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Abstract. The use of three-dimensional digitizers in computer vision
and CAD systems produces an object description consisting of a collec-
tion of scattered points in R®. In order to obtain a representation of the
objects’ surface it is necessary to establish a procedure that allows the
recovering of their continuity, lost during the data acquisition process. A
full automatic O(n?) algorithm is presented. Such algorithm obtains sur-
face representations of free genus objects described from a set of points
that belong to the original surface of the object. The only information
available about each point is its position in R®. The achieved surface is
a Delaunay triangulation of the initial cloud of points. The algorithm
has been successfully applied to three-dimensional data proceeding from
synthetic and real free shape objects.

Keywords: Automatic surface reconstruction, 3D Delaunay triangula-
tion, 3D Modeling

1 Introduction

This article deals with the problem of tessellating real objects’ surface represen-
tations in an automatic way. The free genus objects are exclusively defined by a
set of three-dimensional points that belong to their surface. This problem can be
found in areas such as computer vision or CAD, that accept object descriptions
based on 3D scattered points. The input data is composed by a set of unstruc-
tured points which represent the samples digitized from the surface of the objects
using passive or active acquisition techniques [23]. Furthermore, they could be
obtained from the segmentation of 3D volumetric images, although this approach
is more frequently used in medical environments because of its high cost [20].
From this set of points, represented by their 3D coordinates, we are intending
to automatically build a mesh of triangular facets produced by the proximity
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relationships between the points of the surface. Another desirable property of
the mesh is to be as regular as possible. So, the extracted mesh under these
conditions will be a Delaunay triangulation.

1.1 Related Work

The use of 3D digitizers to capture the shape of the objects is more and more
frequent in computer vision and CAD systems. This kind of devices make a dis-
crete sampling over the surface of the object obtaining a description based on a
cloud of points. However, we know few works in R? that deal with the automatic
recovering of the surface continuity without more information that the points’
coordinates. Most of the existing techniques manage some type of additional
information in order to characterize the cloud of points. The a—shapes of Edels-
brunner et al. [10] are a good effort to formalize the concept of “shape” for the
discussed descriptions. Several solutions require to use some kind of manipula-
tion from a human being, making the process highly interactive [5,21]. In other
cases, some limits to the data sampling process are fixed [22,8,1]. For example,
Amenta and Bern restrict the sampling distance to avoid the problems that ap-
pear with the existence of creases and corners. Other methods need to know
the orientation or the position of the sensor during the sampling stage in order
to recover the connectivity between the points of the surface [12,26]. Another
approach is to use the orientation of the normals associated to each point to
establish neighbor relationships between the samples [4]. Hoppe et al. [19] and
Bajaj et al. [3] define a signed distance function to compute its zero-set, consid-
ering the surface as an implicit function defined over the input data. Another
alternative approach used by some authors consists to perform a deformation
over a reference mesh by means of an iterative process which adjust the mesh
to the cloud of points [25,27,18]. The only known work in 3D that deals with
the stated problem is the Attali’s one [2], where the boundary and surface ex-
traction in two and three dimensions is intended to be formalized. In 2D she
extracts the boundary from a Delaunay triangulation and uses the existence of
topological relationships between neighbor points with the so-called 7-regular
shapes. However, the extrapolation of this problem to 3D can not be formalized
in the same way so she offers a heuristic solution to extract the surfaces, but
limited to closed surfaces.

The contents of this paper is as follows. Section 2 describes the algorithm
implemented to obtain the Delaunay tetrahedralization. Section 3 presents the
algorithm that allows the computation of the objects’ surface Delaunay trian-
gulation in an automatic way. Section 4 shows some meshes extracted with the
proposed algorithm. Last, section 5 summarizes the paper’s main conclusions.

2 3D Delaunay Tetrahedralization

It is well known that there is an equivalence relationship between a Voronoi
diagram and the corresponding Delaunay triangulation that allows changing
from one type of representation to its dual by means of a O(n) process [12].
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For our purposes, we have chosen the incremental algorithm described by
Faugueras in [12] to obtain a Delaunay tetrahedralization of the cloud of points,
although there are other methods to compute the Delaunay representation
[17,11,6,9]. Tt is a O(n?) algorithm that can be summarized in the next steps:

1. Compute a Delaunay tetrahedralization of the vertex of a cube {V;, i =
1,...,8} that contains all the points {M; | M; € R® j=1,...,p} belonging
to the surface of the object, and the centers {C;, i = 1,...,8} and the radius
{Ri, i=1,...,8} of the circumscribed spheres of the computed tetrahedra.
The centers of the spheres are the Voronoi points.

