
An Efficient Shape-Based Approach to Image

Retrieval�

Ioannis Fudos and Leonidas Palios

Department of Computer Science, University of Ioannina
GR45110 Ioannina, Greece
{fudos,palios}@cs.uoi.gr

Abstract. We consider the problem of finding the best match for a given
query shape among candidate shapes stored in a shape base. This is cen-
tral to a wide range of applications, such as, digital libraries, digital film
databases, environmental sciences, and satellite image repositories. We
present an efficient matching algorithm built around a novel similarity
criterion and based on shape normalization about the shape’s diameter,
which reduces the effects of noise or limited accuracy during the shape
extraction procedure. Our matching algorithm works by gradually “fat-
tening” the query shape until the best match is discovered. The algorithm
exhibits poly-logarithmic time behavior assuming uniform distribution of
the shape vertices in the locus of their normalized positions.

Keywords: image retrieval, shape-based matching, image bases

1 Introduction

The last few years, there is an emerging need to organize and efficiently use
large pools of images that have been collected over the last decades and contain
information potentially useful to areas such as medicine, journalism, weather
prediction, environmental sciences, art, fashion and industry. It is estimated
that there are more than 20 million pages containing hundreds of millions of
images on world wide web pages alone [7]. Traditionally, images were retrieved
by their filename, other technical characteristics such as date and size or through
text keywords, in the case of manually annotated images. Manual annotation,
except for being a time consuming and not real-time process, can describe only
a very small percentage of the information that an image contains.

Recently, there is an increasing effort to organize and retrieve images by con-
tent based on characteristics such as color, texture, and shape. A number of
methods in the literature perform indexing and retrieval based on global image
characteristics such as color, texture, layout, or their combinations. QBIC [10,15],
a system developed at IBM Almaden supports retrieval by color histograms, tex-
ture samples (based on coarseness, contrast and directionality), and shape. QBIC
� This work was supported in part by a GSRT (General Secretariat of Research and

Technology) Bilateral Research Cooperation Grant between Greece and the Czech
Republic

G. Borgefors, I. Nyström, and G. Sanniti di Baja (Eds.): DGCI 2000, LNCS 1953, pp. 505–517, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

506 Ioannis Fudos and Leonidas Palios

uses R∗ trees to process queries based on low-dimensionality features, such as,
average color and texture. Shape matching is supported using either dimension-
ality reduction, which is sensitive to rotation, translation and scaling [17], or
by clustering using nonlinear elastic matching [9,4], which requires a significant
amount of work per shape and some derived starting points as a matching guide.
QBIC also supports video queries.

Ankerst et al [1] present a pixel-based shape similarity retrieval method that
allows only minor rotation and translation. Their similarity criterion assumes
a very high dimension (linear to the number of pixels in the image), therefore
dimensionality reduction is performed.

Gary and Mehrotra [16,12,11] present a shape-based method, which stores
each shape multiple times. More specifically, the shape is positioned by nor-
malizing each of its edges. The space requirements of this method impose a
significant overhead. The method is quite susceptible to noise, thus the authors
present a sophisticated preprocessing phase to eliminate the noise effects. Fi-
nally, the method favors those shapes of the shape base, which have almost the
same number of vertices as the query shape.

Hierarchical chamfer matching (see [6] for hierarchical chamfer matching
and [3,5] for chamfer matching) creates a distance image using information from
the edges, and then tries to minimize the root mean square average of the val-
ues in the distance map that a contour hit. Hierarchical chamfer matching gives
quite accurate results rather insensitive to random noise, but involves lengthy
computations on every extracted contour per query. In the hierarchical version
a resolution pyramid is used to improve the performance of the matching algo-
rithm.

