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Abstract. Simple cube-curves in a 3D orthogonal grid are polyhedrally
bounded sets which model digitized curves or arcs in three-dimensional
euclidean space. The length of such a simple digital curve is defined to
be the length of the minimum-length polygonal curve fully contained
and complete in the tube of this digital curve. A critical edge is a grid
edge contained in three consecutive cubes of a simple cube-curve. This
paper shows that critical edges are the only possible locations of vertices
of the minimum-length polygonal curve fully contained and complete in
the tube of this digital curve.

1 Introduction

The estimation of the length of a simple digital curve in three-dimensional eu-
clidean space may be based on the calculation of the shortest polygonal curve in
a polyhedrally bounded compact set [11,12]. This paper presents an analysis of
possible locations of vertices of such a polygonal curve. This analysis has been
used in [2] for the design of an iterative algorithm approximating such curves
with measured time complexity in O(n), where n denotes the number of grid
cubes of the given digital curve.

1.1 Digital Curves in 3D Space

Any grid point (i, j, k) ∈ R3, i, j, k integers, is assumed to be the center point of
a grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices. Cells are either cubes, faces, edges or vertices. The intersection of
two cells is either empty or a joint side of both cells. We consider a non-empty
finite set K of cells such that for any cell in K it holds that any side of this cell
is also in K. Such a set K is a special finite euclidean complex [9]. Let dim(a)
denote the dimension of a cell a, which is 0 for vertices, 1 for edges, 2 for faces
and 3 for cubes. Then [K,⊂, dim] is also a cell complex [5,7,9,13] with properties
such as (i) ⊂ is transitive on K, (ii) dim is monotone on K with respect to ⊂,
and (iii) for any pair of cells a, b ∈ K with a ⊂ b and dim(a) + 1 < dim(b) there
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exists a cell c ∈ K with a ⊂ c ⊂ b. Cell b bounds cell a iff a ⊂ b, and b is a proper
side of a in this case. Two cells a and b are incident iff cell a bounds b, or cell b
bounds a.

We define digital curves g in 3D space with respect to such a euclidean
complex as special sequences (z0, z1, ..., zm) of cells where zi is incident with zi+1,
and |dim(zi) − dim(zi+1)| = 1, for i + 1 (mod m + 1). There are (at least)
three different options which may depend upon an application context, or upon
a preference of either a grid-point model or a cellular model which are dual
approaches [4]. Let n ≥ 1.

(i) An edge-curve is a sequence g = (v0, e0, v1, e1, ..., vn, en) of vertices vi and
edges ei, for 0 ≤ i ≤ n, such that vertices vi and vi+1 are sides of edge ei, for
0 ≤ i ≤ n and vn+1 = v0. It is simple iff each edge of g has exactly two bounding
vertices in g. It follows that a vertex or edge is contained at most once in a
simple edge curve. 1

(ii) A face-curve is a sequence g = (e0, f0, e1, f1, ..., en, fn) of edges ei and
faces fi, for 0 ≤ i ≤ n, such that edges ei and ei+1 are sides of face fi, for
0 ≤ i ≤ n and en+1 = e0. It is simple iff n ≥ 4, and for any two faces fi, fk in g
with |i−k| ≥ 2 (mod n+1) it holds that if fi∩fk 
= ∅ then |i−k| = 2 (mod n+1)
and fi ∩ fk is a vertex.

(iii) A cube-curve is a sequence g = (f0, c0, f1, c1, ..., fn, cn) of faces fi and
cubes ci, for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for
0 ≤ i ≤ n and fn+1 = f0. It is simple iff n ≥ 4, and for any two cubes ci, ck

in g with |i − k| ≥ 2 (mod n + 1) it holds that if ci ∩ ck 
= ∅ then either
|i − k| = 2 (mod n + 1) and ci ∩ ck is an edge, or |i − k| = 3 (mod n + 1)
and ci ∩ ck is a vertex. A tube g is the union of all cubes contained in a cube-
curve g. It is a polyhedrally-bounded compact set in R3, and it is homeomorphic
with a torus in case of a simple cube-curve.2

1.2 MLP in 3D Space

This paper deals exclusively with simple cube-curves. The cube-curve on the left
of Fig. 1 is simple, and the cube-curve on the right is not. The latter example
shows that the polyhedrally-bounded compact set g of a cube-curve g is not
necessarily homeomorphic with a torus if each cube of this cube-curve g has
exactly two bounding faces in g. A (Jordan) curve is complete in g iff it has a
non-empty intersection with any cube contained in g.

