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Abstract. In this paper we introduce a structure iterated by the rule
A of Skipjack and show that this structure is provably resistant against
differential or linear attacks. It is the main result of this paper that the
upper bound of r-round (r ≥ 15) differential(or linear hull) probabilities
are bounded by p4 if the maximum differential (or linear hull) probability
of a round function is p, and an impossible differential of this structure
does not exist if r ≥ 16. Application of this structure which can be seen
as a generalized Feistel structure in a way to block cipher designs brings
out the provable security against differential and linear attacks with some
upper bounds of probabilities. We also propose an interesting conjecture.

1 Introduction

The most powerful known attacks on block ciphers are Differential Cryptanal-
ysis(DC) [2,3] and Linear Cryptanalysis(LC) [10,11]. Since such cryptanalyses
have been proposed, designers of block ciphers have tried to give the provable
security against DC and LC. Kanda et al [7] classified four measures to evaluate
the security of a cipher against DC and LC as follows;

1. Precise measure : The maximum average of differential and linear hull prob-
abilities.

2. Theoretical measure : The upper bounds of the maximum average of differ-
ential and linear hull probabilities.

3. Heuristic measure : The maximum average of differential characteristic and
linear approximation probabilities.

4. Practical measure : The upper bounds of the maximum average of differential
characteristic and linear approximation probabilities.

Among the above four measures, the first two are the measures of the theo-
retical point of view and the last two are the measures of the practical point of

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 274–288, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Provable Security for the Skipjack-like Structure against DC and LC 275

view. If the number of rounds increases, it is computationally infeasible to com-
pute exactly with the point of the precise and heuristic measures. Therefore the
theoretical and practical measures are important measures to show the security
of a cipher against DC and LC. However the practical measure does not give a
sufficient condition for the security of a cipher against DC and LC. It is only a
necessary condition, so the theoretical measure is the only left one to give the
provable security against DC and LC.

K.Nyberg and R.Knudsen showed that the r-round differential(or linear hull)
probabilities in the Feistel structure are bounded by 2p2 if the maximal differen-
tial(or linear hull) probability of round function is p and r ≥ 4 [16]. Furthermore,
the probability can be reduced to p2 if the round function is bijective and r ≥ 3
[1]. So the construction of a round function with a small maximal probability of
differentials(linear hull) is a very important factor to give the provable structure
against DC(LC). M.Matsui gave an example of such a construction using the
iterative nested Feistel structures [12,13].

In this paper we will prove the security of an iterated cipher which follows the
rule A of Skipjack structure against DC and LC. The r-round(r ≥ 15) differen-
tial probabilities are bounded by p4 if the maximal differential probability of the
round function is p. Since the proof of linear hull probabilities in LC is almost
same as that of differential probabilities [12,16,17], we will just prove the upper
bound of differential probabilities of the structure. Furthermore we will show
that there does not exists an impossible differential if r ≥ 16 in the generalized
Feistel structure and Skipjack-like structure. Also we give some conjectures in
the generalized Feistel and Skipjack-like structures.

2 Preliminaries

Differential cryptanalysis uses the non-uniformity of the output differences given
input differences and linear cryptanalysis relies on the correlations of input/ouput
bits and key bits. Block ciphers are usually constructed iteratively with the same
round function. So in order to avoid DC and LC it needs to use the round func-
tions which have the good properties against such attacks with sufficient rounds.

In this section we consider a round function F : GF (2)n → GF (2)n. We as-
sume that round keys are independent and uniformly random. Furthermore,
input data are also independent and uniformly random.

Definition 1. [12] For any given ∆X, ∆Y, ΓX, ΓY ∈ GF (2)n, the differential
and linear hull probabilities of a round function F are defined as;

DPF (∆X → ∆Y ) =
#{x ∈ GF (2)n | F (X)⊕ F (X ⊕ ∆X) = ∆Y }

2n

LPF (ΓX → ΓY ) =
(

#{x ∈ GF (2)n | ΓX • X = ΓY • F (Y )}
2n−1

− 1
)2

where Γx • Γy denotes the parity of bitwise exclusive-or of Γx and Γy.
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In the above definitions the probabilities mean the average probabilities for
all the possible keys. To give the provable security against DC and LC with the
theoretical measure we need the following definitions.

