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Abstract. We introduce weaker models for non-interactive zero knowl-
edge, in which the dealer is not restricted to deal a truly random string
and may also have access to the input to the protocol (i.e. the state-
ment to prove). We show in these models a non-interactive statistical
zero-knowledge proof for every language that has (interactive) statisti-
cal zero-knowledge proof, and a computational zero-knowledge proof for
every language in NP. We also show how to change the latter proof
system to fit the model of non-interactive computational zero-knowledge
with preprocessing to improve existing results in term of the number of
bit commitments that are required for the protocol to work.

1 Introduction

When zero-knowledge proofs were first introduced by Goldwasser, Micali and
Rackoff [10] it seemed that interaction played a crucial role in those proof sys-
tems. Indeed zero-knowledge was shown to exist only for languages in BPP in
the most straightforward non-interactive model ([12]). Blum, Feldman and Mi-
cali [1] showed however that if we change the model slightly then zero-knowledge
can be achieved for languages not known to be trivial. In their model they as-
sumed that both prover and verifier are dealt with a truly random string called
the reference string. The proof consists of one message sent from the prover to
the verifier and then the verifier decides whether to accept or reject according
to this message, the input and the reference string.

Non-interactive zero-knowledge proofs are not only communication efficient, they
also have several applications not offered by interactive zero-knowledge proofs.
They have been used in applications like digital signature schemes secure against
adaptive chosen message attack ([2]), public key cryptosystems secure against
chosen cipher text attack ([5], [I8]), and memoryless key distributions ([2]).
Two notions of non-interactive zero-knowledge proofs have been studied: sta-
tistical zero-knowledge where the distribution over the real protocol is statisti-
cally close to the distribution induced by the simulator, and computational zero-
knowledge where these two distributions are computationally indistinguishable.
Statistical zero-knowledge. The study of non-interactive statistical zero-
knowledge has been recently initiated by [6]. They showed a complete promise
problem for the class of languages that have non-interactive statistical zero-
knowledge proofs (denoted NISZK). They were followed by [14] who studied
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the relationships between the class of languages that have interactive statistical
zero-knowledge proofs (denoted SZK) and NISZK. They showed conditions
under which these two classes are equal. In particular that if NISZK is closed
under complementation then NISZK = SZK.

Computational zero-knowledge. Blum et. al ([1]) showed that every lan-
guage in NP has a non-interactive computational zero-knowledge proof based
on a number theoretic assumption. Since then various researchers improved this
result by both relaxing the assumptions needed and making the proofs more
efficient in term of the number of committed bits ([3], [4], [§], [I7]). The most
recent results are based on the assumption that one-way permutations exists. In
[7] a weaker model was introduced called non-interactive zero-knowledge with
preprocessing. They showed that every language in NP has a proof system in
this model based on the assumption that one-way functions exists.

Our work. In this paper we investigate relaxed versions of the non-interactive
zero-knowledge with random reference string model. Specifically, we consider
models in which the dealer (we refer to the dealer as the entity that provides
the reference string to the protocol) is not restricted to deal a string of inde-
pendent unbiased coin flips to the prover and the verifier (a private coins dealer
rather than a public coins one that can only publish his coins flips). Two models
are considered, in the first, the reference string is a sample from a distribution
that can be sampled efficiently. In the second model, this distribution can also
depend on the input to the protocol.

For statistical zero-knowledge we show that the class of languages that have
non-interactive statistical zero-knowledge proof system with a (polynomial-time)
dealer that has access to the input equals to the class SZK. This result not
only gives a new characterization of the class SZK but it also shows that if
the dealer is given sufficient abilities (i.e. access to the input and the ability to
compute) then every language in SZK has a communication efficient statistical
zero-knowledge proof (with a reference string). In the traditional model of statis-
tical zero-knowledge, the known generic protocols for SZ K require polynomial
number of communication rounds ([13]).

