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Abstract. The convexity of a discrete region is a property used in nu-
merous domains of computational imagery. We study its detection in the
particular case of polyominoes. We present a first method, directly rely-
ing on its definition. A second method, which is based on techniques for
segmentation of curves in discrete lines, leads to a very simple algorithm
whose correctness is proven. Correlatively, we obtain a characterisation of
lower and upper convex hulls of a discrete line segment. Finally, we evoke
some applications of these results to the problem of discrete tomography.
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1 Introduction

Discrete convexity intervenes in numerous domains with regard to geometry and
particularly to image processing [4]. It is an important property of plane figures
which permits, for instance, methods for geometrical shapes regularisation. The
notion of discrete convexity is strongly linked with the paradigm of discrete
lines. This is underlined in this article where a simple and efficient algorithm for
detection of polyomino convexity is presented. Polyominoes are objects in which
any couple of cells may be linked through a path containing only horizontal and
vertical moves (4-connectivity). After having checked the hv-convexity (cells of
each column and each row are consecutive) of a polyomino P, convexity is checked
on the curve points of the border characterising it.

The proposed method uses a variant of the linear algorithm for segmentation
of curves in straight lines given in [7,6]. The eventual non-convexity of P is
detected by the algorithm, during its scanning of curves of the border of P; if
the whole border is scanned, P is convex. The proof of this algorithm uses a
result on convex hull of a discrete segment presented in this article.
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This technique and methods directly coming from definitions of discrete con-
vexity have been used for the study of the reconstruction of 2-dimensional dis-
crete sets from their horizontal and vertical projections. In particular, we studied
the reconstruction of convex polyominoes. The approaches we use are presented
at the end of this article. This work enters in the more general framework of
discrete tomography whose applications are numerous, particularly in data com-
pression, image processing, or still in medical imagery for medical diagnosis help
in radiography.

In the second section, we introduce miscellaneous definitions of discrete con-
vexity. Then a first simple method, deduced from a definition, is proposed. In
the following section, fundamental elements of discrete geometry are given so
that we obtain a very efficient algorithm for convexity detection on hv-convex
polyominoes. Then, we propose a use of these methods in discrete tomography.
At last, a conclusion and further research prospects are given.

2 Discrete Convexity

Convexity is well defined in the continuous case but in the discrete one, several
definitions exist. The studied discrete figures are finite 8-connected subsets of
discrete points in the plane and are named discrete regions.

In 1970, Slansky [18] defines a discrete region as convex if and only if there is
a convex (Euclidean) region whose image (after digitizing) is this discrete region.
This definition depends on the digitizing process used.

On the other hand, Minsky and Papert [14] gave the following definition of
the convexity of a discrete region R: R is convex if and only if there is no triplet
of colinear discrete points (c1, ¢2, ¢3) such as ¢; and ¢ belong to R and ¢z belongs
to the complementary of R.

Then, Kim and Rosenfeld [12,13,11] have given several equivalent definitions.
They have shown that a discrete region R is convex

— on the one hand, if and only if its convex (Euclidean) hull does not contain
any discrete point of the complementary of R.

— on the other hand, if and only if it fulfils the area property i.e. if and
only if, for all points pl and p2 of R, P(R,pl,p2) does not possess any point
of the complementary of R, where P(R,a,b) represents the polygon whose
edges are made by the segment ab and the edges of R (see Fig. 1).

These last two definitions shall be used in the study of the convexity of
polyominoes. We refer to Kim and Rosenfeld [12,13,11] for a comparison of their
definitions with Minsky and Papert’s one.

A hv-convex polyomino is a polyomino whose cells of each column are con-
secutive (v-convexity) as well as those of each row (h-convexity).

Some immediate properties may be deduced from this definition:
- a hv-convex polyomino is a discrete region ”without hole”,
- a convex polyomino is hv-convex.
The convexity study of a polyomino so starts by checking its hv-convexity, this
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Fig. 1. On the left, a non-convex discrete region. On the right, a convex discrete
region

is done through a simple scanning of each row [4]. In the following, we study
the convexity of hv-convex polyominoes. It is clear that this study may there-
fore be reduced to the convexity study of the limit or border of the hv-convex
polyominoes (see Sect. 3 and 4).

