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Abstract. In this work we investigate the difficulty of the discrete loga-
rithm problem in class groups of imaginary quadratic orders. In particu-
lar, we discuss several strategies to compute discrete logarithms in those
class groups. Based on heuristic reasoning, we give advice for selecting
the cryptographic parameter, i.e. the discriminant, such that cryptosys-
tems based on class groups of imaginary quadratic orders would offer a
similar security as commonly used cryptosystems.

1 Introduction

Cryptosystems based on class groups of imaginary quadratic orders (IQC) have
been first proposed by Buchmann and Williams [3,4] in 1988 and 1990. Since
then, there was no clear advice on how to select the cryptographic parameter,
i.e. the discriminant of the quadratic order. The goal of this work is to close
this gap. In particular, we demonstrate how large ∆ must be selected such that
computing logarithms in Cl(∆) is as hard as factoring an integer n of given size.
We consider several strategies for computing discrete logarithms in class groups,
such as reductions to other computational problems, index-calculus algorithms,
Pollard’s λ algorithm, and the Pohlig-Hellman algorithm in connection with an
algorithm similar to the (p− 1)-factoring method. We obtain the result that, in
order to get the same security with IQC as with RSA with 1024 bit moduli, the
discriminant should have at least 687 bits.

The security of IQC is based on the apparent difficulty of computing discrete
logarithms in class groups of imaginary quadratic orders (Cl-DLP). The Cl-DLP
can be extended to class groups of orders of number fields with arbitrarily high
degree, and in furthermore, there is a generalization of the discrete logarithm
problem [2]. However, in this work we shall focus only on imaginary quadratic
fields, and whenever the term “class groups” appears in the sequel, we actually
mean class groups of imaginary quadratic orders.

It is well known that solving the Cl-DLP is at least as hard as solving the
integer factorization problem (IFP); we shall describe the reduction later in this
work. However, it is still unknown whether the Cl-DLP is really harder than the
IFP. The Cl-DLP can be solved with a subexponential index-calculus algorithm
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due to Hafner and McCurley [11]. This algorithm was improved by Düllmann
[9]. Recently, in [30] it has been rigorously proven under the Generalized Rie-
mann Hypothesis that for solving the Cl-DLP using index-calculus algorithms
one can expect a running time proportional to L|∆|

[
1
2 ,

3
4

√
2 + o(1)

]
where ∆

is the discriminant of the imaginary quadratic order. Moreover, Jacobson [16]
has applied the ideas of the MPQS to class group computations. In fact, the
machinery behind his algorithm is the same as that of the original MPQS, and
although this algorithm has not been analyzed, empirical data suggest a running
time proportional to L|∆|

[
1
2 , 1 + o(1)

]
.

The best known algorithm to solve the IFP is the GNFS with asymptotic

expected running time proportional to Ln

[
1
3 ,

3

√
64
9

]
where n is the number to be

factored; the best known algorithm to solve the GF-DLP (DLP in multiplicative
groups of Galois fields) is a variant of the GNFS with a similar asymptotic
expected running time where n is the order of the group. Thus, currently the
IFP or the GF-DLP can be solved asymptotically faster than the Cl-DLP. This
means that the Cl-DLP is apparently harder than the IFP or the GF-DLP.

Hence class groups form another potential alternative to finite fields for DL-
based cryptographic protocols. Unfortunately, popular signature protocols such
as DSA can’t be used with class groups in a direct way, because DSA requires
the knowledge of the group order. Computing the order of an arbitrary class
group appears to be as hard as computing discrete logarithms in class groups
because no efficient algorithm is known that computes the class number. In [22]
a variant of the Schnorr signature scheme that doesn’t require knowledge of the
group order has been proposed.

Computing roots without knowing the class number also appears to be in-
tractable. This makes the Guillou-Quisquater signature protocol [10] suitable for
class groups, since in this protocol even the signer does not need to know the
class number. Moreover, in [1] a variant of DSA was presented that is based on
the intractability of computing roots in finite abelian groups.

This paper is organized as follows: In Section 2 we recall the background we
need, and in Section 3 we give advice for selecting the security parameters.