For computational zero-knowledge we show for every language in NP a non-
interactive zero-knowledge proof system with a dealer that can make polynomial-
time computations but does not have access to the input. The proof has perfect
completeness, perfect soundness, and it is based on the weakest cryptographic
assumption of the existence of one-way functions. We then show how this proof
can be changed to fit the non-interactive zero-knowledge with preprocessing
model, to improve (in term of the number of bit commitments) a protocol by
[7]. We also overview some known applications of non-interactive zero-knowledge
and check what additional assumptions or changes should be done (if at all) in
order to replace the random reference string model with the relaxed models in
these applications. In particular we argue that the digital signature scheme of
[2] which is secure against adaptive chosen message attack can be done with our
model.
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2 Definitions

Let us first recall the definition of non-interactive zero-knowledge with a random
reference string ([1]).

Definition 1. A non-interactive computational (resp. statistical) zero-knowl-
edge proof system with a random reference string for a language L is defined by
a computationally unbounded TM P (the prover), a probabilistic polynomial-
time TM V' (the verifier), a probabilistic polynomial-time TM S (the simulator)
and a polynomial g. On an input x both P and V have access to a shared
random reference string o, where o €r {0,1}20*D. The proof consists of one
message sent from P to V, and then V based on z, o and this message either
accepts or rejects. The following should hold:
1. (completeness) if « € L then Pr(V(x, o, P(x,0)) = accept) > 2/3
2. (soundness) if z ¢ L then for every prover’s strategy P*, Pr(V (x, o, P*(x, o))
= accept) < 1/3
3. (zero-knowledge) if € L then the following two distributions are compu-
tationally indistinguishable (resp. have statistical difference bounded by a
negligible function):
(a) (o, P(z,0))
(b) S(x)
We define now relaxed versions of the shared random reference string model.
The first relaxation we introduce is that the shared reference string need not be
truly random, we only require that it can be sampled in polynomial-time.

Definition 2. A non-interactive computational (resp. statistical) zero-knowl-
edge proof system with a protocol-dependent reference string for a language L
is defined by P, V, S, and q as above, and the reference string o is f(r), where
f is a polynomial-time computable function, and r €5 {0, 1}4(<D.

The second relaxation is that the shared reference string can not only be non-
uniformly distributed, but it can also depend on the input.

Definition 3. A non-interactive computational (resp. statistical) zero-knowl-
edge proof system with an input-dependent reference string for a language L is
defined by P, V, S, and q as above, and the reference string o is f(z,r), where
f is a polynomial-time computable function, x is the input to the protocol, and
rer {0, 1}«1(\96\)_

Note that non-interactive zero-knowledge under all the definitions is closed un-
der parallel repetitions, therefore the error bound can be brought down to be
exponentially small in the length of the input.

We denote by NICZK (resp. NISZK), Protocol — Dependent NICZK (resp.
Protocol—Dependent NISZK), and Input—Dependent NICZK (resp. Input—
Dependent NISZK) the class of languages possessing a non-interactive compu-
tational (resp. statistical) zero-knowledge proof system with a shared random,
protocol-dependent and input-dependent string respectively. SZK is the class
of all the languages that have statistical-zero knowledge proof system as defined
by [10].
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3 Statistical Zero-Knowledge

In this section we show that if we relax the model of non-interactive proof systems
then every language in SZK has a proof system in this relaxed model:

Theorem 4. SZK = Input — Dependent NISZK.

3.1 Motivation

It is an interesting question to understand how much more can be proven in
non-interactive statistical zero-knowledge as we gradually increase the power of
the dealer. By referring to the power of the dealer we mean the type of compu-
tations he can do, and does he have access to the input (the statement to prove).
Clearly, if the dealer is computationally unbounded and has access to the input
then everything computable can be proven non-interactively with perfect zero-
knowledge, by using the dealer as an unbounded trusted prover that tells the
verifier whether the statement is correct or not. What happens if we do not give
the dealer so much power? We can divide the languages into classes according
to the power of the dealer in the non-interactive statistical-zero knowledge proof
systems for them. We have the following hierarchy of classes, each one containing
the class above it:

- No dealer: this class equals to BPP ([12]).

