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Abstract. At Asiacrypt '99, Sun, Yang and Laih proposed three RSA
variants with short secret exponent that resisted all known attacks, in-
cluding the recent Boneh-Durfee attack from Eurocrypt ’99 that im-
proved Wiener’s attack on RSA with short secret exponent. The resis-
tance comes from the use of unbalanced primes p and q. In this paper, we
extend the Boneh-Durfee attack to break two out of the three proposed
variants. While the Boneh-Durfee attack was based on Coppersmith’s
lattice-based technique for finding small roots to bivariate modular poly-
nomial equations, our attack is based on its generalization to trivariate
modular polynomial equations. The attack is heuristic but works well
in practice, as the Boneh-Durfee attack. In particular, we were able to
break in a few minutes the numerical examples proposed by Sun, Yang
and Laih. The results illustrate once again the fact that one should be
very cautious when using short secret exponent with RSA.

1 Introduction

The RSA [13] cryptosystem is the most widely used public-key cryptosystem.
However, RSA is computationally expensive, as it requires exponentiations mod-
ulo N, where N is a large integer (at least 1024 bits due to recent progress in
integer factorization [4]) product of two primes p and ¢q. Consequently, speeding
up RSA has been a stimulating area of research since the invention of RSA.
Perhaps the simplest method to speed up RSA consists of shortening the expo-
nents of the modular exponentiations. If e is the RSA public exponent and d
is the RSA secret exponent, one can either choose a small e or a small d. The
choice of a small d is especially interesting when the device performing secret
operations (signature generation or decryption) has limited computed power,
such as smartcards. Unfortunately, Wiener [20] showed over 10 years ago that if
d < N%25 then one could (easily) recover d (and hence, the secret primes p and
q) in polynomial time from e and N using the continued fractions algorithm.
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Verheul and van Tilborg [19] slightly improved the bound in 1997, by showing
that Wiener’s attack could be applied to larger d, provided an exhaustive search
on about 2log,(d/N%?%) bits. At Eurocrypt '99, Boneh and Durfee [3] presented
the first substantial improvement over Wiener’s bound. Their attack can (heuris-
tically) recover p and ¢ in polynomial time if d < N%292, The attack is heuristic
because it is based on the seminal lattice-based work by Coppersmith [5] on
finding small roots to low-degree modular polynomial equations, in the bivari-
ate case However, it should be emphasized that the attack works very well in
practice.

At Asiacrypt ’99, Sun, Yang and Laih [18] noticed that all those attacks on
RSA with short secret exponent required some (natural) assumptions on the
public modulus N. For instance, the Wiener’s bound N°-2% only holds if p + ¢ =
O(V/N), and e is not too large. Similar restrictions apply to the extension to
Wiener’s attack by Verheul-van Tilborg [19], and to the Boneh-Durfee attack [3].
This led Sun, Yang and Laih to propose in [I8] simple variants of RSA using a
short secret exponent that, a priori, foiled all such attacks due to the previous
restrictions. More precisely, they proposed three RSA schemes, in which only the
(usual) RSA key generation is modified. In the first scheme, one chooses p and ¢
of greatly different size, and a small exponent d in such a way that the previous
attacks cannot apply. In particular, d can even be smaller than N%25 if p and ¢
are unbalanced enough. The second scheme consists of a tricky construction that
selects slightly unbalanced p and ¢ in such a way that both e and d are small,
roughly around v/N. The third scheme is a mix of the first two schemes, which
allows a trade-off between the sizes of e and d. Sakai, Morii and Kasahara [14]
earlier proposed a different key generation scheme which achieves similar results
to the third scheme, but that scheme can easily been shown insecure (see [18]).

In this paper, we show that the first and third schemes of [I8] are insecure,
by extending the Boneh-Durfee attack. Our attack can also break the second
scheme, but only if the parameters are carelessly chosen. Boneh and Durfee
reduced the problem of recovering the factors p and ¢ to finding small roots
of a particular bivariate modular polynomial equation derived from the basic
equation ed = 1 (mod ¢(N)). Next, they applied an optimized version (for that
particular equation) of Coppersmith’s generic technique [5] for such problems.
However, when p and ¢ are unbalanced, the particular equation used by Boneh
and Durfee is not enough, because it has no longer any “small” root. Our attack
extends the Boneh-Durfee method by taking into account the equation N = pq.
We work with a system of two modular equations with three unknowns; interest-
ingly, when p and g are imbalanced, this approach leads to an attack on systems
with d even larger than the N%2°2 bound of Boneh and Durfee. The attack is
extremely efficient in practice: for typical instances of two of the schemes of [1§],
this approach breaks the schemes within several minutes. Also, our “triviariate”
version of Coppersmith’s technique we use may be of independent interest.

