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Abstract. Construction of secure hyperelliptic curves is of most impor-
tant yet most difficult problem in design of cryptosystems based on the
discrete logarithm problems on hyperelliptic curves. Presently the only
accessible approach is to use CM curves. However, to find models of the
CM curves is nontrivial. The popular approach uses theta functions to
derive a projective embedding of the Jacobian varieties, which needs to
calculate the theta functions to very high precision. As we show in this
paper, it costs computation time of an exponential function in the dis-
criminant of the CM field. This paper presents new algorithms to find
explicit models of hyperelliptic curves with CM. Algorithms for CM test
of Jacobian varieties of algebraic curves and to lift from small finite fields
both the models and the invariants of CM curves are presented. We also
show that the proposed algorithm for invariants lifting has complexity
of a polynomial time in the discriminant of the CM field.

1 Introduction

Hyperelliptic curves and more general Jacobian varieties over finite fields have
been used to build cryptosystems in recent years e.g. [20]. The cryptosystems
based on these curves are recently under intensive investigation on their in-
tegrity. The generic square-root attacks works for arbitrary Abelian groups but
cost exponential time in general. Various “reduction” attack initiated by the
MOV attacks[23] intended to transform the discrete logarithm problem on the
Jacobian varieties to some simpler and easier problems, e.g. the discrete loga-
rithm problems on the multiplicative or the additive group of the ground field.
Such attacks are effective to certain curves with special properties[30]. Another
generic attack, the “smooth divisor attack” [2],[24] solves the discrete logarithm
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problem on curves of large genera in subexponential time. In particular, an at-
tack on hyperelliptic curves of genus six is reported recently [14][11]. In spite of
these researches, the discrete logarithm problems on generic curves with small
genera and almost-prime orders still seemed to be at least as intractable as on
the elliptic curves.

Besides, cryptosystems based on Abelian varieties of genus g > 1 will have
also shorter word-length for the same key size than the systems on elliptic
curves, which means advantages in processing, transmission and implementa-
tion. Moreover, since there is much richer isogenous classes of such curves than
elliptic curves, more secure and flexible application of the cryptosystems can be
expected. However, construction of secure hyperelliptic curves seems far more
nontrivial than elliptic curves.

The order-counting algorithms or Schoof’s algorithm for elliptic curves is
extended to hyperelliptic curves. e.g. [1] shown an algorithm to calculate orders
of Jacobians for curves of genus 2 in random polynomial time. [29] presented a
deterministic polynomial time order-counting algorithm of O(log p)∆. However,
it is observed that the ∆ >exp(exp(2g+1)) where g is the genus of the curve [17].
[17] also extended Schoof’s algorithm to plane curves over algebraic number fields
with arbitrary singularity, with cost of random polynomial time O((log p)δ),
where the δ = (2g + 1)O(1). The present record of these kind of algorithms is by
[3] which gave a deterministic algorithm improving [29] and cost O((log q)O(g6)).
All these general order counting algorithms are still too costly to be used in
practical calculation and seems difficult to implement. Besides, they have to
repeat the whole order counting calculations many times until an almost prime
Jacobian is found. In [20], the order of a Jacobian variety at small finite fields
is counted then lift the curve by the Weil conjecture This method is very fast
although the number of secure curves can be found seems limited. Besides, these
curves are also subjected to attacks using large automorphism groups [11].

Another approach which has been pursued in recent years is to use the simple
factors of the Jacobian varieties of a special kind of curves called modular curves
[13][38][39] using analytical embedding by theta functions [25][26]. Besides the
computation cost for high precision expansion of these modular functions, since
their method to count the order by the Eichler-Shimura formula is of exponen-
tial time, it seems that Jacobian varieties can be built over finite fields with
characteristic no more than ten digits. Considering that presently used curves
are with genera less than or equal to four, one can only count Jacobian varieties
with order of forty digits, still quite insufficient for cryptographic applications. A
recent report shown a straightforward implementation of Schoof-like algorithm
on hyperelliptic curves using Cantor’s analogue of the division polynomials of
elliptic curves, but it can only count the Jacobian varieties with orders less than,
again, forty digits[15].