- The dealer can just toss coins (a public coins dealer): this is the class NISZK,
languages not known to be in BPP were shown to be in this class ([6], [14]).

- The dealer can toss coins and make polynomial-time computations (a private
coins polynomial-time dealer): this is the class protocol — dependent NISZK.
- A private coins polynomial-time dealer with access to the input: this is the
class input — dependent NISZ K which equals to SZK (Theorem 4).

- A private coins unbounded dealer with access to the input: everything com-
putable is in this class.

By showing the exact location of SZK in this hierarchy we get a strong con-
nection between the question of how much interaction is needed for statistical
zero-knowledge and how much power the dealer must have in non-interactive
statistical zero-knowledge. Better understanding of this hierarchy can shed light
on the SZK vs. NISZK question ([I4]).

3.2 Separating Distributions

An important notion in the proof of theorem 4 will be the statistical difference
between two distributions. Let us first define the statistical difference and some
notations concerning it.

Definition 5. Let X and Y be two distributions (or random variables) over
a discrete space D. The statistical difference between X and Y, denoted as
[|X — Y]] is:

| X -Y||=MAXscp|Pr(X € S)— Pr(Y € 5)|
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Through out this paper we consider distributions with “succinct” description,
i.e. distributions produced by circuits (with multiple output gates) when feeding
them a uniformly chosen input. We write C' when we refer both to the circuit
itself and to the distribution it induces. We will use the notation =z «+ C to
denote that x is a sample taken from the distribution C, i.e. the output of the
circuit C' when feeding it a uniformly chosen input.

In our proof of theorem 4 we will use the langauge STATISTICAL-DIFFERENCE
shown to be complete for the class SZK ([21]), and a “separated” version of this
language.

Definition 6. STATISTICAL-DIFFERENCE (SD) is the following promise
problem:

SDy = {(Do,Dl) : ||D0 — D1|| > 2/3}

SDy = {(Do,Dl) : ||D0 — D1|| < 1/3}

Where (Dg, D1) is a pair of distributions with “succinct” description.

Definition 7. “Separated” STATISTICAL-DIFFERENCE (SD’) is the follow-
ing promise problem:

SD'y ={(Dy, D1) : for x « Dy, Pr(x € Range(D1)) < f(n)}

SD'y = {(Do, D1) : [|[Do — D1l < f(n)}

Where n = |Dy, D1| and f is a negligible function.

In other words, a pair of circuits is in SD’y if the probability that a sample
taken from the first circuit is in the range of the second is negligible, and a pair
of circuits is in SD’ y if the distributions induced by the circuits have a negligible
statistical difference. Note that SD’y C SDy and SD’'y C SDy.

Our main tool will be the following lemma:

Lemma 8. SD reduces to SD’.

Specifically, given a pair of circuits (Do, D1) there is a polynomial-time com-
putable function that maps them to a new pair of circuits (Co,Cy) s.t:

||Do = D1f| > 2/3 — [|Co — C1| < f(n)

[|Do — D1l|| < 1/3 — for x «— Cy, Pr(xz € Range(C1)) < f(n)

Where f is a negligible function.

Sahai and Vadhan showed a reduction from SD to SD ([22]). The same reduction
accomplishes Lemma 8, although it is implicit in their proof. We do not give the
proof here and refer the reader to [22].