! The bivariate case is only heuristic for now, as opposed to the (simpler) univari-
ate case, for which the method can be proved rigorously. For more information,
see [BI212].
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The remainder of this paper is organized as follows. In Section [2, we briefly
review former attacks on RSA with short secret exponents, recalling necessary
background on lattice theory and Coppersmith’s method to find small roots of
low-degree modular polynomial equations. This is useful to explain our attacks.
In Section[3, we describe the RSA schemes with short secret exponent of [18]. In
Section [l we present the new attack using the trivariate approach. We discuss
an implementation of the attack and its running time on typical instances of the
RSA variants in Section

2 Former Attacks on RSA with Short Secret Exponent

All known attacks on RSA with short secret exponent focus on the equation
ed =1 mod ¢(N) (where ¢(N) = N — (p+ ¢q) + 1) rewritten as:

ed1+k<ﬁgis> (1)

where k is an unknown integer and s = (p + ¢)/2. The primes p and ¢ can be
recovered from either d or s. Note that k£ and d are coprime.

2.1 The Wiener Attack

Wiener’s attack [20] is based on the continued fractions algorithm. Recall that
if two (unknown) coprime integers A and B satisfy |z — Z| < 7%z where z is a
known rational, then % can be obtained in polynomial time as a convergent of

the continued fraction expansion of x. Here, (] implies that
2e k‘ 24+ k(1 —2s)|

N d Nd

Therefore, if % < %, d can be recovered in polynomial time from e and
N, as k/d is a convergent of the continued fraction expansion of 2¢/N. That
condition can roughly be simplified to ksd = O(N), and is therefore satisfied if
k, s and d are all sufficiently small. In the usual RSA key generation, s = O(v/N)
and k = O(d), which leads to the approximate condition d = O(N®2°). But the
condition gets worse if p and ¢ are unbalanced, making s much larger than v/N.
For instance, if p = O(N%25), the condition becomes d = O(N%125).

The extension of Wiener’s attack by Verheul and van Tilborg [T9] applies to
d > N%25 provided exhaustive search on O(logy(d/N"?%)) bits if p and ¢ are
balanced. Naturally, the attack requires much more exhaustive search if p and ¢
are unbalanced.

2.2 The Boneh-Durfee Attack
The Small Inverse Problem. The Boneh-Durfee attack [3] looks at the equa-

tion () modulo e:
—k <$ - 5) =1 (mode). (2)
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Assume that the usual RSA key generation is used, so that |s| < /e and |k| < d
(ignoring small constants). The problem of finding such a small root (s, k) of that
bivariate modular equation was called the small inverse problem in [3], since one
is looking for a number (N + 1)/2 — s close to (N + 1)/2 such that its inverse
—k modulo e is rather small. Note that heuristically, the small inverse problem
is expected to have a unique solution whenever |k| < d < N%5. This led Boneh
and Durfee to conjecture that RSA with d < N%° is insecure.

Coppersmith [5] devised a general lattice-based technique to find sufficiently
small roots of low-degree modular polynomial equations, which we will review
in the next subsections, as it is the core of our attacks. By optimizing that
technique to the specific polynomial of (), Boneh and Durfee showed that one
could solve the small inverse problem (and hence, break RSA) when d < N©-292,
This bound corresponds to the usual case of balanced p and ¢. It gets worse as
p and ¢ are unbalanced (see [3/I8]), because s becomes larger.

Lattice Theory. Coppersmith’s technique, like many public-key cryptanalyses,
is based on lattice basis reduction. We only review what is strictly necessary for
this paper. Additional information on lattice theory can be found in numerous
textbooks, such as [6J17]. For the important topic of lattice-based cryptanalysis,
we refer to the recent survey [12].

We will call lattice any subgroup of some (Z™,+), which corresponds to the
case of integer lattices in the literature. Consequently, for any integer vectors
by,..., by, the set L(by,...,b,) = {3>I_, n;b; | n; € Z} of all integer linear
combinations of the b;’s is a lattice, called the lattice spanned by the b;’s. In
fact, all lattices are of that form. When L = L(by,...,b,) and the b;’s are
further linearly independent (over Z), then (by,...,b,) is called a basis of L.
Any lattice L has infinitely many bases. However, any two bases share some
things in common, notably the number of elements r and the Gram determinant
deti<i j<r(b;,b;) (where (,) denotes the Euclidean dot product). The parameter
r is called the lattice dimension (or rank), while the square root of the Gram
determinant is the lattice volume (or determinant), denoted by vol(L). The name
volume comes from the fact that the volume matches the r-dimensional volume of
the parallelepiped spanned by the b;’s. In the important case of full-dimensional
lattices (r equal to n), the volume is also the absolute value of the determinant of
any basis (hence the name determinant). In general, it is hard to give a “simple”
expression for the lattice volume, and one contents oneself with the Hadamard’s
inequality to estimate the volume:

vol(z) < [T Ibill
i=1

Fortunately, sometimes, the lattice is full-dimensional and we know a specific
basis which is triangular, making the volume easy to compute.