Definition 2. The maximal differential and linear hull probability of F are de-
fined by

DPF
max = max

∆x �=0,∆y
DPF (∆x → ∆y)

and
LPF

max = max
Γx,Γy �=0

LPF (Γx → Γy)

respectively.

On the point of view of the provable security DPF
max, LPF

max are the very
important factors. With above two definitions, we can easily get the following
two theorems.

Theorem 1. [12] (i) For any function F ,
∑
∆Y

DPF (∆X → ∆Y ) = 1,
∑
ΓX

LPF (ΓX → ΓY ) = 1.

(ii) For any bijective function F ,
∑
∆X

DPF (∆X → ∆Y ) = 1,
∑
ΓY

LPF (ΓX → ΓY ) = 1.

If F1 and F2 which are functions from GF (2)n to GF (2)n are used as consec-
utive round functions and relatively independent, we can calculate differential
and linear hull probabilities with the following theorem.

Theorem 2. [12] For any ∆X, ∆Z, ΓX, ΓZ ∈ GF (2)n,

DPF1,F2(∆X → ∆Z) =
∑
∆Y

DPF1(∆X → ∆Y ) · DPF2(∆Y → ∆Z)

and

LPF1,F2(ΓX → ΓZ) =
∑
ΓY

LPF1(ΓX → ΓY ) · LPF2(ΓY → ΓZ).

Since the method of calculating linear hull probabilities can be calculated
with the reverse order of the method of calculating differential probabilities
[12,16,17], we will only consider the differential probabilities in this paper.

3 Provable Security for Block Cipher Structures against
DC and LC

Structures of block ciphers can be roughly classified by the Feistel structure
and the SPN structure. Since there has been much progress in the structures of



Provable Security for the Skipjack-like Structure against DC and LC 277

bijective functions with good properties, the interest in the SPN structure has
been increased. There are Square [5], Riindael [6], and Crypton [8] which are
constructed by considering the branch number [18] in the SPN structure from
the practical point of view. However the Feistel structure has been used more
widely since it has no limit of round function. In this section we consider the
security of the Feistel structure and its modifying structure against DC and LC.
We assume that the round keys of round function F are mutually independent
and uniformly distributed and the maximal differential probability of the round
function F , DPF

max, is p.
K.Nyberg and R.Knudsen showed that the r-round differential(or linear hull)

probabilities in the Feistel structure are bounded by 2p2 if the maximal differ-
ential(or linear hull) probability of round function is p and r ≥ 4 in Feistel
structure. Furthermore, the probability can be reduced to p2 if the round func-
tion is bijective and r ≥ 3. So the smaller probability p is, the better security
level against DC and LC we can give. For example, consider the Feistel structure
block cipher which has bijective round function F : GF (2)32 → GF (2)32 with
more than or equal to 3 round. If the maximal differential probability is close to
2−32, then the upper bound of differential of the cipher is close to 2−64. So we
can give the almost perfect security against DC. M.Matsui gave the example of
such a construction using the iterated nested Feistel structures [12,13].

?
F - ?

?
F - ?

?
F - ?

? ? ? ?

Fig. 1. Skipjack-like structure

Since AES(Advanced Encryption Standard) have been proposed, the 128-bit
block ciphers are usually adopted. If we construct 128-bit block ciphers with the
Feistel structure, we need to design 64-bit round function. However, to construct
64-bit round function are usually more difficult than to design 32-bit round
function and it is also a hard problem to give the provable security against
DC and LC. So the generalized Feistel structure which divides input blocks
by 4 was proposed and used in MARS, RC6, TWOFISH, and etc. We also
have Skipjack [19] which is the 64-bit block cipher with the generalized Feistel
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structure dividing input blocks by 4 and it has 32 rounds where half of them
are ruled by A type and the others by B type. Fig. 1 describe the structure of
iterated ciphers using the rule A of Skipjack. Since the output block of a round
function F has effects on the next block and its own block, Skipjack-like structure
is different to the generalized Feistel structure and data randomization is faster
than the generalized Feistel structure. However the Skipjack-like structure needs
a bijective round function. In the next section we will prove the upper bound of
differential probabilities of the Skipjack-like structure as in the Feistel structure
case.

4 The Main Result - Provable Security against DC and
LC in the Skipjack-like Structure

In this section we prove the upper bound of differential probabilities in the
iterated Skipjack-like structure from the theoretical point of view. We assume
that a round function F is bijective and the maximal differential of F is p.