2 Class Groups

Recall that we consider class groups of imaginary quadratic fields only. We shall
only state some necessary facts without proofs; for details we refer to [12]. Let
∆ be a negative integer such that ∆ ≡ 0, 1 (mod 4). Then ∆ is the discriminant
of a unique order of Q(

√
∆), namely O∆ = Z+ Z(∆+

√
∆)/2. O∆ is maximal

if and only if ∆ is fundamental, i.e. if ∆ is square free in case ∆ ≡ 1 (mod 4) or
if ∆/4 is square free in case ∆ ≡ 0 (mod 4).

Let O∆ be any (not necessarily maximal) order. The class group of O∆ is
denoted by Cl(∆), its elements are equivalence classes of invertible ideals of O∆.
The group order of Cl(∆) is the class number h(∆). Later in this work we shall
need the odd parts of class groups. We denote the odd part of a class group
Cl(∆) by Clodd(∆) and its cardinality by hodd(∆).
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Any integral ideal of O∆ can be expressed as Za+ Z(b+
√
∆)/2 such that

a, b ∈ Z, a > 0 and 4a | (b2−∆), that is, such that there exists a positive integer
c such that ∆ = b2 − 4ac. Thus we represent ideals as pairs (a, b) of integers.

Observe that if b = 0 or b = a, then ∆ = −4ac or ∆ = a(a−4c), respectively,
and if a = c, then ∆ = (b − 2a)(b + 2a). Ideals of any of these forms are called
ambiguous, and their classes have order two in Cl(∆).

An ideal is said to be reduced if gcd(a, b, c) = 1, −a < b ≤ a ≤ c, and b ≥ 0 if
a = c. Each equivalence class of O∆ contains exactly one reduced ideal. Thus the
elements of Cl(∆) can be represented by the reduced ideals of O∆, and checking
equality of two ideal classes means comparing the representatives. The neutral
element of Cl(∆) is represented by (1, ∆ mod 2). The group operation of Cl(∆)
is ideal multiplication followed by reduction (e.g. see [16] or [6, Chap. 5]). It
can be shown that a group operation requires O(log2 |∆|) bit operations. The
inverse of the ideal class represented by (a, b) under this operation is the ideal
class represented by (a,−b). If an ideal (a, b) is reduced, then a <

√|∆|/3,
therefore a, |b| = O(

√|∆|).

3 Selecting the Class Group

In this section we shall see that the discriminant is the cryptographic parame-
ter. We shall discuss how to select a discriminant such that, based on heuristic
grounds, computing discrete logarithms or the order of arbitrary elements in the
corresponding class group is intractable. In particular,

– ∆ must be chosen so that there is no efficient reduction of the CL-DLP to
simpler problems,

– |∆| must be large enough to preclude attacks with index-calculus algorithms,
– h(∆) must be large enough to preclude attacks with ρ or λ algorithms,
– h(∆) must not be smooth in order to preclude the computation of h(∆)
by an algorithm similar to the (p − 1)-factoring algorithm with subsequent
application of the Pohlig-Hellman algorithm.

It is tempting to ask whether the discriminant can be chosen such that its
class number has properties selected a priori. However, we do not have much
control over the class number; there is not even a probabilistic efficient algorithm
known that outputs a fundamental discriminant whose class number has certain
interesting properties, e.g. contains a large prime factor.

We shall show in the following subsections that if ∆ is chosen appropriately,
then the above conditions hold with high probability. In particular, in Sect. 3.1
we show that selecting ∆ = −p or ∆ = −8pq where p, q are primes precludes
reductions to the GF-DLP and keeps the two-part of Cl(∆) small. In Sect. 3.2
we show how large ∆ must be to preclude index-calculus attacks. In Sect. 3.3
we show how large the class group must be to preclude attacks with the aid of
Pollard’s λ-method; based on the Brauer-Siegel theorem we deduce the required
size of the discriminant. In Sect. 3.4 we describe the relevance of the Pohlig-
Hellman algorithm for class groups and discuss a possible application on class
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groups of smooth order in conjunction with an algorithm similar to the (p− 1)-
factoring method. Let a smoothness bound B be given; in Sect. 3.5, based on
heuristic assumptions we show how ∆ must be chosen so that the class number
is B-smooth only with negligible probability.