3 Direct Use of the Area Property to Detect the
Convexity of a hv-Convex Polyomino

Let T be a hv-convex polyomino, anchored at (k, [), i.e., containing in its first
column a cell at row k£ and in the last column a cell at row [. We call left limit
of T, and we note L, the set of cells with minimal column index of each line. We
define in the same way the right limit R of T. We distinguish in L the higher part
L1, included between the first line and the left anchorage k, and the lower part
L2, included between the line k£ and the last line. In the same way, we distinguish
in R the parts R1 and R2 limited by the right anchorage [ (see Fig. 2).

L2 %7

R2

Fig. 2. Limits of the polyomino T

To check that T is convex, we only have to apply the area property on L1,
L2, R1, and R2. So T is convex if and only if, for every couple (M, N) of points
of L1, L2, R1, or R2, and every y included between the row indexes of M and N,
there is no discrete point whose row index y is located between the segment MN
(inclusive) and the polyomino T (exclusive). Let (z1,y1) be the coordinates of
M, (z2,y2) the coordinates of N. The coordinates of the point P of the segment
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MN with row index y, y1 < y < ya, are (x,y), with z = x; + % In
order that T be convex, it is necessary and sufficient that:

i. if M and N belong to L1 or to L2, the discrete point with coordinates ([z],y),
located to the right of the point P, belongs to T,

ii. if M and N belong to R1 or to R2, the discrete point with coordinates (|z], y),
located to the left of the point P, belongs to T.

If the hv-convex polyomino T is represented by a 0-1 matrix whose dimension
is m#n, the computation of its limits is in O(m+n), m and n being the numbers
of rows and columns of T, respectively, and the tests on couples of points are in
O(min(m3,n?)). Indeed, when m > n, it is permitted to exchange the roles of
columns and rows.

4 Use of Discrete Lines to Detect the Convexity

Let us consider a hv-convex polyomino included in a minimal rectangle Rec
whose size is m*n. Let ([A,A’], [B,B’], [C,C’], [D,D’]) be the intersection between
the border of the polyomino and Rec (see Fig. 3). By considering the pixels of
the border, the points A, A’, B, B’, C, C’, D and D’ delimit 8-connected curves
of pixels which characterise the hv-convex polyomino. These 4 curves cl, ¢2, c3,
and c4 are made of the points of the polyomino border being respectively located
between A’ and B for cl1, B’ and C for ¢2, C’ and D for ¢3 and between D’ and
A for c4, respectively.

cC C

c2

D,

A A’

Fig. 3. A hv-convex polyomino, gray pixels represent the curves cl, ¢2, ¢3, and ¢4

As it has been indicated in section 2, to check the convexity of a hv-convex
polyomino, we only have to consider the border; curves cl, c2, c3, and c4 must
therefore be studied. The principle consists in segmenting curves cl, ¢2, ¢3, and
c4, the eventual non-convexity of a polyomino shall be detected very simply
through this operation.
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In the following paragraph, the notion of discrete line [16,15,7] is recalled
as well as some properties of these object types with, particularly, a new result
on the construction of the convex hull of a discrete line segment. Moreover, an
algorithm of discrete line segment recognition, with its use in the detection of
convex polyominoes and its adaptation to the problem are presented.

4.1 Discrete Lines

The arithmetic definition of a discrete line was introduced by J.P. Reveilles
[16,15,7):
Definition 1. A discrete line with a slope § with b # 0 and pgcd(a,b)= 1,

with lower bound p, arithmetical thickness w, is the set of points (x,y) of z?
which satisfies the double diophantian inequation

p<ar—by < p+w
with all integer parameters.

We note the preceding discrete line D(a, b, u,w). We are mostly interested
in naive lines which verify w = sup(|al, |b|) (see Fig. 4), we shall note them
D(a,b, ). To simplify the writing, we shall suppose in the following that the
slope coefficients verify 0 < a and 0 < b, therefore w = max(a,b). Real straight
lines ax — by = p et ar — by = p+ w — 1 are named the leaning lines of the
discrete naive line D(a, b, 1). An integer point of these lines is named a leaning
point.