Now we consider the 15-round Skipjack-like iterated block cipher. In Fig. 2
the αi’s mean the input block differences, βi’s mean the output block differences
and δi’s are variables which mean i-th round output differences. Set an input
difference to α = (α1, α2, α3, α4) and an output difference β = (β1, β2, β3, β4).
By the assumption that a round function is bijective we just consider α �= 0
and β �= 0. Therefore for the given nonzero input difference α the probability
that an output difference is β is calculated as following. We denote the 15-round
differential probability as DP (α → β) and DPF (∆X → ∆Y ) as DP (∆X →
∆Y ).

DP (α → β) =
X

δi,1≤i≤11

DP (α1 → δ1) · DP (α2 ⊕ δ1 → δ2) · DP (α3 ⊕ δ2 → δ3)

·DP (α4 ⊕ δ3 → δ4) · DP (δ1 ⊕ δ4 → δ5) · DP (δ2 ⊕ δ5 → δ6)

·DP (δ3 ⊕ δ6 → δ7) · DP (δ4 ⊕ δ7 → δ8) · DP (δ5 ⊕ δ8 → δ9) (1)

·DP (δ6 ⊕ δ9 → δ10) · DP (δ7 ⊕ δ10 → δ11) · DP (δ8 ⊕ δ11 → β3 ⊕ β4)

·DP (δ9 ⊕ β3 ⊕ β4 → β1) · DP (δ10 ⊕ β1 → β2) · DP (δ11 ⊕ β2 → β3)

Using the equation(1) we prove the following main theorem.

Theorem 3. If a round function of the Skipjack-like structure is bijective and
r ≥ 15, then r-round differential probabilities are bounded by p4 where p is the
maximal average differential probability of a round function.

Proof. We prove the case r=15. If r is greater than 15, we can easily prove by
the case r=15 and the Theorem 1,2. We will prove the theorem case by case and
the cases are classified by 8, i.e. , the βi’s (1 ≤ i ≤ 3) are zero or not.

Case 1( β1 = 0, β2 = 0, β3 = 0 )
Since we do not consider the case β �= 0, β4 is nonzero. By the case assump-
tion, we have δ7 = δ10 = δ11 = 0 and δ3 = δ6 = δ9 = β4 �= 0. There-
fore δ3, δ6, δ7, δ9, δ10, δ11 is fixed and variable t = {δ1, δ2, δ4, δ5, δ8} will be only
summed over in equation (1). So we have the following;
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Fig. 2. Notations of 15-round differential

Table 1. Notations of Proof

Relations

Variable t

step 1 DP (α1 → δ1) DP (α2 ⊕ δ1 → δ2) DP (α3 ⊕ δ2 → δ3)

step 2 DP (α4 ⊕ δ3 → δ4) DP (δ1 ⊕ δ4 → δ5) DP (δ2 ⊕ δ5 → δ6)

step 3 DP (δ3 ⊕ δ6 → δ7) DP (δ4 ⊕ δ7 → δ8) DP (δ5 ⊕ δ8 → δ9)

step 4 DP (δ6 ⊕ δ9 → δ10) DP (δ7 ⊕ δ10 → δ11) DP (δ8⊕ δ11→ β3⊕ β4)

step 5 DP (δ9⊕ β3⊕ β4→ β1) DP (δ10 ⊕ β1 → β2) DP (δ11 ⊕ β2 → β3)
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DP (α → β) =
∑

t

DP (α1 → δ1) · DP (α2 ⊕ δ1 → δ2) · DP (α3 ⊕ δ2 → δ3)

·DP (α4 ⊕ β3 → δ4) · DP (δ1 ⊕ δ4 → δ5) · DP (δ2 ⊕ δ5 → β4)
·DP (δ4 → β4) · DP (δ5 ⊕ δ8 → β4) · DP (δ8 → β4)

Among the above equation DP (α3⊕ δ2 → δ3), DP (δ2⊕ δ5 → β4), DP (δ5 ⊕ δ8 →
β4) and DP (δ8 → β4) are bounded by p since the output differences are nonzero
and F is bijective. So we have

DP (α → β) ≤ p4 ·
∑

t

DP (α1 → δ1) · DP (α2 ⊕ δ1 → δ2) · DP (α4 ⊕ β3 → δ4)

·DP (δ1 ⊕ δ4 → δ5) · DP (δ4 → β4) ≤ p4.