2. If Mj is the current point to be inserted in the tetrahedralization and k

is the current number of tetrahedra, each new point M; will belong, at

least, to one of the current spheres. If it would belong to p spheres, all the
tetrahedra of those spheres must be marked in order to be deleted from the
tetrahedralization, because the Voronoi region R(p;) is a convex polyhedron
that contains the corresponding p; generator inside it. E.g., if d*(M;, C;) —

R?<0i=1,...,k then mark the i-th tetrahedron T;.

For all the marked tetrahedra, extract the list of their faces.

Remove from this list all the faces that appear twice.

5. For each non-removed face, create a new tetrahedron with M; and insert it
in the tetrahedralization.

6. Delete from the tetrahedralization all the marked tetrahedra and return to 2
until there are no more points to process.

= o

One of the main advantages of this algorithm is the local nature of the opera-
tions performed from steps 3 to 6, because the point M; deals with a reduced
number of Delaunay tetrahedra. This allows a local and simple update of the
tetrahedralization.

To solve the degeneration cases of the Voronoi diagram computed with this
algorithm, produced by numerical errors or by the own location of the points, it is
possible to lightly modify the coordinates of the new point until the degeneration
disappears and then insert it in the usual way. Another option is to discard this
point from the cloud and not to include it in the tetrahedralization.

3 Surface Extraction Algorithm

The purpose of the surface extraction algorithm is first to remove the tetra-
hedra of the simplicial complex resulting from the Delaunay tetrahedralization
described in section 2 that are outside of the object, and then extract the ex-
ternal surface as the list of facets of the simplicial complex that only belong to
one tetrahedron. In this process it is necessary to use a heuristic to determine
those tetrahedra that are inside of the object, because there is not a determinis-
tic procedure to do this only knowing the Cartesian coordinates of the sampling
points. Our proposed heuristic is to start with the tetrahedra placed inside of
the convex hull of the objects’ cloud and remove those that offers to the outside
any facet greatest than some given threshold, repeating the process until the
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size of all the exterior facets is under the threshold. There are several ways to
measure the size of a facet, for example, the perimeter, the area or the radius of
the circumscribed circle. We have chosen the perimeter for two main reasons:

1.

2.

From a computational point of view, it is faster and easier to compute than
other measures.

The tests performed have shown a better response of this measure than the
others mentioned. We think that this is due to the fact that our starting
simplicial complex is a Delaunay triangulation. As it is well known, the De-
launay triangulation has the property that the partition obtained maximizes
the minimum angle of the triangular facets achieved. Although this property
approximates the triangular facets to equilateral triangles, sometimes the
position of the samples makes very irregular triangles, so the area or the
radius are not very good measures to clean the tetrahedralization. With this
in mind, we are interested to compute a mesh where the distance between
the samples, remember that the samples are the vertices of the triangles, is
minimum.

Following is the description of the algorithm that we propose.

Algorithm

1. Begin using the Delaunay tetrahedralization computed from the in-
put cloud of points with the algorithm described in section 2.

2. Discard all the tetrahedra having a vertex {V;,i = 1,...,8} that
belongs to the external cube defined in step 1 of the tetrahedraliza-
tion algorithm (section 2). The result is a simplicial complex of the
convex hull of the input data.

3. Compute the external surface of the complex as the list of facets that
only belong to one tetrahedron.

4. Compute the threshold v,, as the mean of the perimeters of the facets
in the external surface list. Sometimes it will be interesting to mul-
tiply this value by a factor, as will be explained below.

5. If a facet in the external surface list exceeds the threshold v,,, remove
from the complex the tetrahedron who owns the facet and insert the
remainder three facets in the surface list.

6. Repeat step 5 until all the perimeters of the facets in the surface list
are below v,,.

7. Recompute the mean perimeter of the external surface. If the differ-
ence with respect the old value is up 1%, return to step 4.

The most time consuming step of this algorithm is, by far, the calculus of the
Delaunay tetrahedralization in step 1. The main disadvantage of the method
is that it employs a global threshold for all the surface, so if the input points
are not registered in a uniform way and there is too much variability in the
perimeter measures along the surface, some holes will appear over the areas
with less density of points. This could lead to the loss of some of the points from
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the original input representation. Sometimes, instead of computing the surface
in a fully automatic way, it is possible to achieve better results if we multiply
the mean perimeter value by a factor between 1.0 and 2.0 in the step 4 of the
algorithm.