The leaning line located above (resp. under) D in the first quadrant (0 < a
and 0 < b) respects the following equation ax—by = u (resp. ax—by = p+w—1),
it is named upper leaning line (resp. lower leaning line) of D. All points of
D are located between these two lines at a distance strictly lower than 1. It is
clear that every segment of a discrete line is a convex region.

/|
°
- |-

Fig. 4. A segment of the naive line D(5,8, —1) for x € [0, 15], the upper leaning
points are in dark grey and the lower leaning points are in light grey, leaning
lines are dotted lines

A naive line D may be seen as a set of the integer points taken on the union
of real lines ax — by = ¢ with ¢ = p, p+ 1,..., p +w — 1. We name a-levelled
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dotted line of the line D, the set of integer points located on the real line
axr — by = a.

Definition 2. r(M) is named the remainder at point M (xs,yy ) with re-
spect to D and is defined by:

r(M) = axpm — bywm.

Proposition 1. Let MM, be a segment of the line D(a,b, i), the lower con-
vex hull of the MyM; points is the polygonal curve going through the following
points:

— The first and the last lower leaning point of the segment, named L et Ly,

— Between My and L : the (N;) sequence with xpr, < xn, < 2., No = My
such that xn, < xn,., and r(N;) <7(Nip1) <p+w—1

— Between My and Ly, : the (P;) sequence with xp, > xp, > x1,, Po = M

such that xp, > xp,,, and r(P;) <r(Piy1) < p+w—1.

(see Fig. 5 for an example).

Remark 1.

1. Colinear points of the N; and P; sequences may simply be omitted in the
characterisation of the lower convex hull.

2. To construct the upper convex hull of a discrete line segment, the N; and P;
sequences are determined in the same way from the upper leaning points.

-4
'ITP[]:MI
0-32 P,
o
P
23 :
4 1le
-1 .‘. P3=LL
3 2le
0[e] s
2 3le
_410J
Nor N,=L_

0[]
EY
N, =M,

Fig. 5. Segment of the naive line D(5, 8, —4), the lower convex hull of the segment
is drawn, the value of the remainder is indicated for each point
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Proof. All points of D are located above the lower leaning line, the segment
points located between Lp and Lj are therefore above the segment LrL; and
the points Lr and Ly, belongs to the lower convex hull of the segment.

Let us consider now the part of the segment between My and Lp. Between
these two points, we find at most w — 2 points, with all different remainders.
Let N; be a point of the sequence different of Lp, and N;y; the first point
encountered since N; such that N;i; belongs to the interval [r(N;), p 4+ w — 1],
the segment points between N; and N, are located above the dotted line going
through N; and therefore above the segment N; N, 1.

Let N;, Nii1, Nit2, be three consecutive points of the sequence. Let us prove
that N;yo is located above or on the straight line N;N;;1, thus we shall have
demonstrated the convexity of the sequence of points N;. Two cases must be
studied:
Case 1. If 7(Njy1) —r(Ni) < r(Lp) —7(Nig1) and 21, > 2zN,,, — 2N, (see Fig.
6), the point N/, symmetrical point of NV; with respect to N;yi, is a point on
the segment located between N;; and Lr. Let us suppose that N; 5 is a point
located between the dotted lines of level r(N;y1) and r(N;) such that xn,,, <
TNy, < zn7- The symmetrical point Ni, o of Niio with respect to N;i; is a
point of the segment whose remainder is included between r(N;) and 7(N;41)
and whose x-coordinate is included between those of N; and N;;1, which is
contradictory with the hypotheses on N; and N;i1. Necessarily N;yo = NJ.
Case r(Njy1) —r(N;) < r(Lp)—7r(Nip1) and 21, < 2xn,,, — 2N, may not occur
(property related to Klein Theorem and discrete lines [6]).
Case 2. If r(N;41) —r(N;) > r(Lr) —r(Nit1), Niyo is, by construction, a point
located between the dotted lines of level 7(N;y1) and 7(Lp) such that zn,,, <
TN, , < 1. Let ussuppose that N;; o is located under the N; N; 1 line, by using
the symmetrical point of N, o with respect to N; 1 we also get a contradiction.
A similar reasoning may be applied to the sequence (P;) between M; and Ly,.
O