From now on we will use the table such as Table 1. In the Table 1 relations mean
the relations of variable αi’s,βi’s and δi’s. Therefore the variables of the relations
in the table relations are fixed and variables(= t) are only summed over in the
equation (1). Using the notations of Table 1 we can represent the proof of Case
1 by the following table.

Table 2. Proof of Case 1 : β1 = 0, β2 = 0, β3 = 0

Relations δ7 = δ10 = δ11 = 0, δ3 = δ6 = δ9 = β4 �= 0
Variable t δ1, δ2, δ4, δ5, δ8

step 1 sum over δ1 sum over δ2 ≤ p

step 2 sum over δ4 sum over δ5 ≤ p

step 3 1 sum over δ8 ≤ p

step 4 1 1 ≤ p

step 5 1 1 1

Case 2( β1 = 0, β2 = 0, β3 �= 0 )
We divide Case 2 by 2 cases whether β3 ⊕ β4 is zero or not. In the Case 2-1
DP (α → β) is bounded by p5 and in the Case 2-2 DP (α → β) is bounded by
p4.

Proofs of other cases can be proved in the similar way. More details are in
the Appendix. All the cases DP (α → β) is bounded by p4.

Since the Skipjack-like structure can be regarded as one of the generalizations
of the Feistel structure in a way, provable security against LC is also obtained
as in [12,16,17].

Theorem 4. If a round function of the Skipjack-like structure is bijective and
r ≥ 15, then r-round linear hull probabilities are bounded by q4 where q is the
maximal average linear hull probability of a round function.
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Table 3. Proof of Case 2-1 : β1 = 0, β2 = 0, β3 �= 0, β3 ⊕ β4 = 0

Relations δ6 = δ9 = δ10 = 0, δ2 = δ5 = δ7 = δ11

Variable t δ1, δ3 �= 0, δ4, δ11 �= 0
step 1 sum over δ1 ≤ p sum over δ3

step 2 sum over δ4 ≤ p 1

step 3 ≤ p ≤ p 1

step 4 1 ≤ p 1

step 5 1 1 sum over δ11

Table 4. Proof of Case 2-2 : β1 = 0, β2 = 0, β3 �= 0, β3 ⊕ β4 �= 0

Relations δ10 = 0, δ6 = δ9 = β3 ⊕ β4

Variable t δ1, δ2, δ3, δ4, δ5, δ7 �= 0, δ8, δ11 �= 0
step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 ≤ p

step 3 ≤ p sum over δ7 sum over δ8

step 4 1 ≤ p ≤ p

step 5 1 1 sum over δ11

Now, let’s consider one of the generalization of the Feistel structure as Fig. 3.
Assume that the round function is bijective. In the case m = 2 (the Feistel

structure), if r ≥ 3 = 1 ·3, then r-round differential probabilities are bounded by
p2. In the case m = 3, S.Sung [21] proved that r-round differential probabilities
are bounded by p3 if r ≥ 8 = 2 · 4. Also in the case m = 4, r-round differential
probabilities are bounded by p4 if r ≥ 15 = 3 · 5. So we can conjecture the
following.

Conjecture 1. In the generalized Feistel structure and Skipjack-like structure,
r-round differential probabilities are bounded by pm if r ≥ (m − 1)(m + 1).

5 Impossible Truncated Differential of the Generalized
Feistel Structure and Skipjack-like Structure

In this section we consider an impossible truncated differential of (i) the gener-
alized Skipjack-like structure whose one-round transformation is Fk(x1, x2, · · · ,
xm) = (fk(x1) ⊕ x2, x3, , · · · , xm, fk(x1)), and (ii) the generalized(CAST256-
like) Feistel structure whose one-round transformation is Fk(x1, x2, · · · , xm) =
(fk(x1)⊕x2, x3, · · · , xm, x1), where fk : {0, 1}n → {0, 1}n is a keyed-round func-
tion.

Now we can consider the relation of an impossible truncated differential and
a number of round in (i), (ii). We assume that round functions are bijective,
random, and pairwise independent. Let ∆X = (∆X1, · · · , ∆Xm) and ∆Y =
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Fig. 3. Generalized Feistel Structure

(∆Y1, · · · , ∆Ym) be an input and output difference respectively. Then we have
the following results.