In this work, we present a shape-based method, where information regarding
the boundary of objects is automatically extracted and organized to support a
poly-logarithmic (in the number of shape vertices) algorithm based on a novel
similarity criterion. Specifically, this paper makes the following technical contri-
butions:

- introduces a new similarity criterion for shapes, which works better in the
context of image retrieval than traditional similarity criteria;

- describes a novel way of storing shapes which is tolerant to distortion;
- presents an efficient algorithm for finding the closest match to a given query
shape; its time complexity is poly-logarithmic in the number of vertices of
the shape base assuming uniform distribution of the vertices in the locus of
their possible locations;

- the algorithm can be easily extended to retrieve the k best matches instead
of the single best match.

The rest of this paper is organized as follows. Section 2 presents our similarity
criterion for shapes and compares it with existing criteria. Section 3 describes
the organization of the data describing the shapes, and the algorithm to retrieve
the best match of a query shape. Section 4 presents some experimental results,
while Section 5 concludes the paper and discusses future work.

An Efficient Shape-Based Approach to Image Retrieval 507

2 Similarity Criteria

The Hausdorff distance is a well studied similarity measure between two point
sets A and B. The directed Hausdorff distance h and the Hausdorff distance H
are defined as follows:
h(A,B) = maxa∈A minb∈B d(a, b), H(A,B) = max(h(A,B), h(B,A)),
where d is a point-wise measure, such as, the Euclidean distance. An inherent
problem with the Hausdorff distance is that a point in A that is farthest from any
point in B dominates the distance. To overcome this problem, Huttenlocher and
Rucklidge have defined a generalized discrete Hausdorff distance (see e.g. [14]),
given by the k-th largest distance rather than the maximum:
hk(A,B) = ktha∈A minb∈B d(a, b), Hk(A,B) = max(h(A,B), h(B,A)).

This metric eliminates somehow the farthest-point domination disadvantage
of the Hausdorff metric, but works only for a finite set of points (it is mainly
used for k = m/2 wherem is the size of the point set). The generalized Hausdorff
distance does not obey the metric properties.

An interesting alternative measure, called nonlinear elastic matching, is pre-
sented in [9]. This measure does not obey the traditional metric properties but
a relaxed set of metric properties instead. In practice, this provides the same
advantages as any metric, and therefore can be used for clustering. However, the
arbitrary number of points distributed on the edges, the need of determining
certain starting matching points and the complexity of computing such a match
(O(mn) using dynamic programming [2]) makes this measure inappropriate for
very large data sets.

In our algorithm we use a new similarity criterion based on the average of
minimum point distances:

havg(A,B) = averagea∈A minb∈B d(a, b)

This measure behaves nicely (gives intuitive results) and it can be computed
quite efficiently, as is shown in the next Section. The metric properties do not
hold for this measure either, but in some sense they hold for a representative
average set of points probably different from the original point set. Figure 1
(left) illustrates an example where, using Hausdorff distance, the shape Q is
matched with A instead of B (B is intuitively the closest match). According to
the similarity measure used in our work, B is indeed closer to Q than A.

3 Efficient Retrieval of Similar Shapes

The algorithm is based on two key ideas: normalizing a shape about its diameter
and the notion of the ε-envelope.
Normalizing about the diameter. In order to match a query shape to
the shapes in the database, some kind of “normalization” is applied so that the
matching is translation-, rotation-, and scaling-independent. In [12], Mehrotra
and Gary normalize each shape about each of its edges: they translate, rotate,
and scale the shape so that the edge is positioned at ((0, 0), (1, 0)). Although this

508 Ioannis Fudos and Leonidas Palios

A

B

Q

Fig. 1. (left) Depending on the similarity criterion, the query shape Q may be
matched with A or B; (right) the ε-envelope

approach gives good results in many cases, it would fail to retrieve the distorted
shape on the right of Figure 2, if the shape on the left of the figure was used as
the query shape. In our retrieval system, instead of normalizing about the edges,
we normalize about the diameter of the shape, i.e., by translating, rotating, and
scaling so that the pair of shape vertices that are farthest apart are positioned
at (0, 0) and (1, 0). This ensures better results, because the diameter is less
susceptible to local distortion (like the one shown in Figure 2), which is very
common in shapes extracted via automated image processing techniques.