Fig. 6. Figure illustrating proof of Proposition 1 (Case 1)
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4.2 Discrete Line Segment Recognition

Let us consider X(My, M) a segment of D, discrete naive line with charac-
teristics a, b, u, 0 < a and 0 < b, My and M; are respectively the first and
the last point of the segment. Let us suppose that the point M (xar, yar) (with
M = M +(1,0), M = My + (1,1) or M = M; + (0,1) ) is added to X. Is
X' =X U{M} a straight line segment and, if it is the case, what are its charac-
teristics a’, b', pu'?

This problem is solved in [7,6] and relies on some particular leaning points of a
discrete line. They are the leaning points located at the extremities of the seg-
ment currently being recognised. We note Ug (resp. Lg) the upper (resp. lower)
leaning point whose x-coordinate is minimal. In the same way, we note UL (resp.
L.) the upper (resp. lower) leaning point whose x-coordinate is maximal.

Theorem 1 ( [7,6]). Let us consider r(M), the remainder at point M (xar, yar)
with respect to D (r(M) = axp — by ).
@) If w<r(M)<p+w, then M € D(a,b,pu), X U{M} is a segment of
the straight line D.
(i6) If (M) = pu— 1, then YU {M} is a segment of the straight line whose
slope is given by the vector UgM.
(15i) If r(M) = pu+ w, then X U {M} is a segment of the straight line whose
slope is given by the vector LeM.
() Ifr(M) <p—1o0r r(M) > p+w, then X U{M} is not a segment of a
discrete line.

Remark 2. In the case (iv) M is called strongly exterior to D and:
-Ifr(M) < p—1 (M is above X), there is an integer point between UgM
and X.
-Ifr(M) > p+ w (M is under X)), there is an integer point between LgM
and X.
The existence of these points is demonstrated at page 644 of [7].

Theorem 1 allows us to obtain an incremental algorithm (see Fig. 7) of
discrete line segments recognition by scanning a sequence of 8-connected pix-
els named discrete path. A linear segmentation algorithm for 8-connected
curves [7,6] is immediately deduced from this result by considering the longest
segments, last point of a segment being the first one of the next segment. To
detect the convexity of a polyomino, we use a variant of this algorithm which is
presented in the following section.

4.3 Use of a Segmentation Algorithm for the Detection of Convex
Polyominoes

Detecting the convexity of a hv-convex polyomino P (see Fig. 3) consists in
studying its convexity at the neighbourhood of each section of its borders cl,
¢2, ¢3, and c4. In this whole paragraph, convexity is described for the discrete
curve cl, detection for the other curves is deduced by symmetry.
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Algorithm AddPoint
remainder = axy — bym ;
If 1o < remainder < p + w
If remainder = i then U = M Endif
If remainder = 4 + w — 1 then Ly = M Endif
else
If remainder = ;1 — 1 then
Lr =L
UL =M 5
a=lym —yuels
b= |xm — xug| ;
p=axm — bym ;
else
If remainder = ;1 + w then
Up =U.;
LL =M 5
a=|ym —yigl s
b= |xm — x| ;
= axm — bym — sup(Jal, |b]) +1;
else
the new point may not be added to the segment
Endif
Endif

Endif

Fig. 7. Algorithm adding a point M to the front extremity of a segment of a
naive line D(a, b, pt) in the first quadrant

A curve is said lower convex if there is no discrete point between itself and its
lower convex hull.
We must therefore prove that cl is lower convex.

The algorithm for discrete line segments recognition is used on cl, it scans
points of c1 one after another and stops when the added point may not belong to
a discrete line segment containing all points already scanned plus the one added.
The recognition shall not continue for a new segment at this added point but at
the last lower leaning point of the segment which has just been recognised. When
such a reject forces a segment change, the non convexity may be detected. The
rejected point is located strongly above or strongly under the segment. Thanks
to Remark 2, there is, in the second case, an integer point located between the
discrete segment already scanned and the real segment from M to the first lower
leaning point. This segment to which M is added is therefore not lower convex
and so neither is cl1. In this case, the algorithm stops on a non-convexity state-
ment of the polyomino.

