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Abstract. Thinning on a binary picture is an iterative layer by layer
erosion to extract a reasonable approximation to its skeleton. This paper
presents an efficient 3D parallel thinning algorithm which produces me-
dial surfaces. Three–subiteration directional strategy is proposed: each
iteration step is composed of three parallel subiterations according to
the three deletion directions. The algorithm makes easy implementation
possible, since deletable points are given by matching templates contain-
ing twentyeight elements. The topological correctness of the algorithm
for (26, 6) binary pictures is proved.

1 Introduction

Skeletonization provides shape features that are extracted from binary image
data. A very illustrative definition of the skeleton is given using the prairie–fire
analogy: the object boundary is set on fire and the skeleton is formed by the
loci where the fire fronts meet and quench each others [3]. In discrete spaces, the
thinning process is a frequently used method for producing an approximation to
the skeleton in a topology–preserving way [6]. It based on digital simulation of
the fire front propagation: border points of a binary object that satisfy certain
topological and geometric constraints [21] are deleted in iteration steps. The
entire process is repeated until only the “skeleton” is left. Therefore, a thinning
algorithm can be regarded as a reduction operation that changes some 1’s (object
elements or black points) to 0’s (white points) but does not alter 0’s.

A reduction operation does not preserve topology if

– any object in the input picture is split (into two or more) or completely
deleted,

– any cavity in the input picture is merged with the background or another
cavity, or

– a cavity is created where there was none in the input picture.

There is an additional concept called hole in 3D pictures. A hole (that dough-
nuts have) is formed by 0’s, but it is not a cavity [6]. Topology preservation
implies that eliminating or creating holes is not allowed.
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A simple point is an object point whose deletion does not alter the topology
of the picture [13]. Sequential thinning algorithms delete simple points which
are not end points, since preserving end–points provides important information
relative to the shape of the objects. Curve thinning (i.e., a thinning process
for extracting medial line) preserves line–end points while surface thinning (i.e.,
a thinning process for extracting medial surface) does not delete surface–end
points.

                                    

Fig. 1. A 3D synthetic picture containing a character “A” (left), result of a
surface thinning process (centre), and result of a curve thinning process (right).
(Cubes represent black points.)

Parallel thinning algorithms delete a set of simple points. A possible approach
to preserve topology is to use directional strategy; each iteration step is composed
of a number of parallel subiterations where only border points of certain kind
can be deleted in each subiteration. There are six kinds of border points in 3D
pictures on cubic grid, therefore, 6–subiteration directional thinning algorithms
were generally proposed.

In this paper, a 3–subiteration directional algorithm is proposed for surface
thinning. Some experiments are made on synthetic objects and the topology
preservation for (26,6) binary pictures [6] is proved. Our approach demonstrates a
possible way for constructing non–conventional directional thinning algorithms.

2 Basic Notions and Results

Let p be a point in the 3D digital space ZZ3. Let us denote Nj(p) (for j =
6, 18, 26) the set of points j–adjacent to point p (see Fig. 2). The sequence of
distinct points 〈x0, x1, . . . , xn〉 is a j–path of length n ≥ 0 from point x0 to
point xn in a non–empty set of points X if each point of the sequence is
in X and xi is j–adjacent to xi−1 for each 1 ≤ i ≤ n. (Note that a single
point is a j–path of length 0.) Two points are j–connected in the set X if there
is a j–path in X between them. A set of points X is j–connected in the set of
points Y ⊇ X if any two points in X are j–connected in Y .
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The 3D binary (m,n) digital picture P is a quadruple P = (ZZ3, m, n, B) [6].
Each element of ZZ3 is called a point of P . Each point in B ⊆ ZZ3 is called a
black point and value 1 is assigned to it. Each point in ZZ3\B is called a white
point and value 0 is assigned to it. Adjacency m belongs to the black points
and adjacency n belongs to the white points. A black component (or object) is a
maximal m–connected set of points in B. A white component is a maximal n–
connected set of points in B ⊆ ZZ3.

We are dealing with (26,6) pictures. It is assumed that any picture contains
finitely many black points.
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Fig. 2. The frequently used adjacencies in ZZ3. The set N6(p) contains the cen-
tral point p and the 6 points marked U, D, N, E, S, and W. The set N18(p)
contains the set N6(p) and the 12 points marked “�”. The set N26(p) contains
the set N18(p) and the 8 points marked “∗”

A black point is called border point if it is 6–adjacent to at least one white
point. (Note that this definition is correct only for the special cases m = 26 and
m = 18.) A border point p is called U–border point if the point marked by U
in Fig. 2 is white. We can define N–, E–, S–, W–, and D–border points in the
same way.

