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Abstract. We introduce the distance transform for surfaces in 3D im-
ages, i.e., the distance transform where every voxel in the surface is
labelled with its geodesic distance to the closest voxel on the border of
the surface. Then, the distance transform is used to identify the set of
centres of maximal geodesic discs in the surface. The centres of maximal
geodesic discs can be used to give a compact representation of any sur-
face. In particular, they can provide a useful representation of the surface
skeleton of solid volume objects.

1 Introduction

In [6], the constrained distance transform was introduced for computing the mini-
mal path from any point in the image to a goal point, avoiding obstacles. This can
be used to find optimal paths between obstacles (e.g., for robot navigation), mea-
sure perimeters, and determine convex hulls. A special case of the constrained
distance transform is the distance transform of line patterns (DTLP), introduced
in [12] and further investigated in [9]. In DTLP, distance information is prop-
agated along the line pattern, starting from the end points of the line pattern
itself (the background is used as an obstacle to the propagation). In presence
of meeting lines that convey different distance information into their common
meeting point, the minimum distance or the maximum distance can be used
to continue distance propagation on the outgoing line. By selecting the max-
imum distance, the DTLP can be used, for instance, to find the longest path
through a line pattern. The minimum distance can be used to guide hierarchical
decomposition.

Here we extend the DTLP to surfaces in 3D images. In case of concurrent
distinct distance values, we use the minimum distance to continue propagation.
Every voxel in the surface is labelled with the distance to the closest voxel on
the border of the surface. This implies that only open surfaces, i.e., surfaces
that do not enclose any background component, can be considered. The first
step in the algorithm is to detect the border of the surface. Then, once the
distance transform of the surface is available, we identify therein the centres
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of the maximal geodesic discs (CMGDs). These, similarly to the centres of the
maximal discs in the distance transform of a 3D object, can be used to provide a
new representation of the surface. In fact, the CMGDs constitute a subset of the
surface which, in turn, can be seen as the union of the maximal geodesic discs.
The CMGDs can be suitably linked to each other to obtain a curve representation
with as many components as there are components in the surface. If this is done,
one can easily treat images containing more than one object component, without
need of resorting to a preliminary connected component labelling. Moreover,
connected curves can be traced, which is not possible for sparse voxels, and
can be vectorized so saving memory occupation. Thus, the representation of
the surface in terms of connected sets including the CMGDs is convenient. We
remark that the new representation does not coincide with the skeleton of the
surface. In fact, loops can be created which do not correspond to tunnels of the
surface, so that the topology is not preserved. Nevertheless, it can be seen as a
new linear shape descriptor of surfaces in 3D images, where the curves can be
interpreted as the main symmetry axes of the surfaces.

To extract the new representation, it is convenient that the border of the
surface is defined analogously to the contour of a 2D plane pattern. The approach
to extract the new representation can then be seen as analogous to the one to
extract the skeleton of the pattern from its distance transform. The contour of a
pattern is the set of pattern pixels having a neighbour in the background. These
pixels belong to protruding contour arcs, i.e., have no neighbours internal in
the pattern, or belong to arcs delimiting the pattern itself, i.e., have neighbours
internal in the pattern. To have a similar definition of border in case of a surface,
we should identify there curves and edges, respectively corresponding to the
protruding contour arcs and the arcs delimiting the pattern. Curves should be
prevented from propagating distance information, as their 2D counterpart, the
protruding arcs, consist exclusively of centres of maximal discs through which no
distance information can be further more propagated. To this purpose, all curves
have to be preliminarily identified and temporarily removed from the surface. It
is then possible to identify only the border voxels (edges) from which distance
information can be propagated to the surface. The curves are added again after
the distance transform is computed. The distance label of their voxels is set to
the value of the voxels in the edges of the surface, as also curves belong to the
border.

The new representation can be applied to any open surface. In particular, it
can be applied to the surface skeleton of a 3D solid object. This latter case is
treated in this paper.

2 Definitions and Notions

In this paper, 3D bilevel images, i.e., volume images consisting of object and
background, will be considered. Each voxel has three types of neighbours in
its 3 × 3 × 3 neighbourhood: six voxels sharing a face, twelve voxels sharing
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an edge, and eight voxels sharing a point with the central voxel. We will use
26-connectedness for the object and 6-connectedness for the background.