Let us consider the procedure Recognizesegment(Mp) whose input is a point Mg
of the curve ¢l and which then adds the next points of ¢l from Mg as long as
the scanned set of points is a discrete line segment. This procedure outputs M,
the last point tested, which is either the rejected point, or the last point of cl,
the characteristics(a, b, i) of the scanned segment with a and b positive, and the
last lower leaning point L| as well as a boolean variable end, equal to false while
cl has still not been completely scanned.
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Definition 3. Let S be a discrete line segment obtained by the procedure Rec-
ognizesegment, we call reduced segment of S and we note S’, the segment con-
taining the points of S located before the last lower leaning point existing in S,
inclusive of this point.

Algorithm SegConv
Input : c1, 8-connected sequence of points of the first quadrant
convex = true
end = false
firstpoint= first point of cl
While convex and not end Do
Recognizesegment(firstpoint)— (M, a, b, p, L ,end)
If axy — bym > p + max(a, b) then
convex=false
Else
firstpoint=L_
EndIf
EndWhile
Fig. 8. Algorithm testing convexity of the part of a polyomino in the first quad-

rant

Theorem 2. A curve cl of the first quadrant is lower convex if and only if the
SegConv algorithm completely scans ¢l (convex=true at the end).

Proof. Let us consider a point M which may not be added to the current segment
with characteristics a, b, o such that azpy —byar > p+max(a,b); then, according
to Remark 2, there is an integer point between the current discrete segment and
the straight line segment LM therefore, according to the area property, cl
is not convex. In other words, when the algorithm stops because the variable
convex has been set to false, cl is not convex.

Let us suppose that cl is completely scanned by the algorithm SegConv (see
Fig. 8), then, all changes of straight line segments have been done on points M
which verify axys — byps < p — 1. Each point is therefore located above the
segment previously scanned.

Let S1 and S2 be two segments successively recognised by SegConv during the
scanning of cl. S1 characteristics are aq, b1, 1 and its slope is oy (zZ—ll). Let us
consider Ly, the last lower leaning point of S1 and M the rejected point which
does not belong to S1.

Let S’1 be the reduced segment of S1. Let us prove that the last edge of the
convex hull of S’1 has a slope which is lower than the one of the first edge of the
convex hull of S2.

As S’1 ends at the lower leaning point L then, according to Proposition 1, if
at least two lower leaning points are present in the segment, the slope of the last
edge of the convex hull of S’1 is a; otherwise, the slope is lower than ;.

Let L1y K be the first edge of the convex hull of S2, whose slope is 3, we must
consider two cases:

— If K € S1, necessarily K is located above the lower leaning line of S1 therefore
6 > Q.
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— If K ¢ S1, let us suppose that 5 < oy, i.e., that K is under, or on, the lower
leaning line of S1 (see Fig. 9). The points Lz, M, and K belong to the
segment S2. However that is impossible because the distance between M and
the leaning line of S1 is greater than 1, and so,a fortiori, the one between M
and L1y, K. Therefore these three points may not belong to the same discrete
line segment and 3 > a;.

Sy

Fig. 9. Figure illustrating proof of Theorem 2

This property implies that the lower convex hull of the union of S’1 and S’2 is
the union of the lower convex hulls of these both segments. As a generalisation,
the lower convex hull of c1 is the union of convex hulls of the S’i. However each
discrete segment is, by definition, lower convex. Therefore c1 is also lower convex,
according to the definition of convexity by Kim and Rosenfeld (see Sect. 2) based
on the convex hull of the set. O

Complexity of the construction of curves ¢;, i = 1..4, is in O(m + n), m
and n being the numbers of rows and columns of the polyomino. Let us say a
few words about the complexity of the SegConv algorithm. We first notice that
the algorithm actually terminates. Indeed, at each step, the variable firstpoint
is incremented by at least one element (in a non-void segment, Ly, is always
different of the first element). On the other hand, the segmentation algorithm
described in [7,6] is linear in the number of points of the curve to scan. However,
the variant we propose obliges to re-start every time at the last lower leaning
point encountered, that leads to some overlaps. This algorithm is actually linear
despite its overlaps. The proof of its linear complexity will be published in a
next article.

