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Abstract. We present an attack on plain ElGamal and plain RSA en-
cryption. The attack shows that without proper preprocessing of the
plaintexts, both ElGamal and RSA encryption are fundamentally inse-
cure. Namely, when one uses these systems to encrypt a (short) secret
key of a symmetric cipher it is often possible to recover the secret key
from the ciphertext. Our results demonstrate that preprocessing mes-
sages prior to encryption is an essential part of both systems.

1 Introduction

In the literature we often see a description of RSA encryption as C' = (M¢) mod
N (the public key is (IV,e)) and a description of ElGamal encryption as C' =
(My", g") mod p (the public key is (p, g, y)). Similar descriptions are also given
in the original papers [17/9]. It has been known for many years that this simplified
description of RSA does not satisfy basic security notions, such as semantic se-
curity (see [6] for a survey of attacks). Similarly, a version of ElGamal commonly
used in practice does not satisfy basic security notions (even under the Decision
Diffie-Hellman assumption [5]) . To obtain secure systems using RSA and ElGa-
mal one must apply a preprocessing function to the plaintext prior to encryption,

! Implementations of ElGamal often use an element g € Z, of prime order g where ¢ is
much smaller than p. When the set of plaintexts is equal to the subgroup generated
by g, the Decision Diffie Hellman assumption implies that ElGamal is semantically
secure. Unfortunately, implementations of ElGamal often encrypt an m-bit message
by viewing it as an m-bit integer and directly encrypting it. The resulting system is
not semantically secure — the ciphertext leaks the Legendre symbol of the plaintext.
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or a conversion to the encryption function (see [LOJTGJI3] for instance). Recent
standards for RSA [15] use Optimal Asymmetric Encryption Padding (OAEP)
which is known to be secure against a chosen ciphertext attack in the random
oracle model [4]. Currently, there is no equivalent preprocessing standard for El-
Gamal encryption, although several proposals exist [I[10J16/13]. Unfortunately,
many textbook descriptions of RSA and ElGamal do not view these preprocess-
ing functions as an integral part of the encryption scheme. Instead, common
descriptions are content with an explanation of the plain systems.

In this paper we give a simple, yet powerful, attack against both plain RSA
and plain ElGamal encryption. The attack illustrates that plain RSA and plain
ElGamal are fundamentally insecure systems. Hence, any description of these
cryptosystems cannot ignore the preprocessing steps used in full RSA and full
ElGamal. Our attack clearly demonstrates the importance of preprocessing. It
can be used to motivate the need for preprocessing in introductory texts.

Our attack is based on the fact that public key encryption is typically used
to encrypt session-keys. These session-keys are typically short, i.e. less than 128
bits. The attack shows that when using plain RSA or plain ElGamal to encrypt
an m-bit key, it is often possible to recover the key in time approximately 2/2.
In environments where session-keys are limited to 64-bit keys (e.g. due to gov-
ernment regulations), our attack shows that both plain RSA and plain ElGamal
result in a completely insecure system. We experimented with the attack and
showed that it works well in practice.

1.1 Summary of Results

Suppose the plaintext M is m bits long. For illustration purposes, when m = 64
we obtain the following results:

— For any RSA public key (N, e), given C = M® mod N it is possible to recover
M in the time it takes to compute 2 - 2"/2 modular exponentiations. The
attack succeeds with probability 18% (the probability is over the choice of
M €{0,1,...,2™ —1}). The algorithm requires 2™/?m bits of memory.

— Let (p, g,y) be an ElGamal public key. When the order of ¢ is at most p/2™,
it is possible to recover M from any ElGamal ciphertext of M in the time
it takes to compute 2 - 2"/2 modular exponentiations. The attack succeeds
with probability 18% (over the choice of M), and requires 2"/?m bits of
memory.