The volume is important because it enables one to estimate the size of
short lattice vectors. A well-known result by Minkowski shows that in any r-
dimensional lattice L, there exists a non-zero x € L such that ||x|| < /r -
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vol(L)Y/", where ||.|| denotes the Euclidean norm. That bound is in some (nat-
ural) sense the best possible. The LLL algorithm [9] can be viewed, from a
qualitative point of view, as a constructive version of Minkowski’s result. Given
any basis of some lattice L, the LLL algorithm outputs in polynomial time a
so-called LLL-reduced basis of L. The exact definition of an LLL-reduced basis
is beyond the scope of this paper, we only mention the properties that are of
interest here:

Fact 1. Any LLL-reduced basis (by,...,b,) of a lattice L in Z™ satisfies:

[b1]| < 27/2vol(L)Y" and ||bs < 207=1/2y0l(L)Y/ ("=,

Coppersmith’s Technique. For a discussion and a general exposition of Cop-
persmith’s technique [B], see the recent surveys [2J12]. We describe the tech-
nique in the bivariate case, following a simplified approach due to Howgrave-
Graham [7].

Let e be a large integer of possibly unknown factorization. Assume that
one would like to find all small roots of f(z,y) = 0 (mode), where f(z,y)
is an integer bivariate polynomial with at least one monomial of maximal total
degree which is monic. If one could obtain two algebraically independent integral
bivariate polynomial equations satisfied by all sufficiently small modular roots
(x,y), then one could compute (by resultant) a univariate integral polynomial
equation satisfied by x, and hence find efficiently all small (x,y). Coppersmith’s
method tries to obtain such equations from reasonably short vectors in a certain
lattice. The lattice comes from the linearization of a set of equations of the form
2%y f(z,y)* = 0 (mode®) for appropriate integral values of u, v and w. Such
equations are satisfied by any solution of f(z,y) = 0 (mode). Small solutions
(z0,y0) give rise to unusually short solutions to the resulting linear system,
hence short vectors in the lattice. To transform modular equations into integer
equations, one uses the following elementary lemma, with the (natural) notation

Hh(w,y)H =/ Zi,j a’z2,j for h(l’,y) = Zi,j ai,jxiyj :

Lemma 2. Let h(z,y) € Z[z,y] be a polynomial which is a sum of at most
r monomials. Suppose that h(xg,yo) = 0 mod €™ for some positive integer m
where |xg| < X and |yo| <Y, and ||h(zX,yY)|| < e™/\/r. Then h(xg,y0) = 0
holds over the integers.

Now the trick is to, given a parameter m, consider the polynomials

Py juy o (2,y) = €™ 2" y"2 f(z,y)".

where u1, ug and v are integers. Notice that any root (zo,yo) of f(z,y) mod-
ulo e is a root modulo €™ of hy, u,.»(7,y), and therefore, of any integer linear
combination h(z,y) of the hy, u, v (x,y)’s. If such a combination h(x,y) further
satisfies ||h(zX,yY)|| < e™//r, where r is the number of monomials of h, then
by Lemma [2, the integer equation h(x,y) = 0 is satisfied by all sufficiently
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small modular roots of A modulo e. Thus, it suffices to find two algebraically
independent such equations hy(z,y) and ha(z,y).