It turns out that asymptotically the selection of the discriminant size depends
only on the index-calculus methods. Moreover, since the best known algorithm
to compute class numbers of fundamental discriminants are again index-calculus
methods, it is infeasible to compute the class number of fundamental discrimi-
nants if these are large. Therefore, the Pohlig-Hellman algorithm plays no role
for class groups of maximal orders, unless the class number is smooth, because
then an algorithm similar to the (p − 1)-factoring algorithm can be applied to
compute the class number.

3.1 Class Group Computation by Reduction to Other Problems

Let ∆ be a negative fundamental discriminant and let f be a positive integer.
Then, if ∆ 	= −3,−4,

h(∆f2) = h(∆)f
∏
p|f

(
1−

(
∆

p

)
1
p

)
, (1)

where (∆/p) denotes the Kronecker symbol. For instance, h(−8) = 1 and
h(−8p2) = p − (−8/p). Since in general it is intractable to compute class num-
bers of large fundamental discriminants (see below), this could be a nice way to
avoid such computations altogether and yet know the class number.

However, the Cl-DLP in Cl(−8p2) can be reduced in polynomial time to the
GF-DLP in Fp [14]. Currently no similar efficient reductions for maximal orders
are known. Therefore we shall use only class groups of maximal orders, and in
the sequel ∆ will always be fundamental and thus O∆ will be maximal.

Selection of a Fundamental Discriminant In order to check whether an
arbitrary discriminant ∆ is fundamental, it must be checked whether ∆ (if ∆ ≡
1 (mod 4)) or ∆/4 (if ∆ ≡ 0 (mod 4)) is square free. This can be achieved
by factoring the discriminant, but this is infeasible if the discriminant under
consideration is large. A better method is to construct D from distinct prime
factors, and set ∆ = −D if D ≡ 3 (mod 4) and ∆ = −4D otherwise.

Some of the simplest cases are

1. ∆ = −p where p ≡ 3 (mod 4) is prime; and
2. ∆ = −8pq where p and q are primes such that p ≡ 1 (mod 8), p + q ≡ 8

(mod 16), and (p/q) = −1, where (p/q) denotes the Legendre symbol.
Discriminants selected like this have the additional advantage that the two-part
of the class number is known to be small: In case 1, h(∆) is odd; in case 2, the
even part of h(∆) is exactly 8 (see [17, Proposition B′

9]).
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Observe that ∆ = −8pq is attractive by a complexity theoretic argument, be-
cause if ∆ is composite, then Cl(∆) has non-trivial ambiguous elements, whose
components lead immediately to a factorization of ∆; these ambiguous elements
can be obtained by computing discrete logarithms in Cl(∆) [25], therefore IFP
≤ Cl-DLP. This means that if ∆ is chosen like this and p and q are not dis-
closed, then solving the Cl-DLP for ∆ is at least as hard as breaking IFP-based
cryptosystems such as RSA with modulus pq.

3.2 Class Group Computations by Index-Calculus Techniques

Let Lx[e, c] be defined as usual, that is

Lx[e, c]
def= exp

(
c(log x)e(log log x)1−e

)
(2)

for real positive x, real positive c, and 0 ≤ e ≤ 1. In practice, instead of the term
Lx[e, c] we often see Lx[e, c + o(1)], but in the sequel we shall ignore the o(1)
term.

We want to compare the expected computational work for solving the IFP
and the Cl-DLP. In the following, we assume the expected running time for

factoring an integer n by the GNFS to be proportional to Ln

[
1
3 ,

3

√
64
9

]
. For the

Cl-DLP, index-calculus algorithms with an expected running time proportional
to L|∆|

[
1
2 ,

3
4

√
2
]
have been presented in [30]. However, Jacobson [16] showed that

one can use a variant of the MPQS for DL-computations in Cl(∆). The MPQS
factoring algorithm has a conjectured expected running time proportional to
Ln

[
1
2 , 1

]
, while the MPQS DL-computation algorithm hasn’t been analyzed,

yet (not even heuristically). Empirical data suggests an expected running time
of L|∆|

[
1
2 , 1

]
, so we shall base our arguments on this running time. In terms of

security and efficiency, this will yield slightly larger keys: If we underestimate the
running time of the Cl-MPQS, we overestimate the size of the security relevant
parameters. This conservative approach is quite common practice.