— Let (p,g,y) be an ElGamal public key. Suppose p — 1 = ¢s where s > 2™
and the discrete log problem for subgroups of Zj of order s is tractable, i.e.
takes time 7" for some small 7. When the order of g is p — 1, it is possible
to recover M from any ciphertext of M in time 7 and 2 - 2”/2 modular
exponentiations. The attack succeeds with probability 18% (over the choice
of M), and requires 2™/?m, bits of memory.

— Let (p,g,y) be an ElGamal public key. Suppose again p — 1 = ¢gs where
s > 2™ and the discrete log problem for subgroups of Zj of order s takes
time T for some small 7. When the order of g is either p—1 or at most p/2™,
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it is possible to recover M from any ciphertext of M in time T plus one
modular exponentiation and 2 - 2"/2 additions, provided a precomputation
step depending only on the public key. The success probability is 18% (over
the choice of M). The precomputations take time 2™/2T and 2™/? modu-
lar exponentiations. The space requirement can optionally be decreased to
om/4 logy s bits without increasing the computation time, however with a
loss in the probability of success.

All attacks can be parallelized, and offer a variety of trade-offs, with respect to
the computation time, the space requirement, and the probability of success. For
instance, the success probability of 18% can be raised to 35% if the computation
time is quadrupled. Note that the first result applies to RSA with an arbitrary
public exponent (small or large). The attack becomes slightly more efficient when
the public exponent e is small. The second result applies to the usual method
in which ElGamal is used in practice. The third result applies when ElGamal
encryption is done in the entire group, however p—1 has a small smooth factor (a
64-bit smooth factor). The fourth result decreases the on-line work of both the
second and the third results, provided an additional precomputation stage. It
can optionally improve the time/memory trade-off. The third and fourth results
assume that p — 1 contains a smooth factor: such a property was used in other
attacks against discrete-log schemes (see [2l14] for instance).

1.2 Splitting Probabilities for Integers

Our attacks can be viewed as a meet-in-the-middle method based on the fact
that a relatively small integer (e.g., a session-key) can often be expressed as
a product of much smaller integers. Note that recent attacks on padding RSA
signature schemes [7] use related ideas. Roughly speaking, these attacks expect
certain relatively small numbers (such as hashed messages) to be smooth. Here,
we will be concerned with the size of divisors. Existing analytic results for the
bounds we need are relatively weak. Hence, we mainly give experimental results
obtained using the Pari/GP computer package [3].

Let M be a uniformly distributed m-bit integer. We are interested in the
probability that M can be written as:

— M = MM, with M; < 2™ and M, < 2™2. See table [ for some values.
— M = M MyMs with M; < 2™i. See table 2l for some values.
— M = My My;MsM, with M; < 2™i. See table [3] for some values.

The experimental results given in the tables have been obtained by factoring
a large number of randomly chosen m-bit integers with uniform distribution.
Some theoretical results can be obtained from the book [I1]. More precisely, for
1/2 < a < 1, let P,(m) be the probability that a uniformly distributed integer
M in [1...2™ — 1] can be written as M = My Ms with both M; and M, less or
equal to 2™ It can be shown that P /»(m) tends (slowly) to zero as m grows to
infinity. This follows (after a little work) from results in [II][Chapter 2] on the
number H(z,y, z) of integers n < z for which there exists a divisor d such that
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y < d < z. More precisely, the following holds (where log denotes the neperian
logarithm):

loglogm - y/logm
Pl/g(m):O< 5 s (1)
m
where § = 1 — % ~ 0.086. On the other hand, when o > 1/2, P,(m)
no longer tends to zero, as one can easily obtain the following asymptotic lower
bound, which corrects [8 Theorem 4, p 377]:

liminf P, (m) > log(2a), (2)

This is because the probability must include all numbers that are divisible by
a prime in the interval [2™/2,2°™] and the bound follows from well-known
smoothness probabilities.

Our attacks offer a variety of trade-offs, due to the freedom in the factor-
ization form, and in the choices of the m;’s: the splitting probability gives the
success probability of the attack, the other parameters determine the cost in
terms of storage and computation time.