The use of integer linear combination suggests that we represent the poly-
nomials as vectors in a lattice, so that finding polynomials with small norm
reduces to finding short vectors in a lattice. More precisely, let S be a set of
indices (u1,u2,v), and choose a representation of the polynomials hy, u,.. (2, y)
with (u1,ug,v) € § as n-dimensional integer vectors for some n. Let L be the
lattice in Z™ spanned by the vectors corresponding to hy, uy0(2X,yY) with
(u1,ug,v) € S. Apply the LLL algorithm on the lattice, and let hi (22X, yY) and
ha(x X, yY") be the polynomials corresponding to the first two vectors of the re-
duced basis obtained. Denoting by r the dimension of L, one deduces from the
LLL theoretical bounds that:

A (2 X, yY)|| < 27/2vol(L)" and ||ho(zX, yY)| < 2071/ 2y0l(L)Y/ ("1,

To apply Lemma 2] we want both of these upper bounds to be less than e™//n;
since the factor 2" is negligible with respect to e, this amounts to saying

vol(L) < ™. (3)

There are two problems. The first problem is that even if this condition is satis-
fied, so that Lemma [2] applies, we are not guaranteed that the integer equations
hi(xz,y) = 0 and he(z,y) = 0 obtained are algebraically independent. In other
words, ho will provide no additional information beyond h; if the two linearly
independent short basis vectors do not also yield algebraically independent equa-
tions. It is still an open problem to state precisely when this can be guaranteed,
although all experiments to date suggest this is an accurate heuristic assumption
to make when inequality (B]) holds. We note that a similar assumption is used
in the work of Bleichenbacher [I] and Jutla [§].

The second problem is more down-to-earth: how can we make sure that vol(L)
is small enough to satisfy inequality ([B]) ? Note that Hadamard’s bound is un-
likely to be useful. Indeed, in general, some of the coefficients of f(x,y) are about
the size of e, so that ||huy, u,» (X, yY)]|| is at least e™. To address this problem,
one must choose in a clever way the set of indices S to have a close estimate on
vol(L). The simplest solution is to choose S so that L is full-dimensional (r equal
to n) and the hy, 4,0 (2X,yY)’s form a triangular matrix for some ordering on
the polynomials and on the monomials (the vector coordinates). Since we want
vol(L) to be small, each coefficient on the diagonal should be the smallest one
of My up (@ X, yY) = ™ V(X)) (yY)"* f (X, yY )", which is likely to be the
one corresponding to the monic monomial of maximal total degree of f(z,y).

In the general case, f(z,y) may have several monomials of maximal total
degree, and the only simple choice of S is to cover all the monomials of total
degree less than some parametrized bound. More precisely, if A is the total
degree of f(z,y), and 2%y“~* is a monic monomial of f(z,y), one defines S as
the set of (u1,u2,v) such that uq + us + Av < hA and ug,uz,v > 0 with u; < a
or ug < A — a. Then the volume of the corresponding lattice can be computed
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exactly, and it turns out that (B) is satisfied whenever XY < e'/4~¢ for and m
is sufficiently large.

However, depending on the shape of f(x,y) (represent each monomial z'y
by the point (4, 7)), other choices of S might lead to improved bounds. Boneh and
Durfee applied such tricks to the polynomial (@). In [3], they discussed several
choices of S. Using certain sets S for which the lattice is full-dimensional and
one knows a triangular lattice basis, they obtained a first bound d < N09-284
for their attack. Next, they showed that using a slightly different S for which
the lattice is no longer full-dimensional, one ends up with the improved bound
d < N%292_ The latter choice of S is much harder to analyze. For more details,
see [3].

3 The Sun-Yang-Laih RSA Key Generation Schemes

3.1 Scheme (I)

The first scheme corresponds to a simple unbalanced RSA [15| in which the
parameters are chosen to foil previously known attacks:

1. Select two random primes p < ¢ such that both p and N = pq are suf-
ficiently large to foil factorization algorithms such as ECM and NFS. The
more unbalanced p and ¢ are, the smaller d can be.

2. Randomly select the secret exponent d such that log, d + logy p > %log2 N
and d > 27,/p, where v is the security parameter (larger than 64).

3. If the public exponent e defined by ed = 1 (mod ¢(N)) is not larger than
¢(N)/2, one restarts the previous step.

A choice of parameters suggested by the authors is: p is a 256-bit prime, ¢ is a
768-bit prime, d is a 192-bit number. Note that 192 is far below Wiener’s bound
(256 bits) and Boneh-Durfee’s bound (299 bits).

3.2 Scheme (II)

The second scheme selects one of the primes in such a way that one can select e
and d to be small at the same time:

1. Fix the bit-length of N.

2. Select a random prime p of %log2 N — 112 bits, and a random k of 112 bits.
3. Select a random d of %logg N + 56 bits coprime with k(p — 1).

4. Compute the two Bézout integers u and v such that du — k(p — 1)v = 1,
O<u<k(p—1)and 0 <wv <d.

Return to Step 3 if v + 1 is not coprime with d.

6. Select a random h of 56 bits until ¢ = v + hd + 1 is prime.

(@31

The RSA parameters are p, ¢, e = u+hk(p—1),d and N = pq. Notice that e and
d satisfy the equation ed = 1 + k¢(N). They both have approximate bit-length
%log2 N + 56. The primes p and ¢ have approximate bit-length %log2 N —112
and %1og2 N + 112 respectively.