Proposition 1. If r = m2 − 1, there exist an impossible truncated differential
whose form is (0, 0, · · · , 0, ∆α) 9 (∆β, 0, · · · , 0) in (i) and (ii), where ∆α and
∆β are nonzero.

Note : In the case of m = 3 , we can find the 8-round impossible truncated
differential whose form is (0, 0, ∆α) 9 (∆β, 0, 0) in (ii), where ∆α and ∆β
are nonzero (similarly it holds in (i)). Consider the following figure. Since we
assumed that round functions are bijective and ∆α is nonzero, ∆t is nonzero.
But the four round output differential is zero. This is the contradiction.

With Proposition 1 and the notion of pseudorandomness in Luby and Rackoff
[9], we can conjecture that impossible differentials and the pseudorandomness
are closely related. However, the number of queries in the impossible differential
attack model are more than that in the distinguishing attack model [14]. Also
we can conjecture the followings.

Conjecture 2. If r ≥ m2, there does not exist an impossible truncated differential
in (i) and (ii).

Conjecture 2 can be proved by a computer programming if m is small enough,
say less than 32. A similar method can be seen in [20]. However, since we could
not find a general rule of proof, we just do conjecture it in the case that m is
large. So we need further works.

We can find the impossible differential whose form is (0, 0, 0, ∆α)9 (∆β, 0,
0, 0) in the Skipjack-like structure(m = 4) if r = 15. Skipjack is the 64-bit block
cipher with 80-bit key and 32-round(A8B8A8B8) using rules A and B iteratively.
There has been the impossible differential attack [4] which use the weakness of
this cipher to apply the rule B only after 8-round of rule A. These attacks only
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Fig. 4. 8-round impossible truncated differential in the case of m = 3

use the structural weakness. However, if Skipjack algorithm use A16B16 or A32

then the impossible differential attack can not be applied any more by Conjecture
2 in case m = 4.

6 Conclusion

In this paper we give the provable security for the Skipjack-like cipher against
DC from the theoretical point of view. If the maximal differential of a round
function of a Skipjack-like cipher is p and r ≥ 15, then r-round differential
probabilities are bounded by p4. Also we suggest the conjecture that r-round
differential probabilities are bounded by pm if r ≥ (m−1)(m+1) and there does
not exists an impossible differential if r ≥ m2 in the generalized Feistel structure
and Skipjack-like structure.

It seems a hard problem to give the provable security against DC and LC
in the block cipher. Until now, there have been no 128-bit block cipher with
the provable security against DC and LC from the theoretical point of view. So
we believe our result to be very helpful to design provably secure block ciphers
against DC and LC.
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Appendix: Proof of Theorem 3

Table 5. Proof of Case 3-1 : β1 = 0, β2 �= 0, β3 = 0, β4 = 0

Relations δ9 = 0, δ5 = δ8 = δ11 = β2 �= 0
Variable t δ1, δ2, δ3, δ4, δ6, δ7, δ10

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 ≤ p sum over δ6

step 3 sum over δ7 ≤ p 1

step 4 sum over δ10 ≤ p 1

step 5 1 ≤ p 1

Table 6. Proof of Case 3-2 : β1 = 0, β2 �= 0, β3 = 0, β4 �= 0

Relations δ9 = β4 �= 0, δ11 = β2 �= 0
Variable t δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ10

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 sum over δ6

step 3 sum over δ7 sum over δ8 ≤ p

step 4 ≤ p sum over δ10 ≤ p

step 5 1 ≤ p 1

Table 7. Proof of Case 4-1 : β1 �= 0, β2 = 0, β3 = 0, β4 = 0

Relations δ8 = δ11 = 0, δ4 = δ7 = δ10 = β1 �= 0
Variable t δ1, δ2, δ3, δ5, δ6, δ9

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 ≤ p sum over δ5 sum over δ6

step 3 ≤ p 1 sum over δ9

step 4 ≤ p 1 1

step 5 ≤ p 1 1
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Table 8. Proof of Case 4-2 : β1 �= 0, β2 = 0, β3 = 0, β4 �= 0

Relations δ11 = 0, δ7 = δ10 = β1 �= 0
Variable t δ1, δ2, δ3, δ4, δ5, δ6, δ8, δ9,

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 sum over δ6

step 3 ≤ p sum over δ8 sum over δ9

step 4 ≤ p 1 ≤ p

step 5 ≤ p 1 1

Table 9. Proof of Case 5-1 : β1 �= 0, β2 �= 0, β3 = 0, β4 = 0

Relations δ8 = δ11 = β2 �= 0
Variable t δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ9 �= 0, δ10