Table 1. Experimental probabilities of splitting into two factors.

Bit-length m|mi|m2|Probability
40 2020 18%
2121 32%
22 (22 39%
20|25 50%
64 32132 18%
3333 29%
34134 35%
30|36 40%

Table 2. Experimental probabilities of splitting into three factors.

Bit-length m|m1 = ma2 = ms|Probability

64 22 4%
23 6.5%
24 9%

25 12%




34 Dan Boneh, Antoine Joux, and Phong Q. Nguyen

Table 3. Experimental probabilities of splitting into four factors.

Bit-length m|m1 = ma = ms = m4|Probability
64 16 0.5%
20 3%

1.3 Organization of the Paper

In Section Plwe introduce the subgroup rounding problems which inspire all our
attacks. In Section [3 we present rounding algorithms that break plain ElGamal
encryption when g generates a “small” subgroup of Z;. Using similar ideas, we
present in Section Ml an attack on plain ElGamal encryption when g generates
all Zj, and an attack on plain RSA in Section B

2 The Subgroup Rounding Problems

Recall that the ElGamal public key system [9] encrypts messages in Z,, for some
prime p. Let g be an element of Z; of order g. The private key is a number in
the range 1 < z < ¢. The public key is a tuple (p,g,y) where y = ¢g* mod p.
To encrypt a message M € Z, the original scheme works as follows: (1) pick a
random 7 in the range 1 < z < ¢, and (2) compute v = M - y" mod p and v =
g" mod p. The resulting ciphertext is the pair (u,v). To speed up the encryption
process one often uses an element g of order much smaller than p. For example,
p may be 1024 bits long while ¢ is only 512 bits long.

For the rest of this section we assume g € Z, is an element of order ¢ where
q < p. For concreteness one may think of p as 1024 bits long and ¢ as 512 bits
long. Let G4 be the subgroup of Z), generated by g. Observe that G, is extremely
sparse in Zy. Only one in 2512 elements belongs to G;. We also assume M is a
short message of length much smaller than log,(p/q). For example, M is a 64
bits long session-key.

To understand the intuition behind the attack it is beneficial to consider a
slight modification of the ElGamal scheme. After the random r is chosen one
encrypts a message M by computing u = M + y” mod p. That is, we “blind”
the message by adding y" rather than multiplying by it. The ciphertext is then
(u,v) where v is defined as before. Clearly y" is a random element of G,. We
obtain the following picture:

u
M /
AN {
o ¢ y' g2 g ¢ P

The x marks represent elements in G,. Since M is a relatively small number,

encryption of M amounts to picking a random element in G, and then slightly

|
I
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moving away from it. Assuming the elements of G, are uniformly distributed in
Z;, the average gap between elements of Gy is much larger than M. Hence, with
high probability, there is a unique element z € G, that is sufficiently close to
u. More precisely, with high probability there will be a unique element z € G,
satisfying |u — z| < 2%4. If we could find z given u we could recover M. Hence,
we obtain the additive version of the subgroup rounding problem:

Additive subgroup rounding: let z be an element of G4 and A an integer satisfying
A < 2™, Given u = z4+A mod p find z. When m is sufficiently small, z is uniquely
determined (with high probability assuming G is uniformly distributed in Z,,).

Going back to the original multiplicative ElGamal scheme we obtain the
multiplicative subgroup rounding problem.

Multiplicative subgroup rounding: let z be an element of G4 and A an integer
satisfying A < 2. Given u = z-A mod p find z. When m is sufficiently small z, is
uniquely determined (with high probability assuming G|, is uniformly distributed
in Zy).

An efficient solution to either problem would imply that the corresponding
plain ElGamal encryption scheme is insecure. We are interested in solutions
that run in time O(v/A) or, even better, O(log A). In the next section we show
a solution to the multiplicative subgroup rounding problem.