A possible choice of parameters for Scheme (II) might be: p a 400-bit prime,
q a 624-bit prime, and e and d are each 568 bits integers.



Cryptanalysis of the RSA Schemes with Short Secret Exponent 21

3.3 Scheme (III)

The third scheme is a mix of the first two schemes, allowing a trade-off between e
and d such that log, e+log, d ~ log, N +{; where / is a predetermined constant.
More precisely, the scheme is a parametrized version of scheme II: p, k, d and h
have respective bit-length ¢, (less than 3logy N), €y, £q, and logy N — £, — {g.
To resist various attacks, the following is required:

1. £k>>€p*€d+1~

2. 4a(2B+a—1) > 3(1—F—a)?, where a = b:;g]@% and 3 =

3. k must withstand an exhaustive search and ¢, + ¢, > log, N.
A choice of parameters suggested by the authors is: p is a 256-bit prime, ¢

is a 768-bit prime, e is an 880-bit number, and d is a 256-bit number.

Ly
logo N+4p—Lq "

4 The Attack Algorithm

In this section we demonstrate how to launch an attack on Schemes (I) and (III).

The approach used here closely follows that taken by Boneh and Durfee [3], but

differs in several crucial ways to allow it to work when the factors p and ¢ of the

public modulus N are unbalanced. Interestingly, our attack gets better (works

for larger and larger d) the more unbalanced the factors of the modulus become.
Recall the RSA equation

N+1 p+gq
d=1+k|———— .
e + ( 5 5 >

We note that the Boneh-Durfee approach treats this as an equation modulo e
with two “small” unknowns, k and s = (p+¢)/2. This approach no longer works if
p and ¢ are unbalanced, since a good bound on s can no longer be established. For
this reason, the authors of the schemes from Section B hoped that these schemes
would resist the lattice-based cryptanalysis outlined in Section 22l However, we
will see that a more careful analysis of the RSA equation, namely one that does
not treat p+q as a single unknown quantity but instead leaves p and q separately
as unknowns, leads to a successful attack against two of these schemes.
Writing A = N + 1, the RSA equation implies

24+ k(A—p—q)=0 (mode).

The critical improvement of our attack is to view this as a modular equation
with three unknowns, k,p,q, with the special property that the product pg of
two of them is the know74n quantity N. We may view this problem as follows:
given a polynomial f(z,y,2) =z(A+y+ z) — 2, find (xo, yo, 20) satisfying:

f(x()?yOv ZO) =0 (HlOd 6)7
where

lzol < X, lyol <Y, |20l < Z, and yozo = N.
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Note that the bounds X ~ ed/N,Y = p, and Z =~ ¢ can be estimated to within
a power of 2 based on the security parameters chosen for the scheme.

Following Coppersmith’s method, our approach is to pick r equations of
the form e™~Vg"ty42z43. fY(x,y,z) and to search for low-norm integer linear
combinations of these polynomials. The basic idea is to start with a handful
of equations of the form y**J f™(z,y,z) for j = 0,...,t for some integers a
and ¢ with ¢ > 0. Knowing N = pq allows us to replace all occurrences of the
monomial yz with the constant NV, reducing the number of variables in each of
these equations to approximately m? instead of the expected $m®. We will refer
to these as the primary polynomials.

Since there are only t 4+ 1 of these equations, this will result in a lattice
that is less than full rank; we therefore include some additional equations to
bring the lattice to full rank in order to compute its determinant. We refer
to these as the helper polynomials. We have a great deal of choice in picking
the helper polynomials; naturally, some choices are better than others, and it
is generally a tedious but straightforward optimization problem to choose the
primary and helper polynomials that are optimal. The equations we work with
are the following. Fix an integer m, and let a and ¢ > 0 be integers which we
will optimize later. We define

o griv(w,y,2) = e Friye b fR(z y, 2), for k = 0..(m — 1), i = 1..(m — k),
and b = 0, 1; and,
o hy i(w,y,2) = em FyatifF(z,y, 2), for k =0..m and j = 0..t.