Each voxel in the object can be labelled with the distance to its closest
background voxel. This labelling can be performed by computing the distance
transform (DT) of the object, [2]. The distance depends on the chosen metric.
Two simple metrics, commonly used, are the D6 and the D26 metrics, where the
distance between two voxels, v and w, is equal to the number of steps in a minimal
6- and 26-connected path, respectively, between v and w. The corresponding
DTs, here called DT 6 and DT 26, can be computed by propagating distance
information from the background in one forward and one backward scan over
the image. Each voxel is assigned the minimum of the label of the voxel itself
and the labels of its already visited neighbours increased by one. For DT 6 only
face neighbours are considered.

DT 6 and DT 26 give rough approximations to the Euclidean distance. To
have a better approximation a weighted distance transform can be used. For the
weighted DT, we use different weights, w1, w2, and w3, for the distance to a
face, an edge, and a point neighbour, respectively. Computation of the DT using
weights w1 = 3, w2 = 4, and w3 = 5, has been shown to give a good approxima-
tion to the Euclidean distance, [2]. The DT using w1 = 3, w2 = 4, and w3 = 5
will here be denoted 3 − 4 − 5 DT. When computing the DT, the contribution
given by each already visited neighbour of a voxel is its corresponding label in-
creased by the relative weight. To be consistent, we use weights also for DT 6 and
DT 26. For DT 6, w1 = 1, w2 = 2, and w3 = 3, while for DT 26, w1 = 1, w2 = 1,
and w3 = 1.

The distance label of a voxel v in the DT can be interpreted as the length
of the radius of a ball, centred on the voxel and fully enclosed in the object.
In the following, we will denote by v both the voxel and its associated distance
label. A voxel is centre of a maximal ball (CMB) if the corresponding ball is not
completely covered by any other single ball in the object, [1]. This can be checked
by a suitable label comparison. A voxel v is a CMB if all its neighbours ni,
i = 1, . . . , 26, with proper weights wj , j = 1, 2, 3, satisfy

ni < v + wj .

For any voxel v, N26 is the number of 26-connected object components in
the 3 × 3 × 3-neighbourhood of v. N

18

f is the number of 6-connected background
components, having v as a face-neighbour, in the 3 × 3 × 3-neighbourhood of v
where the point neighbours are disregarded (in other words only 18 neighbours
of v are taken into account). For a deeper discussion, see [7,10,4]. Here we use
the algorithm introduced in [3] for computing N

18

f and N26.

3 Computing the Distance Transform of Surfaces

Before computing the DT of a surface, we should detect its border. In fact, the
minimum distance will be propagated starting from it. The labels in the DT
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will indicate the distances to the background along paths in the surface, passing
through the border. Therefore, we set the border voxels to w1 instead of 0. The
same convention is used for the end points when computing the DTLP, [12,9].

Surface skeletons can consist of both surfaces and curves, depending on the
shape of the original object and the used metric. When computing the DT of
the surface skeleton, only the voxels in the edges should be allowed to propagate
distance information to the surface. Curves do not border any surface portion
and we should prevent that any propagation occurs from them. Thus, we detect
and temporarily remove the curves, before detecting the edge voxels from which
propagation can be done. After the DT has been computed, the curves are added
and the distance label of their voxels is set to w1.

Our method can be applied to any surface skeleton of a solid 3D object. We
prefer a skeleton that has a number of desirable properties, as it is the case for
the surface skeleton introduced in [11], which will be used through the rest of the
paper. The surface skeleton is centred within the original object with respect to
the D6 metric, topologically equivalent to the original object, almost symmetric,
and allows complete object recovery. This last property, unfortunately, implies
that the skeleton can be two-voxel thick. Thus, before detecting the border of
the surface skeleton, this has to be reduced to a one-voxel thick surface. To
this purpose, we use the local operations introduced in [4] to obtain a one-
voxel thick surface skeleton starting from the two-voxel thick set. Thinning is
achieved in six scans of the image, one for every face direction. During each scan,
only configurations that are two-voxel thick in the scanning direction are taken
into account, see Fig. 1. Voxels in these configurations are sequentially removed
provided that their removal does not change the topology.