The reason we refer to these schemes as “plain ElGamal” is that messages
are encrypted as is. Our attacks show the danger of using the system in this
way. For proper security one must pre-process the message prior to encryption
or modify the encryption mechanism. For example, one could use DHAES [1] or
a result due to Fujisaki and Okamoto [10], or even more recently [T6/T3].

3 Algorithms for Multiplicative Subgroup Rounding

We are given an element v € Zj, of the form v = z- A mod p where z is a random
element of G, and |A| < 2™. Our goal is to find A, which we can assume to be
positive. As usual, we assume that m, the length of the message being encrypted,
is much smaller than log,(p/q). Then with high probability A is unique. For
example, take p to be 1024 bits long, ¢ to be 512 bits long and m to be 64.
We first give a simple meet-in-the-middle strategy for multiplicative subgroup
rounding. By reduction to a knapsack-like problem, we will then improve both
the on-line computation time and the time/memory trade-off of the method,
provided that p satisfies an additional, yet realistic, assumption.

3.1 A Meet-in-the-Middle Method

Suppose A can be written as A = Ay - Ay where A1 < 2™ and A, < 2™2, For
instance, one can take m; = mg = m/2. We show how to find A from w in space
O(2™) and 2™ + 2™2 modular exponentiations. Observe that

u=z -A=z-A; A mod p.
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Dividing by A, and raising both sides to the power of ¢ yields:
(u/A3)? = 27 Al = A mod p.

We can now build a table of size 2™ containing the values A mod p for all
A; =0,...,2™ . Then for each Ay =0,...,2™2 we check whether u?/A% mod p
is present in the table. If so, then A = A; - Ay is a candidate value for A.
Assuming A is unique, there will be only be one such candidate, although there
will probably be several suitable pairs (Ay, As).

The algorithm above requires a priori 2™24-2™* modular exponentiations and
2™1 log, p bits of memory. However, we do not need to store the complete value
of A¥ mod p in the table: A sufficiently large hash value is enough, as we are only
looking for “collisions” . For instance, one can take the 2 max(ms, mso) least signif-
icant bits of A mod p, so that the space requirement is only 2™ ™! max(my, ms)
bits instead of 2™ log, p. Less bits are even possible, for we can check the valid-
ity of the (few) candidates obtained. Note also that the table only depends on p
and ¢: the same table can be used for all ciphertexts. For each ciphertext, one
needs to compute at most 22 modular exponentiations. For each exponentia-
tion, one has to check whether or not it belongs to the table, which can be done
with O(my) comparisons once the table is sorted.

It is worth noting that A; and Ay need not be prime. The probability that a
random m-bit integer (such as A) can be expressed as a product of two integers,
one being less than m bits and the other one being less than my bits, is discussed
in Section

By choosing different values of m; and mso (not necessarily m/2), one obtains
various trade-offs with respect to the computation time, the storage requirement,
and the success probability. For instance, when the system is used to encrypt
a 64-bit session key, if we pick m; = mg = 32, the algorithm succeeds with
probability approximately 18% (with respect to the session key), and it requires
on the order of eight billion exponentiations, far less than the time to compute
discrete log in Zj,.

We implemented the attack using Victor Shoup’s NTL library [19]. The tim-
ings should not be considered as optimal, they are meant to give a rough idea of
the attack efficiency, compared to exhaustive search attacks on the symmetric al-
gorithm. Running times are given for a single 500 MHz 64-bit DEC Alpha/Linux.
If m = 40 and my; = mo = 20, and we use a 160-bit ¢ and a 512-bit p, the pre-
computation step takes 40 minutes, and each message is recovered in less than 1
hour and 30 minutes. From Section[I.2] it also means that, given only the public
key and the ciphertext, a 40-bit message can be recovered in less than 6 hours
on a single workstation, with probability 39%.