A hopeful direction is to use CM curves, or the algebraic curves defined over
algebraic number fields whose Jacobian varieties with complex multiplications.
In fact, fast algorithms which design secure Jacobian varieties over finite field
using CM curves have been shown in [7][8]. These algorithms have complexity as
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a polynomial in the characteristic of the finite ground fields[8]. The CM curves
have nice properties to make order-counting easy and enough randomness for
security as well. Furthermore, they have a potential advantage in implementation
of cryptosystems. In particular, once one has an arbitrary CM curve over an
algebraic number field, he will be able to design different secure curves or their
Jacobian varieties over finite fields based on the same CM curve very quickly by
changing the definition finite fields. It is then convenient in practice since when
one wishes to update the system periodically by changing the curves he needs
not to transmit a new curve over an insecure channel.

Recently, [11] presents an attack on curves with large automorphism groups
and applied it to a genus six curve with CM fields as cyclotomic fields. In fact,
these kind of fields contain the roots of unity of order 2g + 1 where g is the
genus. However, generic CM curves has only trivial automorphism groups so
these curves are among very special CM curves. These CM fields were used
simply because the order calculation of the Jacobian varieties could be easy by
using the Jacobi sums in the cyclotomic fields[20][27][4]. Since the polynomial
time algorithm to calculate the order of Jacobian varieties for general CM field
is available already [7][8], one can readily avoid such non-generic curves.

Thus, the remain problem is how to find CM curves as fast and as many
as possible. More concretely, to find CM curves with small genera and large
discriminants of their CM fields. Until now, the main approach to build CM
curves is to use theta function theory to build a projective embedding of the
Jacobian varieties[25][26]. [33] built two CM hyperelliptic curves of genus two.
This approach is then improved by [38][39][36]. In fact, the nineteen CM hyper-
elliptic curves defined over Q are built recently in [36]. This approach however
needs exponentially high precision computation in the theta series expansion in
order to cope with potential approximate errors. As we shown in this paper, this
algorithm costs exponential time in the discriminant of the CM field.

In this paper, we present new algorithms to find explicit models of hyperel-
liptic curves with CM. We avoid the numerical difficulty of the analytical embed-
ding by using only algebraic manipulations on small finite fields. Both models
and invariants of the CM curves are lifted with CRT from these finite fields. The
algorithm 2 which lifts models of CM curves has no restriction on genera and
shapes of definition equations of curves. In the algorithm 3, 4 which lifts invari-
ants of CM curves, we restrict ourselves to a subfamily so that one can always
obtain the model of the curve from their invariants. Besides, these algorithms
can also be used to other curves of genera larger than two if an explicit definition
of their moduli invariants is available. Being probabilistic algorithms, the CM
tests proved to be very simple and sharp. The lifting algorithms are of determin-
istic, and a complexity analysis shows that the invariant lifting algorithm has
complexity of a polynomial in the discriminant of the CM field.

This paper is organized as follows. In the chapter two, we give some notations
and definitions. In the chapter three, we show algorithms for CM test of Jacobian
varieties of algebraic curves. In the chapter four, an algorithm to lift from finite
fields the models of algebraic curves with CM is presented. In the chapter five,
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an algorithm is presented to lift the invariants of CM hyperelliptic curves. In the
chapter six, we show a complexity analysis for both the analytical embedding
algorithm and the invariant lifting algorithm. Finally, we show an examples to
compare the proposed algorithm with the analytical embedding algorithm and
also application to design a secure hyperelliptic cryptosystems. In the appendix
we show an algorithm to find the model of a curve from its moduli invariants
using a subfamily of curves.

2 Preliminary

A hyperelliptic curve over a field F of genus g is defined by

C : Y 2 + Y h(X) = f(X)

with the point at infinity, where deg h ≤ g, deg f = 2g + 1. For charF �= 2, one
can use the definition as

C : Y 2 = f(X).

