesselation by Connection for Weighted Orders

In this section, we extend the notions of uniconnected point and tesselation
by connection to weighted orders. A tesselation by connection for weighted or-
ders may be considered as a generalization of the watershed transformation[1]:
the result of the proposed transformation is a function, whereas the result of a
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watershed transformation is a set. We recover a set which corresponds to the
complementary of the watersheds, by extracting the regional maxima of the
tesselation by connection.

Let |X | = (X,α, β) be a finite CF-order, and let W be a mapping from X
to Z. The couple (|X |,W ) is called a weighted order on |X |. For applications to
digital image processing, W (x) typically represents the graylevel of the point x.
We denote by Wk, and call the cross-section of W at level k, the set Wk = {x ∈
X,W (x) ≥ k} with k ∈ Z. The weighted order (|X |,W ) is α-closed if, ∀k ∈ Z,
the order |Wk| is α-closed.

Let (|X |,W ) be a weighted order, and let x ∈ X . The point x is uniconnected
for W if x is uniconnected for Wk+1, with k = W (x).

Let (|X |,W ) and (|X |,M) be weighted orders, we say that M is a thickening
by connection of W if M may be derived from W by iteratively selecting a
uniconnected point x and raising its value W (x) by one. We say that M is a
tesselation by connection of W if M is a thickening by connection of W and if
all the points of X are not uniconnected for M .

Algorithm 2
Input data: (|X |,W ), a finite α-closed weighted order,
Output: a tesselation by connection M associated to W .
Initialization: Let L = (k0, . . . , ks) the list of values taken by W (x),

sorted in increasing order.
For all i from 1 to s

Compute the tesselation by connection Z of Wki

in the order induced by Wki−1 , using algorithm 1
For all z ∈ Z \Wki−1 do W [z] := ki; End For

End For
M := W

The following transformations (introduced in [16]) may be used to construct
a closed weighted order from a grayscale image.

Let F be the set of functions from Zn to N . Let W be the set of functions
from Hn to N . We define the transformations Ψh and Ψm from F to W which
associate to each F in F the functions Wh and Wm respectively, defined by:

∀x ∈ Hn,Wm(x) = min{F (y), y ∈ Zn, {y} ∈ α(x)}
∀x ∈ Hn,Wh(x) = max{F (y), y ∈ Zn, {y} ∈ α(x)}

It can be easily seen that (|X |,Wm) is an α-closed weighted order, and that
(|X |,Wh) is a β-closed weighted order. In Fig. 8, we show the weighted order
obtained by applying Ψm to a “real” image, and the tesselation by connection
of this weighted order computed by algorithm 2.
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11. P. Alexandroff, “Diskrete Räume”, Mat. Sbornik, 2, pp. 501-518, 1937. 16, 17
12. E. Khalimsky, R. Kopperman, P. R. Meyer, “Computer Graphics and Connected

Topologies on Finite Ordered Sets”, Topology and its Applications, 36, pp. 1-17,
1990. 18

13. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, 1982. 18
14. G. Bertrand, M. Couprie, “A model for digital topology”, 8th Conf. on Discrete

Geom. for Comp. Imag., Vol. 1568, Lect. Notes in Comp. Science, Springer Verlag,
pp. 229-241, 1999. 19

15. G. Matheron, J. Serra, Strong filters and connectivity, in Image Analysis and Math-
ematical Morphology, Vol. II: Theoretical Advances, Chap. 7, pp. 141-157, Serra J.
ed., Academic Press, 1988. 22

16. V. A. Kovalevsky, “Finite Topology as Applied to Image Analysis”, Computer
Vision, Graphics, and Image Processing, 46, pp. 141-161, 1989. 25


	Tesselations by Connection in Orders
	Introduction
	Basic Notions
	Orders Associated to Zn
	Distance and Influence Zones
	Tesselation by Connection
	Tesselation by Connection for Weighted Orders
	References