3.2 Reduction to Knapsack-like Problems

We now show how to improve the on-line computation time (2m/ 2 modular ex-
ponentiations) and the time/memory trade-off of the method. We transform the
multiplicative rounding problem into a linear problem, provided that p satisfies
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the additional assumption p — 1 = grs where s > 2™ is such that discrete logs in
subgroups of Z; of order s can be efficiently computed. For instance, if p{* - - - pi*
is the prime factorization of s, discrete logs in a cyclic group of order s can be
computed with O(X:f:1 ei(log s 4 /p;)) group operations and negligible space,
using Pohlig-Hellman and Pollard’s p methods (see [12]). Let w be a generator
of Zj. For all x € Z;, x7" belongs to the subgroup G of order s generated by
wi”.

The linear problem that we will consider is known as the k-table problem:
given k tables 7171, ..., T of integers and a target integer n, the k-table problem
is to return all expressions (possibly zero) of n of the form n =t; +to + - -+t
where t; € T;. The general k-table problem has been studied by Schroeppel and
Shamir [T8], because several NP-complete problems (e.g., the knapsack problem)
can be reduced to it. We will apply (slightly modified) known solutions to the
k-table problems, for k = 2,3 and 4.

The Modular 2-Table Problem Suppose that A can be written as A =
Ap - A, with 0 < A < 2™ and 0 < Ay < 2™2, as in Section [3.1l We have
u? = ATAL mod p and therefore:

u? = A" AT mod p,
which can be rewritten as
log(u?") = log(A{") + log(A1") mod s,

where the logarithms are with respect to w?".

We build a table Tj consisting of log(A?") for all A; =0,...,2™ and a table
T, consisting of log(AZ") for all Ay =0,...,2™2. These tables are independent
of A. The problem is now to express log(u?") as a modular sum t; + to, where
t1 € 11 and to € T5. The number of targets t; + to is 2™:7™2, Hence, we
expect this problem to have very few solutions when s > 2™+™2_ The problem
involves modular sums, but it can of course be viewed as a 2-table problem with
two targets log(u?") and log(u?") + s. The classical method to solve the 2-table
problem with a target n is the following:

1. Sort T in increasing order;
2. Sort T5 in decreasing order;
3. Repeat until either T7 or T» becomes empty (in which case all solutions have
already been found):
(a) Compute t = first(T}) + first(T2).
(b) If ¢ = n, output the solution which has been found, and delete first(77)
from T3, and first(T3) from Ty;
(c) If t < n delete first(71) from Ti;
(d) If t > n delete first(T») from T;

It is easy to see that the method outputs all solutions of the 2-table problem, in
time 2min(m1,m2)+1 The space requirement is O(2™ + 2m2),
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Since the original problem involves modular sums, it seems at first glance
that we have to apply the previous algorithm twice (with two different targets).
However, we note that a simple modification of the previous algorithm can in fact
solve the modular 2-table problem (that is, the 2-table problem with modular
additions instead of integer additions). The basic idea is the following. Since
Ts is sorted in descending order, n — T5 is sorted in ascending order. The set
(n — T2) mod s though not necessarily sorted, is almost sorted. More precisely,
two adjacent numbers are always in the right order, to the exception of a single
pair. This is because n — T3 is contained in an interval of length s. The single
pair of adjacent numbers in reverse order corresponds to the two elements a and
b of Ty surrounding s — n. These two elements can easily be found by a simple
dichotomy search for s — n in 75. And once the elements are known, we can
access (n — Tz) (mod s) in ascending order by viewing 75 as a circular list,
starting our enumeration of T5 by b, and stopping at a.

The total cost of the method is the following. The precomputation of ta-
bles 71 and 75 requires 2™! 4 2™2 modular exponentiations and discrete log
computations in a subgroup of Zjof order s, and the sort of 71 and T5. The
space requirement is (2™ + 2™2) log, s bits. For each ciphertext, we require one
modular exponentiation, one efficient discrete log (to compute the target), and
gmin(mi,m2)+1 5qditions. Hence, we improved the on-line work of the method of
Section Bl loosely speaking, we replaced modular exponentiations by simple
additions. We now show how to decrease the space requirement of the method.