A F -rational point P ∈ C(F ) is defined by both P = (x, y) such that x, y ∈ F
and y2 +yh(x) = f(x) or the point at infinity. A (Weil) divisor D on C is defined
as a finite formal sum of form

∑
i miPi,mi ∈ Z, Pi ∈ C(F̄ ) . The degree of D is

defined as deg(D) =
∑

i mi. In particular, the divisors with degree zero form a
subgroup D0(C) of the divisor group whose elements are algebraically equivalent
to zero. The function field of C is consisted of {p/q}, p, q ∈ F̄ [u, v], q �= 0 mod
v2 + vh(u) − f(u). The divisor of a function p/q on C is defined as

∑
i miPi −∑

j njQj , here Pi, Qj ∈ C(F̄ ) are zeros and poles of the function and mi, nj are
the multiplicity of the zeros and the poles. It can be shown that all the divisors
of functions over C have degree zero and will be called as principal divisors,
or linearly equivalent to zero. Obviously the principal divisors form a subgroup
Dl(C) of D0(C). The Jacobian variety of C is then defined as follows.

J = D0(C)/Dl(C)

For F = F q, a F q-rational divisor is defined as a divisor which is fixed under
the Galois action on F q and the group of F q-rational points J (F q) is generated
by F q-rational divisors.

It is known that a Jacobian variety is an Abelian variety or a complete and
nonsingular variety with the commutative addition law as an algebraic group.
As proved by A. Weil for curves of genus g, the orders of their Jacobian varieties
over finite fields fall in the following range.

(q1/2 − 1)2g ≤ #J (F q) ≤ (q1/2 + 1)2g

The Jacobian varieties of hyperelliptic curves can then be used to defined
discrete logarithm problem as to find m ∈ Z given two divisors D1, D2 ∈ J (F q)
such that D1 = mD2.
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We now introduce an important property of the endomorphism rings of
Abelian varieties. Let F be an algebraic number field, A/F a g-dimensional
Abelian variety, EndF A its endomorphism ring. It is known that for a simple
Abelian variety A, EndF A is a division algebra of finite rank over Q with an
involution x 	→ x′ such that if x �= 0, TrF/Q(xx′) > 0. Define K = End◦A :=
EndF A

⊗
Z Q. When K is isomorphic to a totally imaginary quadratic exten-

sion of a totally real extension of Q of degree 2g, A is called with complex
multiplications or CM. K is called the CM field of A. It is known that ordinary
Abelian varieties over finite fields are all CM, and any CM Abelian variety is
isogenous to an Abelian variety over finite fields. Further details of notations are
referred to e.g. [21], [32].

3 CM Tests of Jacobian Varieties

In this section, we show an efficient algorithm to test whether the Jacobian
variety of an algebraic curve has CM, which proves very useful in later chapters.
This probabilistic algorithm is based on certain interesting relation between the
reduction of an Abelian variety over an algebraic number field to a finite field
modulo a prime ideal in the integral ring of the number field, lying over a prime
number, and the decomposition of the principal ideal generated by the prime
number in the integral ring of the definition field [32][21].

Definition 1. A pseudo-CM algebraic curve is defined as one whose Jacobian
variety passed one of the following CM tests.

Consider a curve C/F , F an algebraic number field, we denote the residue
field of a prime p of F as F q, Z(X) the characteristic polynomial of the Frobenius
endomorphism on Fq-rational divisors of the Jacobian variety J /Fq of C/Fq.
To simplify treatment involved with the reflex CM field and reflex CM type,
we will hereafter assume that all the CM fields are abelian and the Z(X)’s are
irreducible.

Below, we will use the algorithms in e.g. [8][28] to calculate CM field and
CM type of a Jacobian variety with CM.