(b)(a)

Fig. 2. (a) the query shape; (b) a distorted shape extracted from an image

The ε-envelope. The algorithm works by considering a “fattened” version of
the query shape which is computed by taking lines parallel to the query shape
edges at some distance ε on either side (Figure 1 (right)); we call this fattened
shape the ε-envelope. The good matches are expected to fall inside or at least
have most of their vertices inside the ε-envelope even for small ε. Therefore, if
we start by using a small initial value of ε and keep increasing it, we expect to
collect the good matches after a few iterations of this procedure.

The ε-envelope can be seen as a collection of trapezoids of height 2ε, one for
each edge of the query shape. (For simplicity, we assume that ε is such that no two
trapezoids are overlapping; the method can be extended to handle overlapping
trapezoids.)

An Efficient Shape-Based Approach to Image Retrieval 509

3.1 Populating the Shape Database

Populating the database of shapes is done by processing each available shape,
a polygon or polyline extracted from an image, as follows. First, we compute
the diameter of the shape, i.e., the pair of vertices that exhibit the longest
Euclidean distance. In order to achieve even better tolerance to distortion, we
will not simply normalize the shape about its diameter, as we alluded earlier;
instead, we will normalize it about all its α-diameters, i.e., all pairs of vertices
whose distance is at least 1−α times the length of the diameter (0 ≤ α < 1). For
each α-diameter, we scale, rotate, and translate the shape so that the α-diameter
is positioned at ((0, 0), (1, 0)); each shape is stored twice for each α-diameter by
taking both ways to match the two vertices defining the α-diameter to the points
(0, 0) and (1, 0). All these “normalized” copies of the shape constitute the shape
base, the database of shapes.

Of course, a shape with s vertices may have Ω(n) α-diameters, which would
effectively result in an O(n2)-size database to store shapes of O(n) total size.
However, this happens to fairly regular shapes; shapes extracted via automated
image processing techniques are unlikely to be regular. In fact, experiments have
indicated that for α = 0.15 the number of copies of each shape is about 12 on
the average, including the doubling due to the double storage of a shape for a
given α-diameter (the average number of edges per shape in the test set was 20).

3.2 Outline of the Matching Algorithm

The algorithm works by considering ε-envelopes of the query shape for (appro-
priately) increasing values of ε; for each such ε, the polygons that have most of
their vertices inside the ε-envelope are determined and for each of them the value
of the similarity measure to the query shape is computed. The algorithm stops
whenever the best match has been found, or ε has grown “too large” implying
that no good matches exist in the shape base. In the latter case, we revert to an
alternative but compatible geometric hashing method which is outlined in the
technical report version, due to space limitations.

In more detail, the basic steps of the algorithm for the retrieval of the
database shape that best matches the query shape are:

1. We compute an initial value ε1 = εs such that the ε1-envelope is likely to
contain at least one shape of the shape base (see Section 3.3). We set ε0 = 0
and we signal that we are in the first iteration by assigning i = 1 .

2. We collect the vertices of the database shapes that fall in the difference (εi-
envelope − εi−1-envelope); this can be achieved by partitioning this differ-
ence into triangles and preprocessing the vertices so that inclusion in a query
triangle can be answered fast (simplex range searching). (If no vertices are
found then the difference εi − εi−1 is increased geometrically.) Additionally,
each time we find that a vertex of some shape is inside the above envelope
difference, we increase a counter associated with that shape that holds the
number of its vertices that are inside the εi-envelope.

510 Ioannis Fudos and Leonidas Palios

3. If no shape of the shape base has at least a fraction 1 − β of its vertices
inside the εi-envelope (for a parameter β such that 0 ≤ β < 1), a new larger
ε is computed (Section 3.5) and we go to step 5.