The primary polynomials are A, j(x,y, z) for j =0,... ¢, and the rest are the
helper polynomials. Following Coppersmith’s technique, we form a lattice L by
representing g ; (2 X, yY, 2Z) and hy, ; (2 X, yY, 2Z) by their coefficients vectors,
and use LLL to find low-norm integer linear combinations hy(zX,yY, 2Z) and
ho(xX,yY,2Z). The polynomials hi(z,y,z) and he(z,y,z) have (k,p,q) as a
root over the integers; to remove z as an unknown, we use the equality z = N/y,
obtaining Hi(x,y) and Ha(x,y) which have (k,p) as a solution. Taking the
resultant Res, (Hi(z,y), Ha(z,y)) yields a polynomial H(y) which has p as a
root. Using standard root-finding techniques allows us to recover the factor p of
N efficiently, completing the attack.

The running time of this algorithm is dominated by the time to run LLL on
the lattice L, which has dimension (m + 1)(m + ¢t + 1). So it would be ideal to
keep the parameters m and t as low as possible, limiting to a reasonable number
the polynomials used to construct L. Surprisingly, the attack is successful even
if only a handful of polynomials are used. The example given by the original
authors for schemes (I) succumbs easily to this attack with m = 3 and t = 1;
with these parameters, our attack generates 20 polynomials. Scheme (III) can
be cryptanalyzed with parameters m = 2 and t = 2, yielding 15 polynomials.
This gives lattices of dimension 20 (see Figure M) and 15, respectively, which
can be reduced via the LLL algorithm within a matter of seconds on a desktop
computer. We discuss our implementation and the results of our experiments
more in Section [
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4.1 Analysis of the Attack

In order to be sure that LLL returns vectors that are “short enough” to use
Lemma [2I we must derive sufficiently small bounds on the determinant of the
lattice L formed from the polynomials gy ; (2 X, yY, 2Z) and hy j(zX,yY, 2Z).
Fortunately, this choice of polynomials makes the computation of the determi-
nant of L fairly straightforward, if somewhat tedious. We provide the details in
the appendix.

Representing the Lattice as a Triangular Matrix. In order to compute the
volume of the lattice L, we would like to list the polynomials g ;»(zX, yY, 22)
and hg ;j(zX,yY,2Z) in a way that yields a triangular matrix. There is an or-
dering on these polynomials that leads to such a representation: we first list the
9k,ib(xX,yY, 2Z) indexed outermost by k = 0,...,m — 1, then ¢ = 0,... , k,
then innermost by b = 0, 1. We then list h ; (X, yY, 2Z) indexed outermost by
k=0,...,m then j = 0,...,t. (See Figure [ for the case of m = 2, t = 1,
a = 1.) Each new polynomial introduces exactly one new monomial z“1y“2 or
"1 z"3. Note that no monomial involving the product yz appears, since yz can
be eliminated? using the identity N = yz.

The determinant of this matrix is simply the product of the entries on the
diagonal, which form =3,t=1,a=11s

vol(L) = det(M) = *0 x40y34 74, (4)

We expect the LLL algorithm to return vectors short enough to use Lemma
when

vol(L) = e*0X40y34 74 < em” = %,

The example given by the original authors for Scheme (I) is to use p of 256 bits,
q of 768 bits, d of 256 bits, and e of 1024 bits. This gives bounds
X ~ed/N = e/t Y ~ e/t and Z ~ €3/

)

we may then confirm

det(M) — 640X40Y34Z4 ~ 659 < e60 — em’l“’
so Lemma applies Therefore, when we run the LLL algorithm on this lattice,
we will get two short vectors corresponding to polynomials hq(x,y, z), ha(x,y, 2);
by the bound on the determinant, we know that these polynomials will have

2 Caution must be taken to ensure the polynomials remain monic in the terms z*“!y*2
and z“1 2“3 of highest degree; if the substitution yz — N causes a coefficient of such
a term to be different from 1, then we multiply the polynomial by N~! mod e™ (and
reduce mod e™ as appropriate) before continuing.

3 The reader may have noticed that we have suppressed the error term associated with
the execution of the LLL algorithm. Interestingly, even if the LLL “fudge factor” is
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zy * zzy I2 zsy I3| 12y2 122 13y2 ISZ ISyS 1322 || y y2 zy2 1’5/3 I‘Zy‘i I2y4| 13y4 ISyS

Sy SXY

Sayz Sx

Sa?y Sx2y

3.2 3 52

Sady Sx3y

3.3 353
T Payr| - - - 2x2y?