Algorithm 1
Procedure 1 (Ordinary reduction test)

Input A random curve C/F of genus g, N ∈ N ;
Output If C/F is a pseudo-CM curve, and when it is, the CM field K;
Step 1 Find the CM field and the discriminant d1 of Z1(X) of C/F q1 with

ordinary reduction for a small prime p1;
Step 2 Choose small primes pi, i = 2, · · · , N such that Z1(X) mod pi splits. For

J /F qi find the discriminant di of Zi(X) , if the square-free part of d1 equals
not that of di for some i, output that C/F has no CM;

Step 3 Output C as a pseudo-CM curve whose CM field K has a minimal
polynomial Z1(X);
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Procedure 2 (Supersingular/bad reduction tests)

Input A random curve C/F of genus g, N ∈ N ;
Output If C/F is a pseudo-CM curve, its CM field K;
Step 1 Find the CM field and the characteristic polynomial Z1(X) of J /F q1

with ordinary reduction for a small prime p1;
Step 2 Choose small primes pi, i = 2, · · · , N such that Z1(X) mod pi is irre-

ducible or pi|d1, if neither J /F qi is supersingular nor C/F qi is singular for
any i, output that C/F has no CM;

Step 3 Output C as a pseudo-CM curve whose CM field has a minimal poly-
nomial Z1(X);

4 Lifting Models of Curves with CM

It is known that every CM Abelian variety A has a projective model over Q̄. The
definition field F of equations is contained in the definition field of the model
(A, ι, C), where ι : K ↪→Endo

F A an embedding and C a polarization, which is how-
ever not easy to find. One may then use the latter for F instead and also denote
it as F . Furthermore, one may choose that the definition fields of the models are
coincide with the so-called fields of moduli under certain conditions[40], which
can be built from the class field of K. In particular, when A is simple which is
the case we are dealing with, and A is principal e.g. End(A) equals the maximal
order of OK , the definition field of the model can derived under minor conditions
from the Hilbert class field, which we denote as Kab. [32][40].

In this section, we show how to lift from small finite fields the models of
curves with CM defined e.g. over the class field of K.

Algorithm 2

Input : A model of equations of a curve family {C/Q̄} with genus g;
Output : Curves in the family with CM over Kab and their CM fields K;
Step 1 For small prime p1, choose models of all non-isomorphic curves C1/F q1

among the family over F q1 , e.g. in the case of hyperelliptic curves, one may
use

y2 ≡ x2g+1 + a1x
2g+, · · · , +a2g mod p1

such that J1/F q1 are ordinary, their CM fields K are abelian and Z(X)
irreducible. Calculate K, its discriminant dK and the class number h of OK ;

Step 2 For each of the pairs (C1/F q1 ,K), choose small prime pi such that
pi|dK , then find the curves Ci/F qi such that either Ci/F qi is singular or
Ji/F qi is supersingular. The conjugates of the coefficients in each definition
equation are collected to compose the reduction of the minimal polynomial
of the same coefficients in the curve C/Kab with CM field K, modulo the
prime ideal over pi;

Step 3 For each of the pairs (C1/F q1 ,K), choose small prime pi, i = 2, . . .M
such that pi is inert in K, then find the curves Ci/F qi such that either Ci/F qi

is singular or Ji/F qi is supersingular. The conjugate of coefficients in the
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equation are collected to compose the reduction of the minimal polynomial
of the same coefficients in the curve C/Kab with CM field K;

Step 4 For each of the pair (C1/F q1 ,K), choose small prime pi, i = 2, . . .M
such that pi splits completely in K, then find the curves Ci/F qi such that
End◦F qi

Ji
∼= K. Again, the conjugate coefficients are collected to compose

the minimal polynomial of the same coefficient in the curve C/Q with CM
field K;

Step 5 Choose one candidate curve Ci for each i and apply the CRT to each
coefficients to recover the equation C/Kab;

Step 6 If the C/Kab passed the CM tests, then output it as a pseudo-CM
curves, if not goto step 2-4 to try the other combinations or add one more
prime;

Remark 1. The family of curves is not limited to hyperelliptic curves or genus
two curves. A reasonable choice for such a family is the de Jong-Noot family
[10], which is known to contain infinite number of CM curves.