Definition 1. A minimum-length polygon (MLP) of a simple cube-curve g is
a shortest polygonal simple curve P which is contained and complete in tube g.

Following [11,12], the length of a simple cube-curve g is defined to be the length
l(P) of an MLP of g.
1 This definition is consistent with, e.g., the definition of a 4-curve in [10] (see propo-

sition 2.3.3) for 2D grids where our edges are ‘hidden’ in a neighborhood definition,
or of a closed simple path in [14] (see page 7) for undirected graphs.

2 Closed simple one-dimensional grid continua [11,12] are defined such that each cube
of g has exactly two bounding faces in g.
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Fig. 1. Two cube-curves in 3D space

A simple cube-curve g is flat iff the center points (i, j, k) of all cubes con-
tained in g are in one plane parallel to one of the coordinate planes. A non-flat
simple cube-curve in R3 specifies exactly one minimum-length polygonal simple
curve (MLP, minimum-length polygon) which is contained and complete in its
tube [11]. The MLP is not uniquely specified in flat simple cube-curves. Flat
simple cube-curves may be treated as square-curves in the plane, and square-
curves in the plane are extensively studied, see, e.g. [6]. It seems there is no
straightforward approach to extend known 2D algorithms to the 3D case. An
important reason for that may be that 2D algorithms for (multigrid-convergent)
perimeter estimation [6] may be such that all calculated vertices are grid points
or vertices, but in the 3D case we are faced with a qualitatively new situation for
the calculated vertices. The minimum-length polygon considered in this paper
leads to vertices with real coordinates (not just multiples of integers as in the 2D
case), i.e. the model of cell complexes is considered as being embedded into the
euclidean space. However, independent upon the dimension global information
has to be taken into account for length calculation of digital curves to ensure
multigrid convergence.

2 Simple Cube-Curves

This section contains fundamental definitions and properties related to simple
cube-curves.

2.1 Non-contractible Curves in g

Let g be a simple cube-curve, and P = (p0, p1, ..., pm) be a polygonal curve
complete and contained in g, with p0 = pm.

Lemma 1. It holds m ≥ 3, for any polygon P = (p0, p1, ..., pm) complete and
contained in a simple cube-curve. Two line segments alone cannot be complete
in any simple cube-curve.
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Fig. 2. Curves complete and contained in a tube

Proof. Cases m = 0 and m = 1 would be a point, and m = 2 would be a
straight line segment. Both cases are excluded because our simple cube-curves
are homeomorphic to the torus. The case m = 3 (a triangle) is possible, e.g. for
the simple cube-curve shown in Fig. 2. However, in this minimum case of m = 3
it holds that no side of the triangle may be completely contained within one of
the cubes. 
�

A curve contained in g is contractible (into a point) in g iff there are con-
tinuously repeated topological (i.e. continuous and bijective) transformations of
this curve into a family of disjoint curves, all contained in g, which converge
towards a single point [8]. The curves on the left and on the right in Fig. 2
are non-contractible in g, and the curve in the middle is contractible in g by
continuous contractions into a single point.

A Jordan curve γ passes through a face f iff there are parameters t1, t2, T
such that {γ(t) : t1 ≤ t ≤ t2} ⊆ f , and γ(t1 − ε) /∈ f , γ(t2 + ε) /∈ f , for all
ε with 0 < ε ≤ T . During a traversal along curve γ we enter a cube c at point
γ(t1) ∈ c if γ(t1 − ε) /∈ c, and we leave c at point γ(t2) ∈ c if γ(t2 + ε) /∈ c, for all
ε with 0 < ε ≤ T . A traversal is defined by the starting vertex p0 of the curve
and the given orientation.