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 sum over δ6

step 3 sum over δ7 ≤ p ≤ p

step 4 sum over δ10 ≤ p 1

step 5 sum over δ9 ≤ p 1

Table 10. Proof of Case 5-2 : β1 �= 0, β2 �= 0, β3 = 0, β4 �= 0

Relations δ11 = β2 �= 0
Variable t δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9, δ10

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 sum over δ6

step 3 sum over δ7 sum over δ8 sum over δ9

step 4 sum over δ10 ≤ p ≤ p

step 5 ≤ p ≤ p 1

Table 11. Proof of Case 6 : β1 �= 0, β2 = 0, β3 �= 0

Relations δ10 = β1 �= 0
Variable t δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9, δ11

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 sum over δ6

step 3 sum over δ7 sum over δ8 sum over δ9

step 4 ≤ p ≤ p sum over δ11

step 5 ≤ p 1 ≤ p
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Table 12. Proof of Case 7-1 : β1 = 0, β2 �= 0, β3 �= 0, β3 ⊕ β4 = 0

Relations δ9 = 0, δ5 = δ8 = δ11

Variable t δ1, δ2, δ3, δ4, δ6 �= 0, δ7, δ10, δ11 �= 0
step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 ≤ p ≤ p

step 3 sum over δ6 sum over δ7 1

step 4 ≤ p sum over δ10 1

step 5 1 ≤ p sum over δ11

Table 13. Proof of Case 7-2 : β1 = 0, β2 �= 0, β3 �= 0, β3 ⊕ β4 �= 0

Relations δ9 = β3 ⊕ β4 �= 0
Variable t δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ10, δ11

step 1 sum over δ1 sum over δ2 sum over δ3

step 2 sum over δ4 sum over δ5 sum over δ6

step 3 sum over δ7 sum over δ8 ≤ p

step 4 sum over δ10 sum over δ11 ≤ p

step 5 1 ≤ p ≤ p

Table 14. Proof of Case 8-1 : β1 �= 0, β2 �= 0, β3 �= 0, α1 �= 0

Relations

Variable t δ1 �= 0, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9, δ10, δ11

step 1 ≤ p sum over δ1 sum over δ2

step 2 sum over δ3 sum over δ4 sum over δ5

step 3 sum over δ6 sum over δ7 sum over δ8

step 4 sum over δ9 sum over δ10 sum over δ11

step 5 ≤ p ≤ p ≤ p

Table 15. Proof of Case 8-2 : β1 �= 0, β2 �= 0, β3 �= 0, α1 = 0, α2 �= 0

Relations δ1 = 0

Variable t δ2 �= 0, δ3, δ4, δ5, δ6, δ7, δ8, δ9, δ10, δ11

step 1 1 ≤ p sum over δ2

step 2 sum over δ3 sum over δ4 sum over δ5

step 3 sum over δ6 sum over δ7 sum over δ8

step 4 sum over δ9 sum over δ10 sum over δ11

step 5 ≤ p ≤ p ≤ p
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Table 16. Proof of Case 8-3 : β1 �= 0, β2 �= 0, β3 �= 0, α1 = 0, α2 = 0, α3 �= 0

Relations δ1 = δ2 = 0

Variable t δ3 �= 0, δ4, δ5, δ6, δ7, δ8, δ9, δ10, δ11

step 1 1 1 ≤ p

step 2 sum over δ3 sum over δ4 sum over δ5

step 3 sum over δ6 sum over δ7 sum over δ8

step 4 sum over δ9 sum over δ10 sum over δ11

step 5 ≤ p ≤ p ≤ p

Table 17. Proof of Case 8-4 : β1 �= 0, β2 �= 0, β3 �= 0, α1 = 0, α2 = 0, α3 =
0, α4 �= 0

Relations δ1 = δ2 = δ3 = 0

Variable t δ4 �= 0, δ5, δ6, δ7, δ8, δ9, δ10, δ11

step 1 1 1 1

step 2 ≤ p sum over δ4 sum over δ5

step 3 sum over δ6 sum over δ7 sum over δ8

step 4 sum over δ9 sum over δ10 sum over δ11

step 5 ≤ p ≤ p ≤ p
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