3.3 Proof of the Main Theorem
Claim 9. SZK C Input — Dependent NISZK

Proof. SD is a complete promise problem for the class SZK (]21]) and SD
reduces to SD’ (Lemma 8), therefore it is enough to show an input-dependent
non-interactive statistical zero-knowledge proof system for the language SD’.
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Let | be the number of input gates of Dy and D; (w.l.o.g they have the same
number of input gates).
The proof system:
Common input: (Do, D;)
Shared reference string: o = Dq(r), where r €5 {0,1}!
The protocol:
1. Psends r’ € {0,1}.
2. V accepts if and only if D1(') = o

Completeness: Recall that (Do, D1) € SD’y means that ||Do — D1|| < f(n)
(f is a negligible function). Let k be the number of output gates of Dy and D
(again w.l.o.g this number is the same for Dy and D). Then by the definition
of statistical difference, for z «— Dy, y « Dj, and for every S C {0, 1}*:

|Pr(z € S)— Pr(y € S)| < f(n)

Let T = Range(Dy) \ Range(D;), x < Do and y < D;. Then the following
holds:

fn)>|Pr(x €eT)—Pr(yeT)|=Pr(zeT)

In other words the probability that a sample taken from Dy is not in the range
of Dy is at most f(n). Therefore the probability that o is in the range of D
is at least 1 — f(n) and with this probability (over r) the (computationally
unbounded) prover will be able to find v s.t D1(r') = o.

Soundness: (Dy, D;) € SD’y means that the probability that a sample taken
from Dy is in the range of D; is at most f(n), so the probability that o is not
in the range of D; is at least 1 — f(n). In this case there is no v’ s.t D1(r') = ¢
and the prover will fail.

Simulation:

S: Choose 7 € {0,1}, output (D1 (r), 7).

If (Do, D;1) € SD’y then the distributions Dy, D7 has statistical difference at
most f(n) therefore o and the first message of the simulator has statistical
difference f(n) at the most. The second message both in the protocol and the
simulator is determined by the first message (the shared reference string) to be
a random input (to C7) in the preimage of the first message. So for a given first
message, the second message has the same distribution in the protocol and the
simulator. O

Claim 10. SZK O Input — Dependent NISZK

Proof. : We will show a reduction from any language in Input — Dependent
NISZK to the language SD. As SD is complete for SZK, and SZK is closed
under complementation [T9] this will suffice to prove the claim. Let (P, V) be
an input-dependent NI1SZ K protocol for a language L with exponentially small
error bound. Let S be the simulator for the protocol, f the polynomial-time
computable function that produces the reference string and ¢ the polynomial
(in the input length) that defines the length of the input to f. Define p to be
the negligible function bounding the statistical difference between the outputs
of (P,V) and S. For an input z, define the following pair of distributions:
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Dy: choose r €x {0,1}40=D) output f(z,r).
D;: run the simulator S on z to obtain (o, p), if V(x, 0, p) = 'accept’ output o,
otherwise output 02D (here 09021) is canonic for a string outside the range of -

First we show that if € L then ||Dy — D;|| < 1/3. Let n = |z, the statis-
tical difference between the first message of the simulator and the real reference
string is bounded by p(n). Also, Pr((P,V)(z) = 'accept’) > 1 — 27" therefore
with probability 1 —27" — u(n) D; will output the first message of the simulator
and thus [|Dg — D1|| < 2u(n) +27™.

Next we show that if © ¢ L then ||Dg — D1|| > 2/3. Define:

T ={o:3rc {0,139 and Ip s.t f(x,r) = o and V(z,0,p) = "accept’}

That is, T is the set of all reference strings for which there exist a proof that will
convince V. Since the soundness error is bounded by 27", Pr,.cqo 1300 (f(2,7) €
T) < 27", Since Dy only outputs o € T or 09 and Dy outputs a real reference
string, [|[Do — D1|| >1—-27". 0O

4 Computational Zero-Knowledge

4.1 A Protocol-Dependent NICZK Proof for NP

In this section we show a protocol-dependent non-interactive C'Z K proof system
for every language in NP with perfect completeness and perfect soundness. It
is based on the assumption that one-way functions exists. The proof system is
for the N P-complete language 3 — COL of all the 3-colorable graphs.