The complexity of the algorithm from steps 2 to 7 is O(n?), where n is the
number of tetrahedra of the tetrahedralization. Each iteration treats n tetrahe-
dra, and in the worst case, we need to loop n — 1 times.

4 Experimental Results

The main purpose of this section is to present some representative objects used
in the experiments and the results achieved with the algorithm proposed. The
meshes shown in this section have been generated on a Silicon Graphics Ori-
gin2000. The main hardware features of this multiprocessor are 2 GB of RAM
and eight 250 MHz R10000 MIPS processors, although our actual implementa-
tion computes only over one of the eight available processors. The application is
implemented in C++ and has been ported successfully to several UNIX based
platforms (Linux). Although the development has been performed on a propri-
etary computer, we have used free development distribution tools to assure the
portability of the code. The development tools have been those that provide
GNU [16], and the 3D visualization of the objects has been carried out with
Geomview [14].

The clouds of points presented with more detail in this paper belong to two
synthetic objects, the goblet and the sea shell, proceeding from the GTS Li-
brary [24]. GTS is an Open Source Free Software Library intended to provide a
set of useful functions to deal with 3D surfaces meshed with interconnected tri-
angles. A third object with higher genus than the previous has been considered
too with a similar detail: a human skull extracted from 3D tomographic real
data. A fourth object proceeding from the Large Geometric Models Archive of
the Georgia Institute of Technology is presented: a human skeleton hand [15]. In
this case, the number of available samples is very higher, but the hand presents
areas where the density of points is very variable too. The reason to show these
examples is that the fourth objects present very different geometric features that
allow to illustrate how the algorithm works. The selection of the first two syn-
thetic shapes is motivated by the fact that the available sensors can not capture
the internal geometry of the objects, like the details recovered inside the sea
shell. Table 1 summarizes some statistics of the examples shown, together with
the data of the other meshes extracted from some of the real objects used in the
tests. It includes the number of points of the clouds describing the geometry of
the objects, the number of vertices and facets of the final meshes and the exe-
cution time of each one of the most demanding stages of the whole process: the
3D tetrahedral Delaunay computation, and the final triangular facet extraction.
Although there is some loss in the number of vertices with respect the number
of input samples, the examples show that the shape, globally and locally, is cor-
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Table 1. Statistic data about some of the objects managed in the experiments

Object No. of| No. of | No. of |[Exec. time(s):|Exec. time(s):| Total
input | output |output| 3D Delaunay | Triang. mesh |Execution
points|vertices| facets | Tetrahedra Extraction | Time(s)

Bowl 1093 | 685 1412 6.800 0.988 8.00
Cup 3051 | 2791 | 5630 14.773 1.087 16.391
Amphora 6287 | 6041 | 16880 45.757 4.781 51.48
Human skull | 6391 | 5707 [ 14158 63.220 3.570 68.172
Tip of an arrow| 7609 | 5405 | 12342 85.305 5.838 92.561
Sea shell 7782 | 5379 | 10906 38.298 2.728 42.259
Hand 52704 | 47342 144166 1090.171 41.158 1132.884

(a) Input data of the (b) Erosion with the (c) First view of the fi-
goblet. convex hull criterion. nal mesh.

(d) Second view of the (e) Some detail of the (f) Slice view of the fi-
final mesh. base of the goblet. nal mesh.

Fig. 1. The goblet. No. of points: 3051. No. of facets: 5630

rectly recovered. The most of the points removed are discarded in the Delaunay
tetrahedralization step due to numerical errors.

The first object, Fig. 1, is a goblet that proceeds from [24]. The surface
description of the goblet is a set of 3051 3D points. Figure 1(a) shows the input
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(a) Input data. (b) First view of the fi- (c) Second view of the
nal mesh. final mesh.

(d) Some detail of the (e) Interior view of the (f) Some detail in the
output mesh. final mesh. inside of the output
mesh.

Fig. 2. The sea shell. No. of points: 7782. No. of facets: 10906

cloud of points that describes the geometry of the goblet. The mesh obtained
after the first stage of the algorithm is shown on figure 1(b). This is the stage
where the algorithm makes an erosion of the tetrahedra whose circumscribed
spheres have centers outside of the convex hull. Figures 1(c)—1(f) show several
views of the final mesh. Figure 1(c) overlaps the cloud of points with the output
mesh, like Fig. 1(e), but in this one, we have performed a zoom over the base
of the goblet to take a closer look at the extracted mesh and the input data.
The black dots represent the 3D input points. The extracted mesh is a Delaunay
triangulation of a subset of the input data. As it is shown in this and in the next
figures, it can be considered that the corners, holes and cavities are satisfactory
recovered.