4. If there are shapes of the shape base that have at least a fraction 1 − β
of their vertices inside the εi-envelope (these are the candidate shapes), we
process them as described in Section 3.4. During the processing, we may
either conclude that the best match has been found, in which case it is
reported to the user and the execution is complete, or a new larger value of
ε is computed.

5. We increment i and set εi = ε. If εi does not exceed A
2 p lQ

log3 n, we go to
step 2 and repeat the procedure (A is the area of the locus of the normalized
shapes (Section 3.3), p is the number of shapes in the shape base, n is the
total number of vertices of the p shapes, and lQ is the length of the perimeter
ofQ); otherwise, we report the best match so far (if any) and exit. If no match
has been found, we employ geometric hashing.

The method converges and if there exist similar shapes it retrieves the best
match.

3.3 Computing the Initial Width 2εs of the ε-Envelope

We first compute an initial estimate ε̂ of the width of the ε-envelope based on
an estimate K̃ε̂ of the number of vertices that fall inside the envelope. Then, we
calculate the actual number Kε̂ of vertices of the database shapes. If Kε̂ is at
least half and no more than twice K̃ε̂, we set εs = ε̂; otherwise, we adjust ε by
performing binary search in the values of Kε.

The computation of ε̂ is done as follows. Let us compute the area A of the
locus of the vertices of the normalized shapes. If the shapes were normalized
with respect to their diameter only, then all the vertices would fall in the lune
defined by two circles of radius 1 whose centers are at distance 1 apart. Since we
store copies of each shape normalized for all pairs of vertices whose distance is
at least 1− α times the length of the diameter (0 ≤ α < 1), the area A is equal
to the area of the lune defined by two circles of radius 1

1−α whose centers are at

distance 1 apart. This implies that A = 2
(1−α)2 cos−1(1−α

2)−
√

1
(1−α)2 − 1

4 .
By assuming uniform distribution of the vertices inside this lune, the average

number of vertices inside an ε-envelope around the query shape Q is estimated
to:
K̄ε =

2 ε lQ
A n, where lQ and n are the length of the perimeter of the query shape Q

and the total number of vertices of all the shapes of the shape base, respectively.
In order that the initial ε̂-envelope contains at least enough vertices for a

candidate shape (at least a fraction 1− β of its vertices lie inside the envelope),
we derive that:
K̄ε̂ ≥ (1− β)n

p where p is the total number of shapes in the shape base.
The above estimate may yield the necessary number of vertices, but the

probability that all of them belong to the same shape is very small. So, we

An Efficient Shape-Based Approach to Image Retrieval 511

determine experimentally a γ(n), and set K̃ε̂ = (1−β)n
p γ(n) which implies that

K̄ε̂ = K̃ε̂ = (1− β)n
p γ(n) ⇒ ε̂ = (1−β)A

2 p lQ
γ(n).

Through experimentation, we have determined that a good choice for γ(n)
for relatively small shape bases (see Section 4) is: γ(n) = 5 logn.

3.4 Processing the Shapes

We first process all the new candidate shapes, that is, the shapes that have more
than a fraction 1− β of their vertices inside the current ε-envelope but did not
do so in the previous envelopes. For each such shape Pj , we compute the value
of the similarity criterion of Pj with respect to the query shape Q, which we will
call the cost cj of Pj :

cj = averagea∈Pj
minb∈Q d(a, b) =

∫
a∈Pj

minb∈Q d(a,b)

length(Pj) , where by length(P) we
denote the length of the perimeter of P . The computation is done by intersecting
each edge of Pj with the Voronoi diagram of Q; the boundary of Pj is thus split
into segments that are close to either a vertex or an edge of Q. The contribution
of each such segment s in

∫
a∈s minb∈Q d(a, b) can then be easily computed:

– if s is in the Voronoi region of an edge e of Q and s does not cross e, then
the contribution of s is equal to c(s) = d1+d2

2 length(s), where d1 and d2 are
the distances of the endpoints of s from e;

– if s is in the Voronoi region of an edge e of Q and s crosses e, then the
contribution of s is equal to c(s) = d2

1+d2
2

2(d1+d2)
length(s), where d1 and d2 are

the distances of the endpoints of s from e;
– if s is in the Voronoi region of a vertex v of Q, then the contribution c(s) is

given by a more complicated expression, which (of course) only depends on
the coordinates of the endpoints of s and of the vertex v.