A black point is called simple point if its deletion does not alter the topology
of the picture. We make use of the following result for (26,6) pictures:

Theorem 1. [12,19] Black point p is simple in picture (ZZ3, 26, 6, B) if and
only if all of the following conditions hold:

1. the set (B\{p}) ∩ N26(p) contains exactly one 26–component; and
2. the set (ZZ3\B) ∩ N6(p) is not empty and it is 6–connected in the set

(ZZ3\B) ∩ N18(p).

Theorem 1 shows that the simplicity in (26, 6) pictures is a local property; it
can be decided using the 3 × 3 × 3 neighborhood of a given point.

We need to consider what is meant by topology preservation when a number
of black points are deleted simultaneously. Ma [8] and Kong [5] gave sufficient
conditions for parallel reduction operations of 3D (26,6) pictures. We use the
following more general sufficient conditions:
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Theorem 2. [17,18] Let T be a parallel reduction operation on (26, 6) pictures.
Then T is topology preserving, if for all picture P = (ZZ3, 26, 6, B), all of the
following conditions hold:

1. for all points p ∈ B that are deleted by T and for all sets Q ⊆ (N18(p)\{p})∩
B that are deleted by T , p is simple in the picture (ZZ3, 26, 6, B\Q); and

2. no black component contained entirely in a unit lattice cube (i.e., a 2 × 2 ×
2 configuration in ZZ3) can be deleted completely by T .

We propose a surface thinning algorithm. The deletable points of the algo-
rithm are border points of certain types and not surface end–points (i.e., which
are not extremities of surfaces). The proposed algorithm uses the following char-
acterization of the the surface end–points.

Definition 1. [17,18] The set N6(p) is subdivided into three kinds of opposite
pairs of points (U,D), (N,S), and (E,W) (see Fig. 2).
A black point p is a surface end–point in a picture if the set N6(p) contains at
least one opposite pair of white points.

3 Existing Parallel Thinning Algorithms

Most of the existing thinning algorithms are parallel, since the fire front prop-
agation is by nature parallel. Those algorithms delete a set of simple points
simultaneously that can alter the topology. There are three major strategies to
overcome this problem:

– Fully parallel algorithms:
Algorithms from this group do not divide an iteration step into subiterations.
In order to preserve topology, the known three fully parallel 3D thinning al-
gorithms investigate larger neighborhood than the 3×3×3 one: Ma proposed
an algorithm, in which the new value of a black point depends on 30 points
(and a parallel rechecking pass is required) [9], the fully parallel algorithm
of Ma and Sonka uses a special neighborhood containing 50 points [10], and
Manzanera et al. developed an algorithm using a symmetric neighborhood
consisting of 81 points [11].

– Directional (or border sequential) algorithms:
Iteration steps are divided into a number of successive subiterations, where
only border points of certain kind can be deleted in parallel in each subit-
eration. Consequently, each subiteration uses different deletion rule. Since
there are six kinds of major directions in 3D pictures, 6–subiteration di-
rectional thinning algorithms were generally proposed [2,4,7,14,15,22]. Note
that Palágyi and Kuba developed 8–subiteration [17] and 12–subiteration [18]
directional thinning algorithms, too. Each existing directional algorithm ex-
amines the 3 × 3 × 3 neighborhood of each border point.
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– Subfield sequential algorithms:
The 3D digital space ZZ3 is subdivided into more disjoint subfields that are
alternatively activated. At a given iteration step, only border points in the
active subfield are designated to be deleted. Each subiteration is executed in
parallel (i.e., all border points in the actual subfield satisfying the deletion
condition are simultaneously deleted). Two subfield sequential 3D thinning
algorithms working in cubic grid has been proposed so far [1,20]. Both al-
gorithms investigate the 3 × 3 × 3 neighborhood and use eight subfields,
therefore, each iteration step contains eight successive subiterations. Note
that Palágyi and Kuba proposed a hybrid thinning algorithm [16]. It uses
both subfield sequential and directional approaches (with two subfields and
eight deletion directions).

The algorithm proposed in this paper follows the directional strategy. It
requires only three subiterations (corresponding to the three kinds of opposite
pair of points) in each iteration step, but an additional point not in the 3 × 3 ×
3 neighborhood is examined in each subiteration.

4 The New Thinning Algorithm

In this section, a new algorithm is presented for extracting medial surfaces from
3D (26, 6) pictures.