The second object, Fig. 2, is a synthetic sea shell taken from the GTS Li-
brary [24]. Fig. 2(a) shows the input data; Fig. 2(b) shows the mesh achieved
after applying the algorithm described in section 3 with the superposition of the
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(a) Volumetric data of (b) Cloud of points (c) First view of the
the human skull. extracted from the human skull.
volumetric data of
Fig. 3(a).

(d) Second view of the (e) A closer view
human skull. showing some detail
of the human skull.

Fig. 3. The human skull. No. of points: 6391. No. of facets: 14158

input cloud of points; Fig. 2(c) presents another view of the final mesh; we have
applied a zoom process over the shell’s opening in Fig. 2(d) for a better view of
the details of the sea shell hole; in Fig. 2(e) we see a cut of the final mesh in
order to see the inside and the cavities of the output mesh; finally, in Fig. 2(f),
we present a zoom over the half-bottom interior of the sea shell.

The third object is a human skull (Figure 3). The main problems of this shape
are the high complexity and the variable density of the cloud of points, presenting
zones where there are very few points, for example in the eye holes, and others
where the distribution is more uniform. Like in the previous figures, we present
the input data, Fig. 3(b) and several views of the final mesh, Fig. 3(c)-3(e).

Figure 4 shows the surface extracted from a human hand. It presents some
difficulties, like the inter-finger space or the finger tips, but in all the cases the
surface recovered can be considered very close to the ideal.



280 Angel Rodriguez et al.

(a) A photograph (b) Cloud of points (c) Erosion with the
taken from the orig- extracted from the convex hull criterion.
inal human skeleton human skeleton hand.

hand.

(d) First view of the (e) Second view of the
human hand. human hand.

Fig. 4. The human hand. No. of points: 47342. No. of facets: 144166

Last, in Fig. 5 we present the shape of the other objects mentioned in Table 1.
In this case, the digitization of the bowl and the tip of an arrow has been
carried out with a hand-held 3D digitizer. This device is a tactile low-price
sensor manipulated by a human operator, which allows the simulation of any
other kind of sensor that provides scarce and irregularly sampled measurements.
It provides exclusively geometric information (only the points’ coordinates are
kept). The amphora has been digitized with a laser-based sensor, which provides
a more regular sampling than the hand-held digitizer, but its prize is considerably
higher too.

The current version of the implemented algorithm allows the specification
of a threshold defined by the user. Sometimes, the geometry of the object does
not allow to reach satisfactory results in a fully automatic way and the operator
has the possibility to decide his preference: reducing the value of the threshold
achieves a finer resolution mesh, but may produce some undesirable holes on the
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(a) Input data from a (b) Surface extracted (¢) Input data from
bowl. from Fig. 5(a). the amphora.

(d) Surface extracted (e) Input data from (f) Surface extracted
from Fig. 5(c). the tip of an arrow. from Fig. 5(e).

Fig. 5. Objects digitized with a laser-based sensor (amphora) and with the hand-
held digitizer (bowl and tip of an arrow) and meshes obtained

final mesh. Usually, this defect is not present in the meshes generated with a
more uniform distribution, but it may be noticeable if the density of points over
the object’s surface is very variable.

We must notice that all the examples shown have been refined by the user
specifying a threshold very similar to that computed in the fully automatic
process.

5 Conclusions and Future Work

It has been presented a O(n?) algorithm that allows the automatic extraction of
3D Delaunay triangulations from free genus real objects. The only input informa-
tion about the geometry of the objects is a set of 3D points irregularly distributed
over the whole objects’ surfaces. We must remark that n is the number of tetra-
hedra achieved by the spatial partition algorithm stated by Faugueras [12], and n
depends not only on the number of considered points, but also on their positions.
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The use of a topological criteria is not enough to obtain a mesh that cor-
rectly fits the shape of the objects without a human interaction, and it has been
necessary to include additional restrictions to the process in order to become
determinist. In our case, the heuristic chosen has been the perimeter of the tri-
angular facets, mainly, because of its simplicity and good results achieved over
other measures. The algorithm has been tested successfully with numerous free
shape real objects, as we have shown with some examples presented above.

Thinking in future works, it should be desirable an optimization of the algo-
rithm to reduce the response time by means of a parallel implementation, taking
advantage of the local nature of the operations [7].
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