The usual approach to estimate running times of an algorithm for large input
parameters is to start from the empirical running time for smaller input parame-
ters. If x1 and x2 are inputs for an algorithm with expected running time Lx[e, c]
and t1 is the running time of the algorithm when executed with x1, then the
running time t2 of the algorithm with input x2 can be estimated by the equation

Lx1 [e, c]
Lx2 [e, c]

=
t1
t2

(3)

(cf. [21] or [18]). However, this holds only if the sizes of x1 and x2 do not differ
too much; otherwise it can’t be ignored that o(1) → 0. Thus, if x2 is much larger
than x1, then t2 will be a significant overestimate. (For more precise estimates
taking into account the o(1) term, see [13]. We stick to (3) since the estimates
presented here differ only slightly from those given in [13].)

Table 1 shows some extrapolated running times for the GNFS. They are based
on data points of the factorization of RSA-155 (155 decimal digits, 512 bits) with
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Table 1. Estimated expected computational work of the GNFS for larger inputs

magnitude of expected no. of MIPS-years

n to factor n

2512 8.00 × 103

2768 4.91 × 107

21024 5.99 × 1010

21280 2.68 × 1013

21536 5.97 × 1015

21792 7.91 × 1017

22048 6.98 × 1019

22560 2.16 × 1023

23072 2.64 × 1026

23584 1.63 × 1029

24096 5.87 × 1031

the GNFS [28]. In particular, it was estimated that about 8000 MIPS-years were
spent.

To estimate the expected running time of the MPQS for DL-computations in
class groups for large groups, we made extensive experiments where we computed
discrete logarithms in 20 class groups of different negative discriminants for each
magnitude tabulated below. The computations were carried out on a Sparc with
Ultra-170 processor using Jacobson’s MPQS implementation, which is part of
the C++ library LiDIA [19]. The results are summarized in Table 2.

Table 2 supports the conjectured running time of L|∆|
[

1
2 , 1

]
for the MPQS.

Note also that the standard deviation is almost always about half the running
time. This shows that the running times are pretty spread, which in turn confirms
our suspicions of taking just a single sample.

SUN Microsystems does not publish MIPS ratings for its machines, and in
fact, the unit MIPS-year is actually not appropriate [27]. However, it is widely
used, so for simplicity we assume 100 MIPS, which is a value of reasonable order
of magnitude for the machine that we used. By Table 2 let us assume that
L|∆|

[
1
2 , 1

]
/t∆ = 1.8× 107 sec−1. Then we obtain the extrapolations in Table 3.

When we align the parameters of the IFP and of the Cl-DLP in such a
way that the expected running time for solving the Cl-DLP roughly equals the
expected running time for solving the IFP for n of some particular magnitudes,
we arrive at Table 4.

3.3 Class Group Computations by Pollard’s λ Method

We now consider Pollard’s λ method for computing discrete logarithms, orders
of group elements and hence roots of group elements. From [29] it is known that
the unparallelized version of this algorithm takes

√
π|G|/2 group operations

(ignoring lower order terms) for cyclic groups G. Moreover, r-fold parallelization
speeds up the λ-method by factor r.
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Table 2. Empirical computational work of the Cl-MPQS for relatively small
inputs

magnitude of mean running time (sec) standard

|∆| t∆ deviation
L|∆|

�
1
2
, 1
�
/ t∆ (sec−1)