2ayzf - - - 2x27

222y f . - 2x3y2
2a2yzf - - - 2x37

conf2| - . — - ex3y3

emyzf2 - - - - - - - - ex3 72

Sy Sy
3.2 3y2
2yl - - - 2xy?2
2Py - _ _ 2xy3
eyf2| - - - - - - - - ex2y3
el f2| - - - - - - - = ex2y4
7% 2 - - - = - - x3y4
Iy = - - - - - - ~ x3vy®

Fig. 1. Ezample of the lattice formed by the vectors gi.p(xX,yY,2Z) and
hi j(xX,yY,2Z) when m = 2, t = 1, and a = 1. The matriz is lower trian-
gular. Entries marked with “-” indicate off-diagonal quantities whose values do
not affect the determinant calculation. The polynomials used are listed on the
left, and the monomials they introduce are listed across the top. The double line
break occurs between the gy i, and the hy ;, while the single line breaks occur be-
tween increments of k. The last single line break separates the helper polynomials
(top) from the two primary polynomials (bottom,).

norm that is low enough to use Lemma Pl Therefore these polynomials will have
(k,p,q) as a solution over the integers. To turn these into bivariate equations,
we use the equality z = N/y to get Hy(z,y) and Ha(z,y) which have (k,p) as a
solution over the integers. We then take the resultant Res,(Hy(z,y), Ha(x,y))
to obtain a univariate polynomial H(y) that has p as a root.

More generally, if we pick optimal values for ¢t and a take m sufficiently large,
our attack will be successful for even larger bounds on d. The highest possible
bound on d for which our attack can work depends on the parameters chosen for
the scheme. Suppose the parameter d ~ N? is used. The table below summarizes

taken into account, this bound is still good enough. We require
vol(L) < 9T /2¢59 = 9200659 - 9+E e (V) ~ 502
Slightly larger parameters m and t are required to rigorously obtain the bound for

norm of the second basis vector, although in practice the LLL algorithm works well
enough so that the parameters chosen here are sufficient.
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the largest possible ¢ for which our attack can succeed. We point out the choices
of parameters that give rise to the schemes of Section B

logy (e)
1.0 0.9 0.86 0.8 0.7 0.6 0.55
0.5] 0.284 0.323 0.339 0.363 0.406 0.451 0.475
0.4] 0.296 0.334 0.350 0.374 0.415 0.460 0.4831
logx (1) 0.3] 0.334 0.369 0.384 0.406 0.446 0.487 0.510
0.25| 0.3641 0.398 0.412j;1 0.433 0.471 0.511  0.532
0.2| 0406 0.437 0.450 0.470 0.505 0.542 0.562
0.1] 0.539 0.563 0.573 0.588 0.615 0.644 0.659

Fig. 2. Largest § (where d < N°) for which our attack can succeed, as a function
of the system parameters.

For example, with the example for Scheme (I), where e ~ N and p ~ N%25,
our attack will be successful not only for the 6 = 0.188 suggested, but all the
way up to d < 0.364 (assuming a large enough m is used.) Similarly, our attack
works in Scheme (IIT) up to d < N%412, Notice that our attack comes close to,
but cannot quite reach, the d < N9 required to break Scheme (II).

4.2 Comparison with the Bivariate Approach

Alternatively, one can consider the system of two modular equations with three
unknowns as a single bivariate equation by incorporating the equation N =
pq into the main trivariate equation. This was independently noticed by Willi
Meier [1I], who also addressed the problem of breaking Schemes (I) and (III),
using a bivariate approach rather than our trivariate approach. One then obtains
an equation of the form f(z,y) = 2%y + Azy + Bz + Cy modulo e, where the
unknowns are k and the smallest prime among p and gq.

However, it turns out that the application of Coppersmith’s technique to this
particular bivariate equation yields worse bounds than with the trivariate ap-
proach previously described. For example, the bivariate approach allows one to
break scheme (I) as long as d < N%!35 (and perhaps slightly higher, if sublattices
are considered as in [3]), but fails for larger d. One can view the bivariate ap-
proach a special case of our trivariate approach, in which one degree of freedom
for optimization has been removed. One then sees that the bivariate approach
constrains the choice of primary and helper polynomials in a suboptimal way,
resulting in worse bounds on d.

5 Implementation

We implemented this attack using Victor Shoup’s Number Theory Library [16]
and the Maple Analytical Computation System [10]. The attack runs very ef-
ficiently, and in all instances of Schemes (I) and (IIT) we tested, it produced



26 Glenn Durfee and Phong Q. Nguyen

algebraically independent polynomials H;(x,y) and Ha(z,y). These yielded a
resultant H(y) = (y —p)Ho(y), where Hy(y) is irreducible, exposing the factor p
of N in every instance. This strongly suggests that this “heuristic” assumption
needed to complete the multivariate modular version of Coppersmith’s technique
is extremely reliable, and we conjecture that it always holds for suitably bounded
lattices of this form. The running times of our attacks are given below.