Then, cj =
∑

s
c(s)

length(Pj) . If cj is less than the cost cmax of the best match so far,
then Pj becomes the current best match and cmax is set equal to cj .

Next, we process all the shapes that are not yet candidates (and have at
least a vertex other than (0, 0) and (1, 0) in the current ε-envelope), in order
to determine whether we have found the best matches, and if not to produce a
new larger ε for the ε-envelope. So, for each of these shapes, say, Sj , we compute
the contribution

∫
a∈e

minb∈Q d(a, b) of each of its edges e that has at least one
endpoint inside the ε-envelope. Let the sum of all these contributions be tj and
let the total length of all these edges be dj . We check whether 1

length(Sj) (tj +
ε
2 (length(Sj) − dj)) > cmax. If yes, the cost of Sj will not be less than cmax;
this is so, because the edges of Sj with at least one endpoint in the current
ε-envelope contribute tj in

∫
a∈e

minb∈Q d(a, b), whereas the remaining edges
will contribute more than ε/2 times their length (each edge has both endpoints
at distance larger than ε away from Q). So, if the above inequality holds, we
ignore Sj from now on. Otherwise, we compute, εj = 2(length(Sj) cmax−tj)

length(Sj)−dj
which

512 Ioannis Fudos and Leonidas Palios

turns the previous inequality into equality. Note that εj is larger than the current
width ε of the envelope.

After all the Sjs have been processed, we consider the set of collected εjs. If
the set is empty, then we have found the best match and we stop. Otherwise,
we select the smallest element of the set and we use it as the new width ε of the
envelope.

3.5 Increasing ε in the Absense of Candidate Shapes

In this case, all the shapes of our shape base have less than a fraction 1− β of
their vertices inside the current εi-envelope. Then for each of the shapes that
have a vertex other than (0, 0) and (1, 0) in the envelope, we do the following.

Fig. 3. Distribution of the vertices inside the upper part of the lune; the lower
part is symmetric

Let Pj be such a shape with nj vertices and let Vj be the set of its vertices
that are inside the envelope. Consider the set V ′

j of vertices of Pj that are
adjacent to vertices in Vj ; for each vertex vk in V ′

j −Vj , we compute the shortest
distance dQ(vk) of vk from the query shape Q. If the total number of vertices
in Vj ∪ V ′

j exceeds (1 − β)nj (i.e., there are more than a fraction 1− β of Pj ’s
vertices in Vj ∪ V ′

j), then we set ε′j equal to the
(
(1 − β)nj − |Vj |

)
-th smallest

distance dQ(vk); this implies that Pj will be a candidate shape in the ε′j-envelope.
In the case that the total number of vertices in Vj ∪V ′

j does not exceed (1−β)nj ,

then we set ε′j equal to (1−β)nj

|Vj | ε (i.e., we use linear interpolation in order to
estimate the width of the envelope for which Pj will be a candidate shape).

After all these ε′js have been computed, we collect the smallest among them
and use it as the new ε of the envelope.

3.6 Time Complexity of the Matching Algorithm

Before analyzing the time complexities of each of the steps of the algorithm,
we recall that in order to compute the similarity measure, we make use of the

An Efficient Shape-Based Approach to Image Retrieval 513

Fig. 4. A best match within the initial guess of the envelope

Voronoi diagram of the query shape Q. This can be computed in O(m logm)
time, where m is the size of Q.