2140 8.59 × 101 3.58 × 101 1.65 × 107

2142 1.29 × 102 8.66 × 101 1.31 × 107

2144 1.36 × 102 5.32 × 101 1.50 × 107

2146 1.32 × 102 3.87 × 101 1.85 × 107

2148 1.98 × 102 6.98 × 101 1.47 × 107

2150 2.20 × 102 1.38 × 102 1.59 × 107

2152 2.63 × 102 1.44 × 102 1.59 × 107

2154 3.26 × 102 1.82 × 102 1.53 × 107

2156 3.52 × 102 1.64 × 102 1.69 × 107

2158 4.90 × 102 3.28 × 102 1.44 × 107

2160 4.41 × 102 1.98 × 102 1.90 × 107

2162 7.67 × 102 4.21 × 102 1.30 × 107

2164 6.84 × 102 2.20 × 102 1.73 × 107

2166 8.79 × 102 3.22 × 102 1.60 × 107

2168 1.07 × 103 4.12 × 102 1.56 × 107

2170 1.49 × 103 8.25 × 102 1.33 × 107

2172 1.74 × 103 8.99 × 102 1.34 × 107

2174 1.54 × 103 9.83 × 102 1.79 × 107

2176 1.61 × 103 8.45 × 102 2.03 × 107

2178 2.77 × 103 1.37 × 103 1.39 × 107

2180 2.73 × 103 1.39 × 103 1.67 × 107

2184 3.37 × 103 1.82 × 103 1.87 × 107

2188 4.07 × 103 1.95 × 103 2.14 × 107

2192 5.96 × 103 2.86 × 103 2.02 × 107

2196 9.23 × 103 3.80 × 103 1.79 × 107

2200 1.30 × 104 5.13 × 103 1.74 × 107

2210 2.63 × 104 8.49 × 103 1.87 × 107

2220 6.28 × 104 3.78 × 104 1.68 × 107

By the heuristics of Cohen and Lenstra [7,8], the probability that Cl odd(∆)
is cyclic is 0.9775 . . . . Moreover, it can be deduced from the heuristics that if
Clodd(∆) is not cyclic, then with high probability Clodd(∆) has a cyclic subgroup
Gcyc such that |Gcyc| is of nearly the same order of magnitude as hodd(∆), and
therefore, by our selection of ∆, the even part is 1 or 8 and thus |Gcyc| and h(∆)
have nearly the same order of magnitude.

In order to provide a lower bound for ∆ we need an (asymptotic) lower
bound for h(∆) that depends on ∆ only. The best proven explicit lower bound
is h(∆) > 1/55 ln |∆|∏p|∆

(
1− 2

√
p

p+1

)
[6, Sect. 5.10.1], which is too weak for

our purposes. By the Brauer-Siegel Theorem we know that lnh(∆) ∼ ln
√|∆|



Security of Cryptosystems Based on Class Groups 241

Table 3. Estimated expected computational work of the Cl-MPQS for larger
inputs

magnitude of expected no. of MIPS-years

|∆| for solving the Cl-DLP in Cl(∆)

2256 2.58

2348 9.75 × 103

2512 1.18 × 107

2640 6.74 × 109

2768 2.24 × 1012

2896 4.94 × 1014

21024 7.79 × 1016

21280 8.90 × 1020

21536 4.56 × 1024

21792 1.26 × 1028

22048 2.13 × 1031

22560 1.92 × 1037

23072 5.30 × 1042

23584 5.88 × 1047

24096 3.15 × 1052

Table 4. Estimated expected computational work of the GNFS for factoring
integers and the Cl-MPQS for computing discrete logarithms in class groups
aligned

magnitude of

n |∆| expected no. of MIPS-years

2768 2540 4.99 × 107

21024 2687 6.01 × 1010

21536 2958 5.95 × 1015

22048 21208 7.05 × 1019

23072 21665 2.65 × 1026

24096 22084 5.87 × 1031

as ∆ → −∞, that is,
√|∆|1−ε ≤ h(∆) ≤ √|∆|1+ε

for any positive real ε and
sufficiently large ∆, but no explicit constants are known to make this statement
effective. However, if one assumes the Extended Riemann Hypothesis, then it is
possible to show [20] that

h(∆) > c1
(1 + o(1))

√|∆|
log log |∆| (4)

for ∆ 	= −3,−4 where c1 = π/(12eγ) ≈ 0.147. Moreover, it is possible to show
that h(∆) is on average c2