We consider polygonal curves P . Let CP = (c0, c1, ..., cn) be the sequence of
cubes in the order how they are entered during curve traversal. If P is complete
and contained in a tube g then it follows that CP contains all cubes of g, and
there are no further cubes in CP .

Lemma 2. For an MLP P of a simple cube-curve g it holds that CP contains
each cube of g just once.

Proof. Assume that P enters the same cube c of g twice, say at point q1 first
and at point q2 again. Both points may be on one face of c, see Fig. 2 on the left
and on the right, or on different faces of c, see Fig. 2 middle.

First consider the case that both entry points q1 and q2 of c are on one face f
of cubes c and c′. Assume the number of passes of P through f is odd. We
insert points q1 and q2 into P as new vertices which split the resulting polygonal
curve into two polygonal chains, P1 = (q2, ..., q1) and P2 = (q1, ..., q2) such that
the union of both is P . The length of Pi exceeds the length of the straight line
segment q1q2, for i = 1, 2. W.l.o.G. let P1 be the chain which does not pass
through f . It follows that P1 is complete in g. Because the cube c is convex it
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also contains the straight line segment q1q2. We replace the polygonal sequence
P2 by q1q2, i.e. we replace P by Q = (q1, q2, ..., q1). Curve Q is still complete
and contained in g, but shorter than P which contradicts our assumption that
P is an MLP of g.

Now assume that the number of passes of P through f is even, it enters c
at q1, then it passes f and enters c′ at r1, then it passes f again and en-
ters c at q2, then it passes f again and enters c′ at r2. There may be a fur-
ther even number of passes of P through f before the curve returns to q1.
We insert points q1, r1, q2, r2 into P as new vertices which split the resulting
polygonal curve into four polygonal chains, P1 = (q1, ..., r1), P2 = (r1, ..., q2),
P3 = (q2, ..., r2) and P2 = (r2, ..., q1) such that the union of all four is P . It
follows that

CP1 ⊆ CP3 ∨ CP3 ⊆ CP1 ,

and an analog conclusion for P2 and P4. W.l.o.g. let CP1 ⊆ CP3 . Then we replace
in P the polygonal chain P1 by the straight line segment q1r1 which is in f .
The length of P1 exceeds the length of the straight line segment q1r1. Thus the
resulting polygonal curve is still complete and contained in g, but shorter than
P which also contradicts our assumption that P is an MLP of g.

We consider the second case that both points q1 and q2 are on different faces
of cube c, say q1 on face f1 and q2 on face f2. Because q2 is a re-entry point to
cube c there must be a point qex in f2 where we leave c before entering c again
at q2. If there is another re-entry point on face f2 then we are back to case one.
It follows that P leaves c once and enters c once. Assume that f2 is also a face
of cube c′ 
= c of g. If P would not intersect the second face of c′ contained in g
then we may replace the polygonal subsequence (qex, ..., q2) (which is contained
in c′ but not in f2) by the shorter straight line segment qexq2 which is contained
in f2 and thus in c′, i.e. the resulting polygonal curve would be shorter and still
contained and complete in g. It follows that the curve P has to leave cube c′

through its second face contained in g. Tracing g around means that we arrive at
the cube c′′ 
= c which is also incident with face f1, and we leave c′′ (and enter c)
at a point which may be equal to q1, and we enter c′′ again through f1. Thus
P contains two polygonal subsequences which are both contained and complete
in g. This contradicts the shortest-length constraint. 
�

2.2 Iterative Modifications

Now we consider a special transformation of polygonal curves. Let P =
(p0, p1, ..., pm) be a polygonal curve contained in a tube g. A polygonal curve Q
is a g-transform of P iff Q may be obtained from P by a finite number of steps,
where each step is a replacement of a triple a, b, c of vertices by a polygonal se-
quence a, b1, ..., bk, c such that the polygonal sequence a, b1, ..., bk, c is contained
in the same set of cubes of g as the polygonal sequence a, b, c. The case k = 0
characterizes the deletion of vertex b, the case k = 1 characterizes a move of
vertex b within g, and cases k ≥ 2 specify a replacement of two straight line
segments by a sequence of k + 1 straight line segments, all contained in g.
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Fig. 3. Critical edges of two cube-curves

Lemma 3. Let P be a polygonal curve complete and contained in the tube g of
a simple cube-curve g such that CP is without repetitions of cells. Then it holds
that any g-transform of P is also complete and contained in g.