Step 1 of the algorithm begins with the computation of ε̂ which takes O(1)
time. Then, the number of vertices that fall inside the ε̂-envelope is computed;
this can be done in O(poly-logn) time using simplex range counting algorithms
and quadratic or near-quadratic space data structures. If the computed number
greatly differs from the expected number, O(log n) repetitions of the previous
computation are done, resulting in O(poly-logn) total time for this step.

In step 2, we need to compute the vertices of the shapes in our database
that fall in the difference of the εi-envelope − εi−1-envelope (this ensures that a
vertex will not be processed or counted multiple times). The difference of the m
trapezoids (one for each of the m edges of the query shape) can be decomposed
into O(m) triangles which can be used with simplex range reporting data struc-
tures of near-quadratic space complexity that take O(log3 n+ κ) time per query
triangle, where n is the total number of vertices of the shape base and κ is the
number of vertices that fall in the triangle [13]. (There are also quadratic-size
data structures that allow for O(log n + κ) query time by employing fractional
cascading [8].) Thus completing the i-th iteration of step 2 takes O(m log3 n+Ki)
time in total, where Ki is the number of vertices in all the query triangles for
that iteration.

The i-th iteration of step 3 takes O(mKi) time, whereKi is again the number
of vertices between the εi-envelope and the εi−1-envelope.

Step 4 involves processing the new candidate shapes and the non-candidate
shapes. The former takes time O(m|Pi|), where |Pi| denotes the number of ver-

514 Ioannis Fudos and Leonidas Palios

tices of Pi. Processing the non-candidate shapes can be performed in O(1+mKi)
time, by maintaining the contributions of vertices in previous envelopes and sim-
ply adding the contributions of vertices between the εi-envelope and the εi−1-
envelope. Step 5 takes constant time.

The overall time complexity after r iterations is therefore,
O(m logm) +O(poly-logn) +

∑r
i=1 O(poly-logn+mKi) =

O(m logm) +O(r poly-logn) +O(mK)
where K is the total number of vertices processed and since the total number

of candidate shapes is O(K). This is O(r poly-logn+K) since the size m of the
query shape is constant. Finally, by assuming uniform distribution of the vertices
inside the lune and in light of the test for εi in step 5, the number K of vertices
and the number r of iterations is expected to be poly-logarithmic in n, and
therefore the total time complexity is poly-logarithmic in n.

4 Experimental Results

The algorithm has been implemented in C and the user interface has been devel-
oped using Tcl/Tk. We currently have a stable version running on a Sun Solaris
platform. The software is easily portable to various platforms. The user is first
presented with a workspace where she/he can draft a query sketch, which is
subsequently presented first to our matching algorithm and in case of failure to
the geometric hashing approach.

We have performed experiments with around 100 images and 350 actual
shapes. Each shape is stored on the average approximately 12 times resulting
in a shape base populated with 3000 normalized shapes. The total number of
vertices was n = 30000. The distribution of the vertices was not uniform because
of the specialized nature of the images (see Figure 3).

In the experiments we used α = 0.15, β = 0.15 and γ(n) = 5 log2 n. The
initial estimation of Kε was usually very close to the actual number of vertices
that fell in the envelope. In the case of Figure 4, we started with an initial
estimation of 244 for Kε which gave an ε1 = 0.0030 with an actual 180 vertices
inside the envelope. In this case we obtain immediately a best match with cost
c = 0.0013. Similarly in the case of Figure 5, we find a best match with the
first iteration with slightly larger cost c = 0.0792 since two edges of the matched
shapes are partially outside the envelope. Finally, in Figure 6 we find a best
match after a second refinement iteration; in this case, the returned shape for
a triangular query shape is a polygon with 10 vertices that has a cost around
c = 0.0008. Even though the vertices are not uniformly distributed in the lune,
the algorithm behaves as expected in terms of number of iterations and time
complexity.

5 Conclusions and Future Work

We have presented an efficient noise tolerant shape-based approach to image
retrieval. The algorithm currently yields the best match, but it can be easily

An Efficient Shape-Based Approach to Image Retrieval 515

Fig. 5. Querying with an orthogonal shape; the door of the church is the best
match

extended the k best matches; in this case, a heap of size k is used to hold the k
current best candidates.