√|∆| where c2 = 0.461559 . . . [6, Sect. 5.10.1]. This
result has been proven for averages taken over class numbers of fundamental dis-
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Table 5. Estimated expected computational work of the λ-method

magnitude of expected no. of Group operations

h(∆) |∆| p
πh(∆)/2

expected no. of MIPS-years

2108 2218 254 4.56 × 107

2129 2260 264 6.60 × 1010

2162 2326 281 6.12 × 1015

2189 2380 294 7.09 × 1019

2233 2468 2116 2.97 × 1026

2268 2538 2134 5.51 × 1031

criminants. In this work we make the assumption that this result is not affected
by the restriction to the special discriminants given in section 3.1.

Example The time to perform a single group operation in Cl(∆) depends on ∆,
yet let us assume a fixed time of 1ms on a machine with a computing power of
100 MIPS. Then the computational work of a single MIPS-year is equivalent to
about 228.23 group operations. Based on this assumption and on the assumed
average for the class number of a prime discriminant, in Table 5 we present some
samples for (prime) discriminants, their average class number, and the expected
computing amount for computing discrete logarithms by the λ-method.

3.4 Class Group Computations and the Pohlig-Hellman Algorithm

The Pohlig-Hellman algorithm utilizes the prime factorization of the group order
in order to simplify DL computations. However, the best known algorithm for
computing the class number is a variant of MPQS for DL computations in class
groups and has heuristically the same expected asymptotic running time as the
original MPQS. Thus, if |∆| is large, it is infeasible to compute h(∆) or even
odd multiples or factors (in particular the smooth part) of h(∆). Moreover,
there is no efficient method known that checks whether a particular odd prime
divides h(∆). Consequently, the Pohlig-Hellman algorithm is not applicable to
class groups in general. There are also cryptographic protocols (e.g. the Guillou-
Quisquater signature protocol) that depend explicitly on the fact that the group
order is unknown.

We now consider the special case when h(∆) is smooth. If the class number
is smooth, then it is possible to compute the order of an arbitrary element by a
method similar to the (p− 1)-factoring algorithm. That is, given γ ∈ Cl(∆), set

α0 = γ and successively compute αi = α
p

e(pi,B)
i

i−1 for all pi ≤ B, where pi is the
ith prime, B is a smoothness bound, and e(pi, B) depends only on pi and B.
For instance, if e(pi, B) = logpi

B for each pi, then the algorithm will cover each
possible prime power below the smoothness bound. A similar method is used in
the factoring algorithm of Schnorr and Lenstra [25].
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If h(∆) is B-smooth, then this computation may yield 1Cl(∆). If this happens,
then there is an i such that αi = 1Cl(∆) but αi−1 	= 1Cl(∆), and we immediately

know that pi is the largest prime factor of ordCl(∆) γ. If we set γ′ = γp
e(pi)
i

where e(pi) is the smallest positive integer such that αp
e(pi)
i

i−1 = 1Cl(∆) and repeat
the complete procedure with γ′, then we obtain the second largest prime factor,
and eventually we get the complete prime factorization of ordCl(∆) γ. Then we
are able to compute roots as well as discrete logarithms in 〈γ〉 by applying the
Pohlig-Hellman algorithm.

Assume that the (p − 1)-like method above succeeds for an element γ and
a bound B, and let q denote the largest prime factor of ordCl(∆) γ. It is obvi-
ous that if we use a fast exponentiation method, then we have to perform at
least

∑
p<q e(p,B) log2 p group operations to find q. In order to find a smooth-

ness bound, we must consider the easiest case, i.e. e(pi, B) = 1 for all pi. Now∑
p<q log2 p = θ(q)/ ln 2, where θ is the Chebyshev θ-function. In [24] it has

been shown that 0.998684 x < θ(x) < 1.001102 x for all x ≥ 1319007 (un-
der assumption of the Riemann hypothesis, it is even possible to show that
|θ(x)−x| = 1/(8π)

√
x ln2 x for x ≥ 599, cf. [26]). Therefore, to find q we have to

perform about q/ ln 2 group operations. (Note that we get the same result even
in the case e(pi, q) = logpi

q, because
∑

p<q log2 pi logpi
q ≈ π(q) log2 q ≈ q/ ln 2

as q → ∞, where π(q) denotes the number of primes up to q.) In Sect. 3.5, we
will use this result to determine lower bounds for the required size of ∆.