5 Applications to Discrete Tomography

The objectives of discrete tomography is the reconstruction of a finite set of
points from a number of projections. Several authors have been interested in
this subject by using miscellaneous approaches to obtain exact, approached, or
random solutions [9].
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The particular case of polyominoes reconstruction from their horizontal and
vertical projections is a NP-complete problem [19]. Moreover, if we suppose h-
convexity (or v-convexity), the problems remains NP-complete [2]. On the other
hand, if we consider hv-convex polyominoes, we get today several polynomial
algorithms to decide if there is or not a polyomino corresponding to given pro-
jections [2,3,5]. The best existing algorithm is the one of Chrobak and Dirr [5].
This algorithm determines, for all couples of rows k and [, if there is a hv-convex
polyomino anchored in k and [, with given horizontal and vertical projections.
It is done by translating the existence of hv-convex polyominoes anchored in k
and [ as a 2SAT problem (conjunction of disjunctive clauses with at most two
boolean variables), whose size is in O(mn). A 2SAT problem may be solved lin-
early in its size [1] and the number of possible choices for k and [ is min(m?, n?),
as roles of rows and columns may be swapped. Therefore, it gives a complexity in
O(mn min(m?,n?)) for the reconstruction of a hv-convex polyomino with given
vertical and horizontal projections. In fact, we may limit choices of k and [, and
then obtain an even more efficient implementation [5].

If we add to the algorithm of Chrobak and Diirr a convexity test, by us-
ing any method presented above, the complexity of the algorithm remains in
O(mn min(m?,n?)). On the other hand, if we want to decide if there is a convex
polyomino with given projections by first seeking the hv-convex polyominoes
having these projections, we shall have at worst an exponential complexity, be-
cause we can have an exponential number of hv-convex solutions [8].

We also have started to seek for the convex polyominoes with given orthog-
onal projections by using the paradigm of constraint programming. Let us give
a short description of it:

1. A constraint program is the input

— of a priori domains in which variables of the problem are authorised to
take their values,

— of constraints to which these variables are submitted,

— and of a strategy of assigning these variables.

2. The running of a constraint program consists in the repetition until a solution
emerges, or as long as possibilities exist, of the following iteration:

— select, as a function of the prescribed strategy, a variable to assign, and
an assignment value, among those in the domain of the variable which
satisfy the constraints,

— update all constraints related to the variable which has just been as-
signed.

This iteration is associated, in case of a dead end (none of the variables
remaining for assignment may be assigned), with a backtracking process,
back to the last choice point.

This approach had already been used for the detection of the existence of hv-
convex polyominoes with given orthogonal projections [20]. We have [17] mod-
ified the program written at this occasion, by adequately enriching the set of
constraints.
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This new program has successfully run on a first sample of data. Moreover, we
have observed the following: if we just take care of how to express the constraints,
the adopted process allows us to take them into account globally, rather than
successively. So, we avoid to apply first constraints related to the hv-convexity,
and then the ones related to the convexity itself. This global treatment allows us
to obtain convex polyominoes more quickly, when they exist, without having to
enumerate previously the hv-convex polyominoes, which may be more numerous.
And in the same way, it is possible to decide more rapidly that none of them
exists, when it is the case.

These first results are encouraging and push us to deepen this approach.

6 Conclusion

Our work has permitted a step forward in two directions.

On the one hand, we obtain a characterisation of lower and upper convex
hulls of a discrete line segment based on the arithmetic interpretation of these
objects.

On the other hand, we obtain a linear algorithm to test the convexity of a
polyomino, which is very simple to express. We prove the correctness of this
algorithm. After this paper was prepared, the authors’ attention was called by a
reviewer to Hiibler, Klette and Vo’ paper [10]. We will compare their approach
and ours in our oral presentation.

Moreover, we have explored an alternative approach of the convexity test,
in particular by using the methods of constraint programming. We have also
applied the convexity test to some problems of discrete tomography. In both
cases, the first results obtained urge us to continue on this way.
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