We are currently incorporating this algorithm in a video retrieval system,
which will allow us to experiment with larger shape bases. Other future research
directions include finding alternative ways to do the range searching (whose
space requirement is high), ensuring robust calculations, adding 3D awareness
support, and using relative position information for allowing more complicated
queries such as containment and tangency.

References

1. M. Ankerst, H. P. Kriegel, and T. Seidl. Multistep approach for shape similarity
search in image databases. IEEE Transactions on Knowledge and Data Engineer-
ing, 10(6):996–1004, 1998. 506

2. E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An
efficiently computable metric for comparing polygonal shapes. IEEE Transactions
on Knowledge and Data Engineering, 13(3):209–216, 1997. 507

3. H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric cor-
respondence and chamfer matching: Two new techniques for image matching. In
Proc. of the 5th IJCAI, pages 659–663, Cambridge, MA, 1977. 506

4. A. Del Bimbo and P. Pala. Visual image retrieval by elastic matching of user
sketches. IEEE Transactions on Knowledge and Data Engineering, 19(2):121–132,
1997. 506

516 Ioannis Fudos and Leonidas Palios

Fig. 6. The best match to this triangular query is a polygon with 10 vertices

5. G. Borgefors. An improved version of the chamfer matching algorithm. In
ICPR1984, pages 1175–1177, 1984. 506

6. G. Borgefors. Hierarchical chamfer matching: A parametric edge matching al-
gorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(6):849–865, 1988. 506

7. C. Carson and V. E. Ogle. Storage and retrieval of feature data for a very large
online image collection. IEEE Bulletin of the Tech. Comm. on Data Engineering,
19(4):19–27, 1996. 505

8. B. Chazelle and L. J. Guibas. Fractional cascading: I. a data structuring technique;
II. applications. Algorithmica, 1:133–191, 1986. 513

9. Ronald Fagin and Larry Stockmeyer. Relaxing the triangle inequality in pattern
matching. International Journal of Computer Vision, to appear, 1999. 506, 507

10. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. QBIC: Query by image
and video content. IEEE Computer, 28(9):23–32, 1995. 505

11. J. E. Gary and R. Mehrotra. Similar shape retrieval using a structural feature
index. Information Systems, 18(7):527–537, 1993. 506

12. J. E. Gary and R. Mehrotra. Feature-index-based similar shape retrieval. In
S. Spaccapietra and R. Jain, editors, Visual Database Systems, volume 3, pages
46–65, 1995. 506, 507

13. J. E. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geom-
etry. CRC Press LLC, 1997. 513

14. D. P. Huttenlocher and W. J. Rucklidge. A multi-resolution technique for com-
paring images using the hausdorff distance. Technical Report TR92-1321, CS
Department, Cornell University, 1992. 507

15. IBM. Ibm’s query by image content (QBIC) homepage.
http: //wwwqbic.almaden.ibm.com. 505

An Efficient Shape-Based Approach to Image Retrieval 517

16. R. Mehrotra and J. E. Gary. Similar-shape retrieval in shape data management.
IEEE Computer, 28(9):57–62, 1995. 506

17. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glassman, D. Petkovic, and
P. Yanker. The QBIC project: querying images by content using color, texture
and shape. In Proc. SPIE Conference on Storage Retrieval for Image and Video
Databases, volume 1908, pages 173–181. SPIE, 1993. 506

	An Efficient Shape-Based Approach to Image Retrieval
	Introduction
	Similarity Criteria
	Efficient Retrieval of Similar Shapes
	Populating the Shape Database
	Outline of the Matching Algorithm
	Computing the Initial Width 2 s of the -Envelope
	Processing the Shapes
	Increasing in the Absense of Candidate Shapes
	Time Complexity of the Matching Algorithm

	Experimental Results
	Conclusions and Future Work
	References