Example We use part of the example from the previous section, namely, that 264

group operations require about 6×1010 MIPS-years (similar to the computational
work to factor a 1024 bit integer with the aid of the GNFS). If we assume that
this amount of work is infeasible, then it is safe to select a 64 bit smoothness
bound. At the end of the next section we will see that a smaller smoothness
bound is sufficient.

3.5 The Smoothness Probability of Class Numbers

The estimates in this section are based on the heuristics of Cohen and Lenstra
[7,8], although our derivation is not rigorous at all. A more rigorous derivation
should be done as in [8]; this is work in progress, and we shall present the results
in a future work. In this work we compare class numbers and ordinary integers
with respect to smoothness, and we argue that under reasonable assumptions the
probability to get a smooth class number of a random fundamental discriminant
is not much larger than the probability that a random integer is smooth.

Consider the set of all negative fundamental discriminants ∆ such that |∆| ≤
N for some bound N . Based on the heuristics of Cohen and Lenstra we assume
that, given an odd prime p much smaller than N and a positive integer i, the
proportion of such discriminants satisfying pi | h(∆) (or the “probability” that
pi | h(∆)) is at most 1/pi+1/pi+1 = (1+1/p)/pi. The conjectures of Cohen and
Lenstra [8] predict that for N → ∞, the probability that p | h(∆) converges to



244 Safuat Hamdy and Bodo Möller

1−
∏
j≥1

(
1− 1

pj

)
=

1
p
+

1
p2

− 1
p5

− 1
p7

+
1
p12

+
1
p15

− · · · . (5)

Our assumption for i ≥ 2 is accordance with computational experiments [5].
We cannot use similar heuristics for primes that are not small compared to

N . However, we know by the Brauer-Siegel theorem that lnh(∆) ∼ ln
√|∆| for

∆ → −∞, thus class numbers are usually not small themselves.
Which power of 2 divides h(∆) depends on the factorization of ∆. As dis-

cussed in section 3.1, we will restrict to special discriminants in order to control
the two-part of h(∆). In extension to the heuristics of Cohen and Lenstra, we
assume that such restrictions do not affect the probabilities discussed above.

For x uniformly chosen from a sufficiently large interval of integers, the prob-
ability that pi | x is only about 1/pi. Comparing this with the above estimates
for class numbers, we obtain

Pr
(
pi | h(∆)

)
Pr (pi | x) ≤ 1 +

1
p

(6)

for small odd primes, which suggests that it must be expected to occur more
frequently for negative fundamental discriminants to have smooth class numbers
than for uniformly chosen integers to be smooth. We will now argue, however,
that this increase in smoothness does not imply that a significant proportion of
class numbers will be smooth.

Let k be any odd smooth integer. We write k as
∏

p|k pep(k). If k is not so large
that k | h(∆) is actually impossible, then k will have only a few different prime
factors. Thus, it is conceivable that the probabilities discussed above will be
reasonably close to being statistically independent over the different p dividing
k. Under this presumption, we obtain

Pr
(
k | h(∆)

)
Pr

(
k | x) =

∏
p|k Pr

(
pep(k) | h(∆)

)
∏

p|k Pr
(
pep(k) | x) ≤

∏
p|k

(
1 +

1
p

)
def= Fk . (7)

We now want to estimate the maximum value that this product can take for k
not exceeding the order of

√|∆| (as suggested by the Brauer-Siegel Theorem).
In order to reach the maximum, k obviously must be of the form k =

∏
p<t p,

i.e. the product of the smallest primes up to some bound. We have
∏

p<t p ≈ et

as t tends to infinity (e.g. see [23, Chap. 12]), i.e. t ≈ ln k ≈ ln
√|∆|; and thus

we estimate the maximum for Fk as

∏
p<t

(
1 +

1
p

)
≈

∏
p<ln

√
|∆|

(
1 +

1
p

)
≈ ln ln

√
|∆| , (8)

where the latter approximation can be seen as follows: (1+1/p) = (1−1/p2)/(1−
1/p), and