Proof. By definition of the g-transform it follows that this curve is also contained
in g. Because CP is without repetitions of cells it holds that P traces g cell
by cell, starting with one vertex in one cell and returning to the same vertex.
From Lemma 1 we know that P has at least three vertices, i.e. at least three
line segments, and that for the minimum case of m = 3 it holds that two line
segments cannot be complete in g, i.e. there is at least one cube not intersected
by these two line segments. Thus a replacement of two line segments (within the
same set of cells of g) cannot transform P into a curve contractible in g, i.e. the
curve remains complete in g. 
�

3 Critical Edges

An edge contained in a tube g is critical iff this edge is the intersection of three
cubes contained in the cube-curve g. Figure 3 illustrates all critical edges of the
cube-curves shown in Fig. 1. Note that simple cube-curves may only have edges
contained in three cubes at most. For example, the cube-curve consisting of four
cubes only (note: there is one edge contained in four cubes in this case) was
excluded by the constraint n ≥ 4.

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of a shortest polygonal simple curve contained and complete
in tube g.

Proof. We consider arbitrary (flat or non-flat) simple cube-curves g, i.e. the MLP
may not be uniquely defined.

Let P = (p0, p1, ..., pm) be a shortest polygonal simple curve contained and
complete in tube g, with p0 = pm and m ≥ 3. We consider w.l.o.g. the polygonal
subsequence (p0, p1, p2) of such a shortest polygonal simple curve contained and
complete in tube g. We will show that p1 is on a critical edge. According to
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Fig. 4. Sketch of point p1

Lemma 2 we know that CP is without repetitions, i.e. we may apply Lemma 3
for this curve P and tube g.

We can exclude the case that p1 is collinear with p0 and p2, because p1 would
be no vertex of a polygon in such a case. Three non-collinear points p0, p1,
and p2 define a triangular region �(p0, p1, p2) in a plane E in R3. The following
considerations are all for geometric configurations within this plane E . In this
proof, a boundary point is a point on the boundary ∂g.

At first we ask whether p1 may be moved into a new point pnew within the
triangle �(p0, p1, p2) towards line segment p0p2 such that a resulting polygonal
subsequence (p0, ..., pnew, ..., p2) remains to be contained in g. This describes a
g-transform of P , and the resulting curve would be complete and contained in
g. It can be of shorter length if the intersection of an ε-neighborhood of p1 with
�(p0, p1, p2) is in g, for ε > 0. It follows that such a move of p1 is impossible,
i.e. it follows that for any ε > 0 there is at least one boundary point q in an
ε-neighborhood of p1 and on one of the line segments p0p1 or p1p2, avoiding such
a move of p0 into the triangle �(p0, p1, p2). It follows that p1 itself is a boundary
point.

The situation of an ε0-neighborhood at point p1 is illustrated in Fig. 4. Angle
α represents the region not in g. Angles β and γ are just inserted to mention
that they may be zero, and their actual value is not important in the sequel. It
holds α < π because it is bounded by an inner angle of the triangle �(p0, p1, p2).

A boundary point may be a point within a face, or on an edge. Assume first
that boundary point p1 is within a face f . Plane E and face f either intersect in
a straight line segment, or face f is contained in E . The straight line situation
would contradict that α < π in the ε0-neighborhood at point p1, and f ⊂ E
would allow to move p1 into a new point pnew within �(p0, p1, p2) towards line
segment p0p2 which contradicts our MLP assumption.