The above thinning is, however, not enough to obtain a one-voxel thick sur-
face in presence of L-shaped regions, see Fig. 2. To remove voxels in such regions
another step is necessary, based on the use of an L-shaped configuration detector.
During this step, only voxels having N

18

f = 1 (grey voxels in Fig. 2) and at least
three face neighbours in the skeleton are considered. Among them, the voxels
with two face neighbours in the skeleton, that are edge neighbours of each other
and have both N

18

f = 1 (•) or have both N
18

f �= 1 (◦), are marked as candidate
to removal. Removal of marked voxels is then done sequentially, provided that
topology is not altered. The resulting set is shown to the right in Fig. 2.

Once the one-voxel thick surface is obtained, the border is detected in two
steps. In the first step, curve voxels are defined as voxels having N

18

f = 1
and N26 ≥ 2 (the case N26 > 2 occurs at curve junctions), [7,10]. Since prop-
agation of distance information should not occur from curves, all voxels with
N

18

f = 1 and N26 ≥ 2 are temporarily removed. Note that the tips of the curves,
end points, are not detected by the previous criteria and hence remain in the
surface skeleton. This does not create any problem, since they are voxels iso-
lated from the rest of the surface. In the second step, voxels having N

18

f = 1
and N26 = 1 are detected as edge voxel. With reference to Fig. 2, grey voxels
are voxels having N

18

f = 1 and N26 = 1, hence they would be identified as edge
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↓ ↑ ← → ↙ ↗
top-down down-top right-left left-right back-front front-back

Fig. 1. Two-voxel thick configurations in the six scanning directions. The current
voxel of the surface skeleton is shown in grey, the other voxel in the skeleton in
black and background voxels in white

Fig. 2. Surface skeleton before, left, and after, right, removal of voxels in L-
shaped configurations. Grey voxels satisfy N

18

f = 1. See text

voxels. Removal of voxels in L-shaped configurations is indispensable to avoid
that these voxels are wrongly classified.

To compute the DT of a surface, we use, analogously to the “regular” DT
case, the weights w1 for the distance to a face neighbour, w2 for the distance to
an edge neighbour, and w3 for the distance to a point neighbour. Edge voxels are
labelled w1. Distance information is propagated from the edge over the surface.
Each voxel in the surface is assigned the minimum of the label of the voxel itself
and the labels of its already visited neighbours, also belonging to the surface,
increased by the corresponding weight. The propagation is repeated, alternately
in forward and backward fashion, until no more changes occur. The number of
scans needed depends on the complexity of the surface. For discussion about the
2D case, [8]. The number of iterations of forward and backward scans needed for
the examples shown in Figs. 5 and 6 are 6 and 2, respectively.

4 Representing the Surface

Any voxel in the DT of a surface can be seen as the centre of a geodesic disc
with radius equal to the distance label of the voxel, and fully contained in the
surface. A geodesic disc centred on a voxel v can be computed by applying the
reverse distance transformation, [4], using v as a seed and the background of the
surface as an obstacle. In Fig. 3, top, a surface is shown that consists of planes
that meet each other along segments in face, edge, and point directions. The
geodesic discs shown in Fig. 3, bottom, are centred at the intersection of the
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above segments and correspond to different DTs, DT 6, DT 26, and 3−4−5 DT.
The radius of the disc is the same for all DTs.

Fig. 3. Above, a surface consisting of four planes meeting each other along seg-
ments in face, edge, and point directions. Below (from left to right), geodesic
discs centred at the intersection of the above segments and with radius 25, using
DT 6, DT 26 and 3 − 4 − 5 DT, respectively

4.1 Centres of Maximal Geodesic Discs

A centre of a maximal geodesic disc can be defined in the same way as the
centre of a maximal disc for 2D objects and the centre of a maximal ball for
3D objects, [1]. Thus, a centre of a maximal geodesic disc (CMGD) is a voxel
whose corresponding geodesic disc is not completely covered by any other single
geodesic disc. A voxel v in the DT is a CMGD if all its neighbouring voxels ni,
i = 1, . . . , 26, in the surface, with the proper weights wj , j = 1, 2, 3, satisfy

ni < v + wj .

In Fig. 4, the sets of CMGDs for the surface shown in Fig. 3, top, are shown for
DT 6, DT 26, and 3 − 4 − 5 DT, respectively.

The union of the geodesic discs corresponding to the set of CMGDs is equiv-
alent to the original surface.

4.2 Connecting the Centres of Maximal Geodesic Discs

To have a representation of the surface with the same number of components as
those of the surface, the CMGDs should be linked to each other. This could be
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Fig. 4. From left to right, the set of CMGDs for the DT of the surface shown in
Fig. 3, top, using DT 6, DT 26, and 3 − 4 − 5 DT, respectively

done, e.g., by growing paths in the direction of the steepest gradient in the DT
starting from each CMGD.