∏
p<t(1 − 1/p) = e−γ/ ln t + O(1/ ln2 t) (Mertens’ theorem, cf. [23,

Chap. 12]), while
∏

p(1 − 1/p2) = 1/ζ(2) = 6/π2, thus
∏

p<t(1 + 1/p) ≈
6eγ/π2 ln t ≈ 1.08 ln t as t tends to infinity.
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Now if we choose |∆| so large that random integers of the expected order of
h(∆) are smooth only with probability close to 0, then the modest maximum
size of Fk indicates that the tendency of the class number towards having small
factors does not mean it will be smooth with non-negligible probability.

Specifically, let B = M1/u; then the probability that a random positive
integer less than M is B-smooth is approximately ρ(u), where ρ is Dickmann’s
ρ-function [15]. We arrive at an estimated probability of at most ρ(u) ln lnM
for the class number being B-smooth by requiring M ≈ hodd(∆)

h(∆) c
√|∆| where

hodd(∆)
h(∆) is either 1 or 1

8 depending on how ∆ is chosen (Sect. 3.1) and where
c = 0.461559 . . . [6, Sect. 5.10.1]. I.e.,

|∆| ≈ 22B2u (9)

if h(∆) is odd and

|∆| ≈ 28B2u (10)

if the even part of h(∆) is 8. Note that if |∆| < 24600, then ln ln
√|∆| < 23 so

that 8ρ(u) is an upper bound for the probability estimate.
Assume that an attacker applies the algorithm from the preceding section

to class groups of random discriminants of a certain length (chosen as de-
scribed in Sect. 3.1). Further assume that he will spend at most Wmax com-
putational work for a single class group until he gives up, and that B is the
smoothness bound for which he can succeed with this amount of work. Then
he can expect one case of success for an investment of computational work
W = Wmax/Pr

(
h(∆) is B-smooth

)
. We will determine lower bounds for the

size of ∆ based on this attack scenario.
Recall that 1 MIPS-year is approximately equivalent to about 229 group

operations. Let W = 264 group operations which is comparable to the expected
computational work to factor a composite 1024 bit integer by the GNFS; then
W is currently infeasible (see the example in Sect. 3.4). Let Wmax = 242 group
operations (corresponding to a smoothness bound of approximately 242/ ln 2, see
Sect. 3.4), which is comparable to the expected work to factor a 512 bit integer
by the GNFS. Then a smoothness probability of up to 2−22 is acceptable, thus we
need u such that ρ(u) ≈ 2−22/8, and this is satisfied by u = 8. Since B ≈ 241.5,
the discriminant should have at least 666 bits for case 1 of Sect. 3.1 and at least
672 bits for case 2 of Sect. 3.1 according to (9) and (10).

If Wmax is larger or if a smaller smoothness probability is demanded, then the
order of magnitude of the discriminant will increase accordingly. For instance,
if we choose Pr

(
h(∆) is B-smooth

)
= 2−30 with Wmax (and hence B) as before,

then u = 9.6, and thus the discriminant should have at least 799 (case 1) or 805
(case 2) bits.

4 Conclusion

Based on the investigation of several strategies to solve the CL-DLP and based
on heuristic reasoning, we have shown how to select the discriminant such that
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the security of cryptosystems based on class groups offer a comparable security
as commonly used cryptosystems (such as RSA). In particular, we have shown
that the size of the discriminant asymptotically depends only on index-calculus
algorithms (see Table 4). Thus, since index-calculus algorithms for solving the
Cl-DLP are asymptotically much slower than index-calculus algorithms to solve
the IFP (such as the GNFS), the discriminant can be selected smaller than an
RSA modulus.

In a future work we shall demonstrate the impact of this result on the effi-
ciency and performance of IQC. As a further research project we would also like
to replace the heuristic reasoning of Sect. 3.5 by a more rigorous reasoning.
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