There are three different possibilities for an edge contained in g: we call it
an uncritical edge if it is only in one cube contained in g, it is an ineffective edge
if it is in exactly two cubes contained in g, and it is a critical edge (as defined
above) in case of three cubes. Point p1 cannot be on an ineffective edge such
that it is also not on a critical or uncritical edge, because this corresponds to
the situation being within a face as discussed before. Point p1 also cannot be on
an uncritical edge such that it is also not on a critical edge. Figure 5 illustrates
an intersection point q with an uncritical edge in plane E assuming that this
edge is not coplanar with E . The resulting angle α > π (region not in g in an
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ε-neighborhood of q) does not allow that p1 is such a point. If the uncritical edge
is in E then angle α would be equal to π, what is excluded at p1 as well. So there
is only one option left. Point p1 has to be on a critical edge (in fact, the angle α
is less than π for such an edge). 
�

Note that this theorem also covers flat simple cube-curves with a straightfor-
ward corollary about the only possible locations of MLP vertices within a simple
square-curve in the plane (see Fig. 6): such vertices may be convex vertices of
the inner frontier or concave vertices of the outer frontier only because these are
the only vertices incident with three squares of a simple square-curve.

4 Application of the Theorem

Our algorithm [2] is based on the following physical model: Assume a rubber
band is laid through the tube g. Letting it move freely it will contract to the
MLP which is contained and complete in g (assumed the band is slippery enough
to slide across the critical edges of the tube). The algorithm consists of two
subprocesses: at first an initialization process defining a simple polygonal curve
P0 contained and complete in the given tube g and such that CP0 contains
each cube of g just once (see Lemma 2), and second an iterative process (a g-
transform, see Lemma 3) where each completed run transforms Pt into Pt+1 with
l(Pt) ≥ l(Pt+1), for t ≥ 0. Thus the obtained polygonal curve is also complete
and contained in g. This algorithm uses the fact that critical edges are the only
possible locations of vertices of the desired polygonal curve. This allowed us to
achieve linear running time.

4.1 Initialization on Critical Edges

We sketch the initialization procedure to illustrate the importance of the proved
theorem. The initial polygonal curve will only connect vertices which are end
points of consecutive critical edges. For curve initialization, we scan the given
curve until the first pair (e0, e1) of consecutive critical edges is found which
are not parallel or, if parallel, not in the same grid layer (see Fig. 1 (right)
for a non-simple cube-curve showing that searching for a pair of non-coplanar
edges would be insufficient in this case). For such a pair (e0, e1) we start with
vertices (p0, p1), p0 bounds e0 and p1 bounds e1, specifying a line segment p0p1 of

α

p

p p

0

1 2

q

Fig. 5. Intersection with an uncritical edge
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MLPsimple square-curve

convex vertices of inner frontier

concave vertices of outer frontier

Fig. 6. Convex vertices of inner and concave vertices of outer frontier of the tube
of a simple square curve in the plane

minimum length (note that such a pair (p0, p1) is not always uniquely defined).
This is the first line segment of the desired initial polygonal curve P0.

Now assume that pi−1pi is the last line segment on this curve P0 specified
so far, and pi is a vertex which bounds ei. Then there is a uniquely specified
vertex pi+1 on the following critical edge ei+1 such that pipi+1 is of minimum
length. Length zero is possible with pi+1 = pi; in this case we skip pi+1, i.e. we
do not increase the value of i. Note that this line segment pipi+1 will always
be included in the given tube because the centers of all cubes between two
consecutive critical edges are collinear. The process stops by connecting pn on
edge en with p0 (note that it is possible that a minimum-distance criterion
for this final step may actually prefer a line between pn and the second vertex
bounding e0, i.e. not p0). See Table 1 for a list of calculated vertices for the cube-
curve on the left in Figs. 1 and 3. The first row lists all the critical edges shown
in Fig. 3. The second row contains the vertices of the initial polygon shown in
Fig. 7 (initialization = first run of the algorithm). For example, vertex b is on
edge 2 and also on edge 3, so there is merely one column for (2/3) for these
edges.