The Modular 3-Table Problem The previous approach can easily be ex-
tended to an arbitrary number of factors of A. Suppose for instance A can be
written as A = Ay - Ay - A3 where each A; is less than 2™i. We obtain

3
log(ui") = Z log(A?") mod s,
i=1
where the logarithms are with respect to w?”. In a precomputation step, we
compute in a table T; all the logarithms of A" mod p for 0 < A; < 2™i. We are
left with a modular 3-table problem with target log(u9r). The modular 3-table
problem with target n modulo s can easily be solved in time Q(2m1+min(mz,ms))
and space O(2™1 42™2 4 2™3) Tt suffices to apply the modular 2-table algorithm
on tables Ty and T3, for all targets (n — ¢1) mod s, with ¢, € 3.

Hence, we decreased the space requirement of the method of Section [3.2], by
(slightly) increasing the on-line computation work and decreasing the success
probability (see Section for the probability of splitting into three factors).
More precisely, if m; = ma = ms = m/3, the on-line work is one modular
exponentiation, one discrete log in a group of order s, and 22*/3 additions. Since
an addition is very cheap, this might be useful for practical purposes.

The Modular 4-Table Problem Using 3 factors did not improve the time/
memory trade-off of the on-line computation work. Indeed, for both modular 2-
table and modular 3-table problems, our algorithms satisfy T'S = O(2™), where
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T is the number of additions, and S is the space requirement. Surprisingly, one
can obtain a better time/memory tradeoff with 4 factors.

Suppose A can be written as A = Ay - Ay - Az - Ay where each 4; is less than
2™i. For instance, one can take m; = ma = mg = my = m/4. We show how to
find A from log(ud") in time O(2™1+m2 4-2m3+m4) and space O(3 3+, 2™), pro-
vided a precomputation stage of 2?21 2™+ modular exponentiations and discrete
log computations in a group of order s.

We have log(u?") = Z?:l log(A?") mod s. Again, in a precomputation step,
we compute in a table T all the logarithms of A" mod p for 0 < A; < 2™,
We are left with a modular 4-table problem, whose solutions will reveal possible
choices of Ay, Ay, Az and Ay. Schroeppel and Shamir [I8] proposed a clever
solution to the basic 4-table problem, using the following idea. An obvious solu-
tion to the 4-table problem is to solve a 2-table problem by merging two tables,
that is, considering sums t1 + t5 and t3 + t4 separately. However, the algorithm
for the 2-table algorithm described in Section accesses the elements of the
sorted supertables sequentially, and thus there is no need to store all the possible
combinations simultaneously in memory. All we need is the ability to generate
them quickly (on-line, upon request) in sorted order. To implement this idea,
two priority queues are used :

— Q' stores pairs (t1, t2) from T X Ts, enables arbitrary insertions and deletions
to be done in logarithmic time, and makes the pairs with the smallest ¢1 4¢3
sum accessible in constant time.

— Q" stores pairs (t3, t4) from T5x Ty, enables arbitrary insertions and deletions
to be done in logarithmic time, and makes the pairs with the largest t3 + ¢4
sum accessible in constant time.

This leads to the following algorithm for a target n:

1. Precomputation:
— Sort T3 into increasing order, and T4 into decreasing order;
— Insert into @ all the pairs (t1, first(T%)) for t; € T1;
— Insert into Q" all the pairs (ts, first(7y)) for t3 € T5.
2. Repeat until either @' or @” becomes empty (in which case all solutions
have been found):
Let (t1,t2) be the pair with smallest ¢t; + t2 in Q’;
Let (t3,t4) be the pair with largest t3 + ¢4 in Q";
Compute t = t1 + to + t3 + t4.
— If t = n, we output the solution, and apply what is planned when ¢t < n
ort>n.
Ift<ndo
o delete (t1,t2) from Q’;
o if the successor t), of to in T is defined, insert (t1,t5) into Q’;
Ift >ndo
o delete (t3,t4) from Q”;
e if the successor t) of t4 in Ty is defined, insert (t3,t}) into Q";
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At each stage, a t; € T} can participate in at most one pair in )’, and a t3 € T3
can participate in at most one pair in Q”. It follows that the space complexity of
the priority queues is bounded by O(|Ty|+ |T3]) = O(2™* + 2™3). Each possible
pair can be deleted from @’ at most once, and the same holds for @Q”. Since
at each iteration, one pair is deleted from @’ or @”, the number of iterations
cannot exceed the number of possible pairs, which is O(2m1F™mz 4 2mstma),
Finally, as in the 2-table case, we note that this algorithm can be adapted to
modular sums, by changing the starting points in 75 and 7 to make sure that
the modular sets are enumerated in the correct order. Hence, it is not necessary
to apply the 4-table algorithm on 4 targets. If m1 = mo = m3 = my = m/4, we
obtain a time complexity of O(2™/2) and a space complexity of only O(27/%),
which improves the time/memory tradeoff of the methods of Sections B2 and B2l
The probability that a random m-bit integer (such as A) can be expressed as a
product of four integers A;, where A; has less than m; bits, is given in Section[T.21
Different values of mq, ma, ms and my4 (not necessarily m/4), give rise to different
trade-offs with respect to the computation time, the storage requirement, and

the success probability.

Our experiments show that, as expected, the method requires much less
computing power than a brute-force attack on the 64-bit key using the symmetric
encryption algorithm. We implemented the attack on a PII/Linux-400 MHz. Here
is a numerical example, using DSS-like parameters:

q = 762503714763387752235260732711386742425586145191
p = 124452971950208973279611466845692849852574447655208586550576344180427926821830
38633894759924784265833354926964504544903320941144896341512703447024972887681

The 160-bit number ¢ divides the 512-bit number p — 1. The smooth part of
p—11s 47831759 -1627-139-113-41-11-7-5-27, which is a 69-bit number.
Our attack recovered the 64-bit secret message 14327865741237781950 in only 2
hours and a half (we were lucky, as the maximal running time for 64 bits should
be around 14 hours).

4 An Attack on ElGamal Using a Generator of Z;

So far, our attacks on ElGamal encryption apply when the public key (p, g, y)
uses an element g € Z; whose order is much less than p. Although many imple-
mentations of ElGamal use such g, it is worth studying whether a “meet-in-the-
middle attack” is possible when g generates all of Z;. We show that the answer is
positive, although we cannot directly use the algorithm for subgroup rounding.

Let (p,g,y) be an ElGamal public key where g generates all of Z5. Suppose
an m-bit message M is encrypted using plain ElGamal, i.e. the ciphertext is
(u,v) where u = M - y" and v = ¢g". Suppose s is a factor of p — 1 so that in
the subgroup of Z; or order s the discrete log problem is not too difficult (as
in Section B2), i.e. takes time T for some small T'. For example, s may be an
integer with only small prime divisors (a smooth integer).

We show that when s > 2™ it is often possible to recover the plaintext from
the ciphertext in time 2™/2m plus the time it takes to compute one discrete log
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in the subgroup of Zj of order s. We refer to this subgroup as G. Note that
when M is a 64-bit session key the only constraint on p is that p — 1 have a 64
bit smooth factor.

Let u = M -y" and v = ¢" be an ElGamal ciphertext. As before, suppose
M = M, - M, where both M; and M are less than 2"/2. Let ¢ = (p—1)/s then:
Myy™ = u/Ms mod p. Hence,

Mi(y")* = u?/M3 mod p

We cannot use the technique of Section Bl directly since we do not know the
value of y"¢. Fortunately, y"? is contained in G. Hence, we can compute y"¢
directly using the public key y and v = ¢". Indeed, suppose we had an integer
a such that y? = (¢?)®. Then y"? = ¢"%* = v?®. Computing a amounts to
computing a single discrete log in G5. Once a is found the problem is reduced
to finding (M1, Ms) satisfying:

M{iv® = /MJ mod p (3)

The techniques of Section Bl can now be used to find all such (M7, Ms) in the
time it takes to compute 2/2 exponentiations. Since the subgroup G, contains
at least 2™ elements the number of solutions is bounded by m. The correct
solution can then be easily found by other means, e.g. by trying all m candidate
plaintexts until one of them succeeds as a “session-key”.