Each conventional 6–subiteration directional thinning algorithm uses the six
deletion directions that can delete certain U–, D–, N–, E–, S–, and W–border
points, respectively [2,4,7,14,15,22]. In our 3–subiteration approach, two kinds of
border points can be deleted in each subiteration. The three deletion directions
correspond to the three kinds of opposite pairs of points, and are denoted by
UD, NS, and EW.

Suppose that the 3D (26, 6) picture to be thinned contains finitely many
back points. Reduction operations associated with the three subiterations are
called deletion from UD, deletion from NS, and deletion from EW. We are
now ready to present the 3–subiteration approach formally:

Input: picture P = (ZZ3, 26, 6, B)
Output: picture P ′ = (ZZ3, 26, 6, B′)

3-subiteration thinning(B,B′)
begin

B′ = B;
repeat

B′ = deletion from UD(B′);
B′ = deletion from NS(B′);
B′ = deletion from EW(B′);

until no points are deleted ;
end.
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The new value of a black point depends on 28 points in each subiteration. The
three special neighborhoods assigned to the different subiterations are presented
in Fig. 3.
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Fig. 3. The special local neighborhoods assigned to the deletion directions UD
(a), NS (b), and EW (c), respectively. The new value of a black point p depends
on the 3×3×3 neighborhood of p (marked “�”) and an additional point (marked
“�”) that is not in N26(p)

Deletable points in a subiteration are given by a set of matching templates.
A black point is deletable if at least one template in the set of templates matches
it. Templates are usually described by three kinds of elements, “black”, “white”,
and “don’t care”, where “don’t care” matches either black or white point in a
given picture. In order to reduce the number of masks we use additional notations
(see Fig. 4).

The first subiteration assigned to the deletion direction UD can delete cer-
tain U– or D–border points; the second subiteration associated with the dele-
tion direction NS attempt to delete N– or S–border points, and some E– or
W–border points can be deleted by the third subiteration corresponding to the
deletion direction EW. The set of templates TUD is given by Fig. 4. Note that
Fig. 4 shows only the eight base templates T1–T8. Additionally, all their rota-
tions around the vertical axis belong to TUD, where the rotation angles are 90◦,
180◦, and 270◦. This set of templates was constructed for deleting some simple
points which are neither surface end–points (see Definition 1) nor extremities
of surfaces. The deletable points of the other two subiterations (corresponding
to deletion directions NS and EW) can be obtained by proper rotations of the
templates in TUD. Each template of our algorithm can be given by a Boolean
condition that makes easy implementation possible.

Note that choosing another order of the deletion directions yields another
algorithm. The proposed algorithm terminates when there are no more black
points to be deleted. Since all considered input pictures are finite, it will termi-
nate.
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✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T1

◦ ◦ ◦
· x ·

· · ·

◦ ◦ ◦
y c y

· � ·

◦ ◦ ◦
· x ·

· · ·

F

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T2

◦ ◦ ◦
· · ·

· · ·

◦ ◦ ◦
x c x

· � ·

· · ·

· • ·

· F ·

F

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T3

◦ ◦ ·

· · ·

· · ·

◦ ◦ ·

· c •
· � F

· · ·

· • ·

· F ·

F

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T4

◦ ◦ ◦
· x ·

· · ·

◦ ◦ ◦
y c y

· � ·

◦ ◦ F

· x �

· · F

F

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T5

· · ·

· x ·

◦ ◦ ◦

· � ·

y c y

◦ ◦ ◦

· · ·

· x ·

◦ ◦ ◦
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T6

· · ·

· · ·

◦ ◦ ◦

· � ·

x c x

◦ ◦ ◦

· · ·

· • ·

· · ·
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T7

· · ·

· · ·

◦ ◦ ·

· � ·

· c •
◦ ◦ ·

· · ·

· • ·

· · ·
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑T8

· · ·

· x ·

◦ ◦ ◦

· � ·

y c y

◦ ◦ ◦

· · F

· x �

◦ ◦ F

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

Fig. 4. Base templates T1–T8 and their rotations around the vertical axis form
the set of templates TUD assigned to the deletion direction UD. This set of
templates belongs to the first subiteration. Notations: each position marked “c”,
“•”, “�”, and “F” matches a black point; each position marked “◦” matches
a white point; each “·” (“don’t care”) matches either a black or a white point;
at least one position marked “x” matches a black point; at least one position
marked “y” matches a black point. Emphasis is to be put that “x” and “y”
positions provide that surface end–points cannot be deleted. (Note that using
different symbols for black template positions helps us to prove the topological
correctness of the algorithm)

5 Discussion

The proposed algorithm has been tested on objects of different shapes. Here we
present only four examples (see Figs. 5–8).