Remark 2. For fast implementation, one-parameter family would be desirable.
More efficient approach is to use to select candidate curves by determination
of the isomorphic type of the endomorphism ring of J/F q, using the algorithm
such as generalization of the Kohel’s algorithm for ordinary reduction in [22].

Remark 3. It is also possible to use certain convenient properties in the super-
singular reduction to raise the lift efficiency. Especially, choose pi carefully the
reduction of the Jacobian will be isomorphic to product of supersingular elliptic
curves (supersingular Abelian varieties) then calculation over elliptic curves can
be made use of [19].

5 Lifting of Invariants of Hyperelliptic Curves with CM
Jacobians

It can be observed in the lifting of the models of curves that it is desirable if
one can lift the invariants instead of the models in order to reduce the number
of candidates. This is possible if an explicit definition of moduli invariants is
known, such as in the genus two case.

Algorithm 3
Input A model of curve family C/Q̄ of which their invariants I = (I1, . . . , Im)

in their moduli space is explicitly defined;
Output : Invariants I of curves in the family with CM over Kab and their CM

fields K;
Step 1 For small prime p1, choose among the family of all non-isomorphic

curves C1/F q1 such that J1s/F q1 are ordinary reductions, their CM fields
K are abelian and Z(X) irreducible. Calculate K and the discriminants dK ,
the class number h of OK and their invariants I1/F q1 ;
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Step 2 For each of the pairs (C1/F q1 ,K), choose small prime pi such that pi|dK ,
then find the curves among the family Ci/F qi such that either Ci/F qi is sin-
gular or Ji/F qi is supersingular. Calculate all conjugates of their invariants
Ii/F qi . These invariants are collected to compose the reduction of the min-
imal polynomial of the same invariant I of the curve C/Kab with CM field
K, modulo the prime ideal over pi;

Step 3 For each of the pairs (C1/F q1 ,K), choose small prime pi, i = 2, . . .M
such that pi is inert in K, then find the curves among the family Ci/F qi

such that either Ci/F qi is singular or Ji/F qi is supersingular. Calculate
all conjugates of their invariant Ii/F qi . Then compose the reduction of the
minimal polynomial the same invariants I of the curve C/Kab with CM field
K;

Step 4 For each of the pair (C1/F q1 ,K), choose small prime pi, i = 2, . . .M
such that pi splits completely in K, then find the curves among the 1-
parameter family Ci/F qi such that End◦F qi

Ji
∼= K. Calculate all conju-

gates of their invariants Ii/F qi . Then compose the reduction of the minimal
polynomial of the same invariants I of the curve C/Kab with CM field K;

Step 5 Choose one candidate minimal polynomial of Ii for each i and use the
CRT to lift each coefficient of the minimal polynomial to Kab;

Step 7 Test if the model C/Kab with the invariant I passed the CM tests,
then output it as a pseudo-CM curve, if not goto Steps 2-4 to try the other
combinations or add one more prime;

Remark 4. Again efficient identification of the isomorphism type of the endo-
morphism ring of J/F q could substantially accelerate the calculation. The only
algorithm available presently is in [22] which generalizes Kohel’s algorithm for
determination of the isomorphic type of endomorphism ring of ordinary elliptic
curves over finite fields, which uses the Cantor’s analogue of division polynomials
for elliptic curves.

Remark 5. One can lift either the integral (relative ) or the absolute invariants.
The absolute invariants is known as algebraic numbers but may not be algebraic
integers. To lift such numbers, one may use the algorithm in [37] which needs the
CRT of double size of the maximum between the numerator or the denominator.