Note that all the techniques of Section can also be applied. The on-
line work of 2/2 modular exponentiations is then decreased to 2™/? additions,
provided the precomputation of many discrete log in G. Indeed, by taking loga-
rithms in (3]), one is left with a modular 2-table problem. Splitting the unknown
message M in a different number of factors leads to other modular k-table prob-
lems. One can thus obtain various trade-offs with respect to the computation
time, the memory space, and the probability of success, as described in Sec-
tion

To summarize, when g generates all of Z the meet-in-the-middle attack can
often be used to decrypt ElGamal ciphertexts in time 2™/2 as long as p — 1
contains an m-bit smooth factor.

5 A Meet-in-the-Middle Attack on Plain RSA

To conclude we remark that the same technique used for the subgroup rounding
problem can be used to attack plain RSA. This was also mentioned in [§]. In
its simplest form, the RSA system [I7] encrypts messages in Zy where N = pq
for some large primes p and ¢. The public key is (N, e) and the private key is
d, where e - d = 1 mod ¢(N) with ¢(N) = (p — 1)(¢ — 1). A message M € Zxn
is then encrypted into ¢ = M® mod N. To speed up the encryption process one
often uses a public exponent e much smaller than N, such as e = 26 4 1.
Suppose the m-bit message M can be written as M = M M, with M; < 2™t

and My < 2™2, Then:
c

Ms

= M7 mod N.
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We can now build a table of size 2™ containing the values M{ mod N for all
M; =0,...,2™. Then for each M2 = 0,...,2™2, we check whether ¢/M¢ mod
N is present in the table. Any collision will reveal the message M. As in Sec-
tion [3.I] we note that storing the complete value of M¢ mod N is not necessary:
for instance, storing the 2 max(ms, mso) least significant bits should be enough.
The attack thus requires gmitl max(my,mz) bits of memory and takes 22 mod-
ular exponentiations (we can assume that the table sort is negligible, compared
to exponentiations).

Using a non-optimized implementation (based on the NTL [19] library), we
obtained the following results. The timings give a rough idea of the attack effi-
ciency, compared to exhaustive search attacks on the symmetric algorithm. Run-
ning times are given for a single 500 MHz 64-bit DEC Alpha/Linux. If m = 40
and m; = ma = 20, and we use a public exponent 21641 with a 512-bit modulus,
the precomputation step takes 3 minutes, and each message is recovered in less
than 10 minutes. From Section [[.2, it also means that, given only the public key
and the ciphertext, a 40-bit message can be recovered in less than 40 minutes
on a single workstation, with probability at least 39%.

6 Summary and Open Problems

We showed that plain RSA and plain ElGamal encryption are fundamentally
insecure. In particular, when they are used to encrypt an m-bit session-key, the
key can often be recovered in time approximately 27/2. Hence, although an
m-bit key is used, the effective security provided by the system is only m/2
bits. Theses results demonstrate the importance of adding a preprocessing step
such as OAEP to RSA and a process such as DHAES to ElGamal. The attack
presented in the paper can be used to motivate the need for preprocessing in
introductory descriptions of these systems.
There are a number of open problems regarding this attack:

Problem 1: Is there a O(2™/2) time algorithm for the multiplicative subgroup
rounding problem that works for all A?

Problem 2: Istherea 0(27”/ 2) time algorithm for the additive subgroup round-
ing problem?

Problem 3: Can either the multiplicative or additive problems be solved in
time less than §2(27/2)? Is there a sub-exponential algorithm (in 2™)?
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