The proposed 3–subiteration thinning algorithm is topology preserving for
(26, 6) pictures. It is sufficient to prove that reduction operation given by the set
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of templates TUD is topology preserving. If the first subiteration of the algorithm
is topology preserving, then the other two are topology preserving, too, since the
applied rotations of the deletion templates do not alter the topological properties.
Therefore, the entire algorithm is topology preserving, since it is composed of
topology preserving reductions.

Fig. 5. A synthetic object containing a cube with a hole (left) and its medial
surface produced by the proposed algorithm (right)

Fig. 6. A synthetic object containing a cube with two holes (left) and its medial
surface produced by the proposed algorithm (right)

In order to prove both conditions of Theorem 2, we classify the elements of
templates and state some properties of the set of templates TUD. The element
in the very centre of a template is called central (marked by “c” in Fig. 4). A
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noncentral template element is called black if it is always black (marked by “•”,
“�”, and “F” in Fig. 4). A noncentral template element is called white if it is
always white (marked by “◦” in Fig. 4). Any other noncentral template element
which is neither white nor black, is called potentially black (marked by “x”, “y”,
and “·” in Fig. 4). A black or a potentially black noncentral template element is
called nonwhite. A black point p is deletable if it can be deleted by at least one
template in TUD; p is nondeletable otherwise.

            

Fig. 7. A synthetic object containing a doughnut (left) and its medial surface
produced by the proposed algorithm (right)

Observation 1. Let us examine the configurations illustrated in Fig. 9.

1. Black point p in configuration (a) is nondeletable.
2. Black point p in configuration (b) is deletable if

– q = 0, r = 1, and s = 1, or
– q = 1 and r = 0.

3. Black point p in configuration (c) is deletable if q = 1 and r = 1.
4. Black point p in configuration (d) is deletable if q = 1.

The topological correctness of the first subiteration of the proposed algorithm
is stated by the following theorem:

Theorem 3. Reduction operation given by the set of templates TUD is topology
preserving for (26, 6) pictures.

Proof. (sketch) It is easy to see that each template in TUD deletes only simple
points of (26,6) pictures.

The first point is to verify that there exists a 26–path between any two non-
white positions (condition 1 of Theorem 1). It is sufficient to show that any
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Fig. 8. A synthetic picture containing four characters (top) and their medial
surface produced by the proposed algorithm (bottom)

potentially black position is 26–adjacent to a black position and any black posi-
tion is 26–adjacent to another black position. It is obvious by careful examination
of the templates in TUD.

To prove that condition 2 of Theorem 1 holds, it is sufficient to show for each
template in TUD that:

1. there exists a white position 6–adjacent to the central position,
2. for any two white positions 6–adjacent to the central position p are 6–

connected in the set of white positions 18–adjacent to p,
3. and for any potentially black position 6–adjacent to the central position p,

there exists a 6–adjacent white 18–neighbor which is 6–adjacent to a white
position 6–adjacent to p.

The three points are obvious by a careful examination of the templates in
TUD.

We know that each deletable point p is simple. It can be stated that the
value of any point coinciding with a potentially black template position does not
alter the simplicity of p. We can state that the simplicity of a point p does not
depend on the points that coincide with a template position marked “F”, “x”, or
“y” (see Fig. 4). In addition, black points that coincide with template positions
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Fig. 9. Configurations assigned to Observation 1. Note that Observation 1 holds
for their rotations around the vertical axis, too. (The rotation angles are 90◦,
180◦, and 270◦.)

marked “�” are nondeletable (by Observation 1/1). Therefore, it is sufficient to
deal with deletable points that coincide with template positions marked “•”.
Note that base templates T1, T4, T5, and T8 (and their rotated versions) do
not contain any positions marked “•”. Therefore, only base templates T2, T3,
T6, and T7 (and their rotated versions) are to be investigated. It is easy to see
with the help of Observation 1 that deletion of points coinciding with template
positions marked “•” do not alter the simplicity of point p. Therefore, Condition
1 of Theorem 2 is satisfied.

Condition 2 of Theorem 2 can be seen with the help of Observation 1/2, too.
Let us consider a unit lattice cube containing an upper set of four points U =
{u1, u2, u3, u4} and a lower set of four points L = {l1, l2, l3, l4}. Let C ⊆ U∪L be
a black component contained in the unit lattice cube. If C∩L contains a deletable
point then C ∩ U �= ∅ by Observation 1/2. It is easy to see, that any point in
C∩U is nondeletable by Observation 1/2. Therefore, black component C cannot
be deleted completely. ��
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