Remark 6. It is known that usually to find the equation of a curve from its
invariants is very difficult. In projective embedding using theta functions, this
problem is solved by using Mestre’s trick, which however does not apply here.
We show an algorithm to overcome this problem using one-parameter family.
It is shown as Algorithm 4 in Appendix. To find equations of curves one may
apply its Steps 1-2 before the Step 1 of the algorithm 3 and its Step2 3-4 will be
used after the Step 5 in the algorithm 3. The example to be shown bellow used
a new approach to find curve equation from its invariant based on polynomial
resultant, which will be reported in the near future.

Remark 7. Further approaches to reduce the number of candidates so as to ac-
celerate the whole calculation are discussed in [22][16].
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6 Complexity Analysis

We give analysis of both the analytical embedding of CM Jacobian varieties
using the theta functions and the proposed algorithm for invariant lifting.

Below, we follow the notations and the algorithms in e.g. [36] and assume
g = 2.

Theorem 1. The analytical embedding using the theta functions costs exponen-
tial time of the discriminant of the CM field K: O(|dK |9/823/2

√
|dK |).

Proof. For simplicity we assume the CM type (K, {φi}) is self-dual, the endo-
morphism ring is the maximal order of OK . The discriminant of K is denoted as
dK . Assume the principal polarization of the embedding is given by the Riemann
form

E(z, w) =
∑

i

φi(ξ)(z̄iwi − ziw̄i), ξ ∈ K,K = K+(ξ), φi(ξ2) < 0.

The theta functions can be estimated by Minkowsky’s lemma, using minimal the
sum of abstract values to approximate the minimal type trace. In particular, for
δ, ε ∈ R2, Ω = diag[φi(ξ)]

|θ
[
δ
ε

]
(Ω)| = |

∑
m∈Z2

eπi(m+δ)tΩ(m+δ) × e2πi(m+δ)tε|

= O(
∑

m∈Z

e−π ImTΦ(ξ)m2
)

= O(e−(96π3)1/4|dK |1/8
).

Then in the Rosenhain normal form

y2 = x(x − 1)(x − λ1)(x − λ2)(x − λ3)

the roots λi can be estimated from the theta constants or the values of theta
functions on particular choices of δ, ε: λi = O(e 4(96π3)1/4|dK |1/8

). Thus, the in-
tegral Igusa Invariants which are defined by the Rosenhain normal form can be
estimated as Ii = O(e120(96π3)1/4|dK|1/8

). Since the absolute invariants are homo-
geneous ratios of the integral invariants, the calculations in the embedding by
the theta functions will be dominated by those for the integral invariants, we
will use the estimate of integral invariants in analysis of the whole algorithm.

Next, assume that the Igusa invariant is defined over a ray class field, for
simplicity a Hilbert class field. To calculate an algebraic integer with a minimal
polynomial of degree h will generally cause precision of

Prec(dK) = O(120(96π3)1/4h

(
h

�h
2 �

)
|dK |1/8)
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due to the error accumulation mainly in the middle term of the minimal poly-
nomial (see also [5]). Using the Sterling formula and take a upper bound of the
class number h as

√|dK |,

Prec(dK) = O(2
√

|dK | |dK | 38 ).

Take the number of the terms in the theta series expansion as√
Prec(dK)
|dK |1/8

= 21/2
√

|dK||dK |1/4

the complexity of the whole embedding is of O(|dK |9/823/2
√

|dK |). ��

Theorem 2. The invariant lifting algorithm find the model of a CM curve in
cost of polynomial time of the discriminant of the CM field K: O(|dK |135/8).

Proof. Consider the lifting of the Igusa invariants over the Hilbert class field
of the CM field K. The largest coefficient, which is of the middle degree term,
but its order can also be estimated as the highest degree coefficient. Since Ii =
O(e120(96π3)1/4|dK |1/8

), the order of the largest coefficient is about O(Ih
i ). By the

Chinese remainder theorem and the theorem of prime number, one knows that
in order to lift such integers, it is enough to repeat calculations of its shadows
or reductions on L = O(|dK |5/8) finite fields F q. The sizes of these finite fields
are also of the same order q = O(L). (Here lifting of a rational numbers requires
CRT in twice size of denominators and numerators, but the order remains the
same [37].)