Scheme size of n size of p size of e size of d m ¢ a lattice rank running time
I 1024 256 1024 192 3 11 20 40 seconds
IIT 1024 256 880 256 2 20 15 9 seconds

These tests were run on a 500MHz Pentium III running Solaris.

6 Conclusions and Open Problems

We showed that unbalanced RSA [15] actually improves the attacks on short
secret exponent by allowing larger exponent. This enabled us to break most of
the RSA schemes [I8] with short secret exponent from Asiacrypt '99. The attack
extends the Boneh-Durfee attack [3] by using a “trivariate” version of Copper-
smith’s lattice-based technique for finding small roots of low-degree modular
polynomial equations. Unfortunately, despite experimental evidence, the attack
is for now only heuristic, as the Boneh-Durfee attack. It is becoming increas-
ingly important to find sufficient conditions for which Coppersmith’s technique
on multivariate modular polynomials can be proved.

Our results illustrate once again the fact that one should be very cautious
when using RSA with short secret exponent. To date, the best method to enjoy
the computational advantage of short secret exponent is the following counter-
measure proposed by Wiener [20]. When N = pg, the idea is to use a private
exponent d such that both d, = d mod (p—1) and d; = d mod (¢ — 1) are small.
Such a d speeds up RSA signature generation since RSA signatures are often
generated modulo p and ¢ separately and then combined using the Chinese Re-
mainder Theorem. Classical attacks do not work since d is likely to be close to
@(N). It is an open problem whether there is an efficient attack on such secret
exponents. The best known attack runs in time min(/dp, \/dg ).
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A General Calculation of the Determinant

The general formula for the determinant of the lattice we build in Section[4 is
vol(L) = det(M) = e X ey v 7C=

where

1
C.=C, = gm(m—i— 1)(4m + 3t + 5),
£(m3 4 3(a + t + 1)m? + (3t* + 6at + 3a? + 6a + 6t + 2)m

oo +(3t? 4 6at + 3a® + 4a + 3t — a?)) if a >0,
Y7  #(mP +3(a+t 4+ 1)m? + (3t? + 6at + 3a® + 6a + 6t + 2)m
+(3t% + 6at + 3a* + 3a + 3t)) if a <0,

L(m3 —3(a — 1)m? + (3a® — 6a + 2)m + (3a® — 2a — a®)) if a > 0,
. —1F%
: L(im3 —3(a — 1)m? + (3a® — 6a + 2)m + (3a® — 3a)) if a < 0.

We need det(M) < e = em(m+Dm+14+1) T order to optimize the choice of t
and a, we write t = 7m and a = am, and observe

1
C.=C, = 6(37 +4)m> 4 o(m?),

o _ [§67 +6ar+30% +3a 437+ 1 - a”)m’ + o(m?) if a > 0,
Y S(372 + 6ar + 302 + 3o+ 37+ D)mP +o(m?)  ifa <0,
%(3042 —3a+1-a®)m3+o(m?)if a >0,
C:=4] 2 3 3 i
5(304 —3a+ 1)m3 + o(m?) if a < 0.

Suppose we write e = N°, d = N°, and X = N%, so Y = N'=%. Then X =
N#=1.So the requirement on det(M) now becomes

NaCe+(66—1)Cz+ﬁ0y+(1—ﬁ)02 < em(m-i-l)(m-‘rt-‘rl) _ NE(T-‘,—l)mS'J'_o(mB)'

The above expression holds (for large enough m) when
eCe+ (66 —1)C + 8Cy + (1 - B)C, — (T+1) < 0. (5)
The left-hand-side of this expression achieves its minimum at
70 = (2008 = -6 +1)/(28),

J1-B-(1-8-6+8HDif g <,
WTV(B=6)/28-2) if 3>,

Using 7 = 79 and a = oy will give us the minimum value on the left-hand-side of
inequality Bl affording us the largest possible X to give an attack on the largest
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possible d < N°. The entries in Figure [2] were generated by plugging in 7y and
ap and solving for equality in Equation [l

It is interesting to note that formulation of the root-finding problem for RSA
as a trivariate equation is strictly more powerful than its formulation as the
small inverse problem. This is because the small inverse problem is not expected
to have a unique solution once § > 0.5, while our attack works in many cases
with § > 0.5. We note that when ¢ = 1 and 8 = 0.5 — as in standard RSA — our
attack gives identical results to simpler Boneh-Durfee attack (d < N9284). Their
optimization of using lattices of less than full rank to achieve the d < N0-292
bound should also work with our approach, but we have not analyzed how much
of an improvement it will provide.
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