This initialization process calculates a polygonal curve P0 which is always
contained and complete in the given tube. Note that traversals following opposite
orientations or starting at different critical edges may lead to different initial
polygons. For example, a ‘counterclockwise’ scan of the cube-curve shown in
Fig. 1 (left), starting at edge 1, selects edges 11 and 10 to be the first pair of

Table 1. Calculated points on edges (‘D’ in stands for ‘deletion’, i.e. there is no
polygon vertex on this edge anymore)

critical edge 1 2/3 4 5 6/7 8 9 10 11 12/13

1st run (initialization) a b c d e f g h i j

2nd run a b D D e D D h i j
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Fig. 7. Curve initializations (‘clockwise’)

consecutive critical edges, and the generated ’counterclockwise’ polygon would
differ from the one shown in Fig. 7. Figure 8 shows a curve where the defined
initialization does not return to the starting vertex.

Initialization results are shown in Figs. 8 and 9. Note that in case of flat
cube-curves the process will fail to determine the specified first pair of critical
edges, and in this case a 2D algorithm may be used to calculate the MLP of a
corresponding square-curve.

4.2 Non-grid-point Vertices of MLP’s

This initialization procedure is followed by an iterative procedure [2] where we
move pointers addressing three consecutive vertices of the (so far) calculated
polygonal curve around the curve, until a completed run t+ 1 does only lead to
an improvement which is below an a-priori threshold τ i.e. l(Pt) − τ < l(Pt+1).

0
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4 −1
0

1
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−1

0

1

2

y
x

z

Fig. 8. Initial polygon (dashed) and MLP. Initialization starts below on the left,
and the final step of the initialization process would prefer the second vertex of
the first edge if a shortest-distance criterion would be used only
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Fig. 9. Initial polygon (dashed) and MLP. Critical edges are shown as short line
segments. The rest of the tube is not shown

Figures 8 and 9 show the initial polygon P1 dashed, and the solid line
represents the final polygon. The short line segments are the critical edges of
the given tube. For details of the algorithm see [2]. Note that MLP vertices may
also be in “non-vertex” positions dividing a critical edge into two segments of
non-zero (rational) length.

5 Conclusions

Length-estimators for digital curves in the plane are a well-studied subject. See,
for example, [6], for references in this field. There are methods for length estima-
tion in the digital plane which are provable convergent to the true length value
for specific convex planar sets, assuming finer and finer grids in the plane. Such
a correct convergence behavior is also supported by experimental evidence [6].
Methods showing multigrid convergence in the digital plane are, for example, the
‘classical’ digital straight line approximation technique (DSS method), the grid-
continua based minimum-length polygon method (GC-MLP method), see [11],
and a minimum-length polygon approximation method based on so-called ap-
proximation sausages (AS-MLP method), see [1] for this AS-MLP method.

Length-estimators for digital curves in the 3D space may be designed by
following 2D design principles. The discussed method in this paper expands
the GC-MLP method, see [12]. Due to this fact it follows that the discussed
method satisfies multigrid convergence for the special case of flat curves as the
2D method does for planar curves. This might be sufficient theoretical evidence
for the convergence behavior of the discussed curve length estimation method.

The paper has specified an important geometric property of such minimum-
length polygons in 3D space which has been used in [2] for designing an efficient
algorithm for calculating such a polygon. The given theorem has been used
in [2] but without proof and accompanying definitions. In this sense the paper
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has provided fundamentals for the algorithm discussed in [2]. The given theorem
might be also of interest in the context of 3D curves in general.
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ler’schen Satzes von den Polyëdern. Abhandlungen der Mathematischen Classe
der Königlichen Gesellschaft der Wissenschaften zu Göttingen 10 (1861 and 1862)
97–182. 470

9. W. Rinow. Topologie. Deutscher Verlag der Wissenschaften, Berlin, 1975. 467
10. A. Rosenfeld. Picture Languages. Academic Press, New York, 1979. 468
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