Determination of isomorphic types of the endomorphism ring over F q using
the generalized Kohel algorithm in [22] required O(q20) computations. If this
algorithm is applied to all q6 curves over each finite fields, the calculations will
be L26 = O(|dK |65/4). The overall cost is then L27 = O(|dK |135/8).

Lifting of the minimal polynomials of the absolute Igusa invariants for h
coefficients from the L residues over finite fields of size L requires hL3 compu-
tations . The whole calculation is L = O(|dK |19/8). Thus, the whole complexity
is dominated by L27 = O(|dK |135/8). ��

7 Example

We show an example of construction of a secure hyperelliptic curve using the CM
field K = Q (α), where α =

√
−61 + 6

√
61. One can shown that Gal (K/Q) ∼=

Z/4Z, its class number h = 1 and the minimal polynomial of α is Z(X) =
X4 + 4X2 + 2.

Firstly, we construct by ordinary lifting the absolute Igusa invariants of a
curve of which the endomorphism ring is isomorphic to the maximal order OK of
K. We chose some small primes l such that Z splits completely modulo l and we
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can compute the absolute Igusa invariants of curves of which the endomorphism
ring over F l is isomorphic to OK . Then they were lifted to Q by the CRT and
Wang’s algorithm in [37]. The following table shows the process in which the
set of the primes l, used in residue collecting and lifting steps of the invariants
by CRT, is enlarged one by one. The places marked by “−” denotes when no
rational number is output by Wang’s algorithm, which means one has to use
more primes and the residues because Wang’s algorithm requires the product of
all the primes used in CRT greater than the square of the maximum between
the numerator and the denominator.

l (i1, i2, i3)
13 (−, 1

2 , 1)

47 (8,
−4
5 , −)

73 (−11
75 , 31

114 ,
−139
95 )

83 (−782
1277 , 32

7 ,
−960
977 )

103 ( 5212
957 , 909

9098 , 12548
2655 )

131 ( 45725
81556 , −, −)

137 (−, 179573
119374 , −)

179 (−, −,
−11412461
1383790 )

199 (−77531094
109697555 , , −, 24918900

5235127 )

239 ( 2186985284
3193941857 , −,

−1640487534
4170341347 )

241 ( 23480370079
7651764248 , −,

−3798052317
1459572997 )

257 ( 245299012496
677918816561 , −, −)

269 (−,
−73355585483
60532992290 , 13309544621557

7113235908976 )

317 (−,
−131053190222379
52778584689371 , −)

347 (−21342583751735
3808553318042 , 4795562804619412

416652904406961 , 437038183335891
1181681515448155 )

367 (−95446913549733067
133830947268042676 , 57711532928870746

49544577811039265 , −)

379 ( 481547553916414864
556460739772033019 , 793418475254355983

2138941242118446 ,
−1724244246804899840
957123916241973161 )

439 ( 6401196155012958989
38238304696123990463 , 50886108237373229315

37574040451946828884 , −)

443 (−,
−618113148448625173421
952973557895549148675 , 1072978816049248202527

842824205190253192560 )

449 (−,
−3510317073529145008681
739273871370166606358 ,

−12388639766753383014443
17187104504207396501870 )

461 (−299274870135327180981267
249312036201259653282511 , 1638494059000232830016

7515286520993930649211 ,
−3631149880471373717731
1981252142710456062498 )

503 (−9779149094165252651842316
6148917421576784421994809 , −, −)

569 (−, −, −)

571 (−, −,
−5963566557743154949796078203
1536547050300225516350695163 )

607 (−,
−40404764693716413637740986368

22101649211923402921875 ,
−63585703806382049374801395712

66304947635770208765625 )

619 (−2886336561996590171343946822001
184005852797284144076142609559 , ·, ·)