Indeed, besides the CMGDs, also other voxels, here called saddle voxels and
branch point voxels, are important to gain the connectedness of the final rep-
resentation. Saddle voxels are defined as voxels having in the surface skeleton
more than one component of neighbours with higher label, or more than one
component of neighbours smaller label. A branch point voxel is defined as a
voxel having more than two components of neighbours with the same label as
the voxel itself. In all cases, we use 26-connectedness.

The CMGDs, saddle voxels, and branch point voxels are called intrinsic.
They are detected and marked in one scan of the DT, before starting path
growing. During path growing, suitable voxels, here called induced are detected
and marked on the DT. The DT is repeatedly inspected until no more voxels
are marked. For each already marked voxel, v, either intrinsic or induced, its
neighbourhood is inspected. The voxel(s) ni, i = 1, . . . , 26, on the DT, that by
using the proper weights wj , j = 1, 2, 3, maximise the gradient

grad(ni) =
ni − v

wj

are marked as belonging to a growing path. We denote the highest gradient
gradmax.

Due to the fact that we are growing paths on surfaces, where 18-connected-
ness is possible, we can have paths in certain directions that alternately include
one single voxel and a pair of edge connected voxels. This might create diverg-
ing paths, as the steepest gradient could occur along non-connected, diverging
directions from of the two voxels. We force, if possible, path growing to continue
in only one direction, whenever two or more connected neighbours equally max-
imise the gradient. Thus, if a voxel can propagate on a number of neighbours ni,
all with grad(ni) = gradmax, and constituting a unique 26-connected compo-
nent, we originate a single path by choosing, as the next voxel in the path, only
one neighbour of the component of ni’s.

In Figs. 5 and 6, two examples of the set of CMGDs and the corresponding
connected curve representations are shown. We started from 3D solid objects,
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a cylinder and a digital Euclidean ball, respectively, and computed the surface
skeletons by using the algorithm introduced in [11]. These were reduced to one-
voxel thick surfaces, as described in Section 3. The surface skeletons were then
also simplified by pruning some non-significant peripheral curves by means of
the algorithm introduced in [5]. The metric used is D6.

Fig. 5. From left to right: A cylinder with radius 25, and height 50, the simplified
surface skeleton, the set of CMGDs, and the connected curve representation
obtained after path growing

Fig. 6. From left to right: A digital Euclidean ball with radius 28, the simplified
surface skeleton, the set of CMGDs, and the connected curve representation
obtained after path growing

In Fig. 5, right, it is possible to see paths alternately including one voxel and
a pair of edge connected voxels. We also note that the curve representation is not
topologically equivalent to the surface skeleton and, hence, to the object. In fact,
a number of loops characterise the curve representation, that do not correspond
to tunnels in the surface skeleton and the object. The curve representation is
not the curve skeleton of the object.

Note that it is generally preferable to remove the markers from the CMGDs
with label w1 (except for the case in which they belong to curves) before perform-
ing path growing. In fact, these CMGDs might cause the growth of a number of
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noisy paths. The marker has been removed from CMGDs with label w1 in the
examples shown in this paper.

5 Conclusion

We have introduced the distance transform of surfaces in 3D images and have
used it to extract the centres of maximal geodesic discs. The centres of maxi-
mal geodesic discs provide a new representation of a surface in general, and of
the surface skeleton of 3D solid objects in particular. To compute the distance
transform, we detect the border. This is done in two steps. First the curves are
identified and temporarily removed, then the edges are identified and used for
propagating distance information.

The set of centres of maximal geodesic discs is connected by a path growing
process, to obtain a richer representation of the surface consisting of a set of
connected curves. The representation has the same number of object components
as the surface, but might have loops. Hence the resulting representation is not
topologically equivalent to the surface, (which is topologically equivalent to the
original object when the surface is indeed the surface skeleton of the object).

Future work will be to further investigate the surface representation here
introduced and, in particular, to identify the border starting directly from two-
voxel thick surfaces. This is important to make our algorithm more general.
We will also investigate the distance transform for surfaces where we use the
maximum distance in case of concurrent distinct distance values. This will need
a more complicated algorithm but could give interesting results.
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