683 (−82310585301850115990999586471322
68839863183383748380694831604363 , ·, ·)

691 (−, ·, ·)
727 ( 9002218257568433062920010702880679

73193413427316259390193718337634839 , ·, ·)
733 (−, ·, ·)
757 (−, ·, ·)
809 ( 287937809605549912245372120696446280663

1417662602226964645619988631257350586163 , ·, ·)
827 (−14498065853290897609675245742083596224

10780139784149871335753677421107380887 , ·, ·)
863 ( 459886983835727347264515302686871761950605

1007513953903343329976042348216570436709249 , ·, ·)
911 ( 6436293426160197039584338850495664959919199

31649835338309069933550235889538091910369641 , ·, ·)
937 (−116152266457850949605013807041682945649672192

6402508627232391130785654498779296875 , ·, ·)
977 (−116152266457850949605013807041682945649672192

6402508627232391130785654498779296875 , ·, ·)

Secondly, we construct a secure Jacobian defined over a finite field by the
fast algorithm of [8]. Specifically, using prime ideal factorization of the Frobenius
endomorphism, we found a principal prime ideal of K

(ω) =
(

1 α+1
2

α2+7
12

α3+5α2+7α+35
120

) 


−438577
−3748
284050
124962


OK
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such that NK/Q(ω) = p, where p = 5231262434024213788387387. Then we
obtained a secure Jacobian with order

#J (F p) = 24 × pmax

where pmax is a 160bits prime number

pmax = 1710381665854894312958517262601197350921820022483.

Finally, we construct a secure curve over F p, of which Jacobian has above
order, from invariants calculated above:

i1 =
−116152266457850949605013807041682945649672192

6402508627232391130785654498779296875

i2 =
−40404764693716413637740986368

22101649211923402921875

i3 =
−63585703806382049374801395712

66304947635770208765625
.

The equation of curves is restricted here in form of

Y 2 = X5 + X3 + a2X
2 + a1X + a0.

Notice that this restriction does not exclude any possible isomorphism classes of
the curves.

By an algorithm mentioned before using polynomial resultant computation,
we obtained coefficients of a curve with given invariants as

a0 = 417929590974323696943368
a1 = 2257561965032447596454492
a2 = 2418466578595705463946119

over F p. The twisted curve of the above curve has equation as

C/F p : Y 2 = X5 + c2X3 + c3a2X
2 + c4a1X + c5a0,

where c = 2. It has the same secure order constructed above.

Acknowledgment: The authors wish to thank Prof. Fumiyuki Momose for
helpful discussions, Prof. Gerhard Frey for interesting comments on [33] and Dr.
Michael Müller for sending us a copy of Dr. Spallek’s thesis.
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Appendix: Subfamilies Whose Models Can Be Determined
from Their Invariants

Since it is generally difficult to find an explicit model of a curve with given in-
variants, we will use the following algorithm to find the models of curves from a
point in their moduli space.

Algorithm 4

Input : A model of a family C/K with r parameter α1, · · · , αr, {f(x, y, α1, · · · ,
αr) = 0}, and a point I = (I1, . . . , Im) in their moduli space;

Output : Definition field F and a model of C/F : h(x, y, α) = 0 corresponding
to I, where α ∈ F ;

Step 1 Choose r − 1 constraints ci(α1, · · · , αr) = 0, i = 1, . . . , r − 1 in the
parameter space to obtain a subfamily h(x, y, α) with 1-parameter α;

Step 2 Reduce the definition equations of the invariants Ii := gi(α1, · · · , αr) to
Ji(α) = 0, i = 1, . . . ,m;
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Step 3 Calculate gcd(J1, . . . , Jm) =: J(x) ∈ K[I1, . . . , Im][x];
Step 4 If J(x) �= const, output h(x, y, α) as the model over definition field

F := K(α) with a minimal polynomial as J(x);

We can then apply this algorithm to obtain models of hyperelliptic curves of
genus two from their Igusa invariants.
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