In our protocol we will make use of characters. Characters were used by [17]
in their non-interactive zero-knowledge proof for NP in the random reference
string model. A character is an object that can have one of four possible values:
1, 2, 3 or WC (wild card). The value of a character is unknown to the verifier
unless the prover reveals it for him. It can be revealed according to the following
rules: if the value is 1, 2, or 3 then it can only be revealed to this value. If the
value is WC then it can either be revealed to 1, 2 or 3 (what ever the prover
chooses).

Characters can be implemented in the following way: a character will be the
commitment on a triplet of bits that can have one of the following values: 001 (the
character 1), 010 (the character 2), 100 (the character 3), or 111 (WC). The se-
curity of the bit-commitment scheme ensures that the value of a character is un-
known to the polynomial-time verifier, unless the (computationally unbounded)
prover reveals it for him. To reveal the value of a character, the prover opens
one bit from the triplet and the verifier checks that the value of this bit is 1.
The location of the revealed bit determines the value of the character. Clearly,
{1,2,3} characters can only be revealed to their real value and WC can be re-
vealed to any value.

Next we define a test to check whether two nodes of an edge in the graph are
colored in different colors. The test will be conducted in the following way: with
each node we associate a triplet of characters. Two of them are WC and one
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is a non-WC character, thus we have two non-WC characters associated with
the edge (one in each node). We make sure that these two characters have dif-
ferent values (that is, the dealer prepares them in this manner). We define the
color of a node to be the position of the non-WC character within the triplet of
characters associated with it. We say that two such triplets of characters are
consistent if they are representing the same color. By reordering the characters
in each triplet, the prover can determine the colors of the two nodes. In order
to prove that the two nodes were given different colors, the prover will reveal
the two triplets of characters, and the verifier will accept if and only if the two
triplets are the same permutation of {1,2,3}. We call this test the inconsistency
test. We prove now some properties of this test.

Claim 11 (completeness). If the two nodes were given different colors then
the prover will always pass the test.

Proof. The fact that the two nodes have two different colors means that the
two non-WC characters are in different positions in the triplets associated with
the nodes. That is, if we align the two triplets, against each non-WC character
in one triplet there will be a WC character in the other, and in one position
there will be a WC against a WC. The prover will reveal each WC character
which is aligned against a non-WC character to the value of this character. The
two WC characters which are aligned against each other will be revealed to the
value which is not used in the other positions in the triplets (recall that the two
non-WC characters have different values, therefore this value is determined).
So in each position the same value will be revealed in the two triplets and each
value in {1,2,3} will be revealed exactly once. O

Claim 12 (soundness). If the two nodes were given the same color then the
prover will always fail the test.

Proof. The fact that the two nodes have the same color means that if we align
the two triplets, the two non-WC characters will be aligned against each other.
Since they have two different values and the prover can not reveal them to any
other value, the verifier will always see different values in this position in the
two triplets and will reject the test. O

Claim 13 (“zero-knowledge”). If the values of the non-WC characters are
chosen uniformly (with the restriction that they have different values) then if
the nodes were given different colors, the triplets will be revealed to a random
permutation of {1,2,3} (with probability 1/6 for each permutation).

Proof. Assume w.l.o.g that the first node receives the color 1 (the non-WC
character is in the first position), the second receives the color 2, and we first
choose the value of the first character with probability 1/3 for each possible
value and then we choose the value of the second character with probability
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1/2 for each remaining possible value. Clearly each pair can be chosen with
probability 1/6. After the values of the non-WC characters are chosen, the per-
mutation is determined. This is because each WC character which is aligned
against a non-WC character must be revealed to its value, and the value of
the WC characters which are aligned against each other is determined to be
the value which was not chosen for the two non-WC characters. Furthermore,
each choice of values for the non-WC characters defines a different permutation.
Therefore each permutation of {1, 2,3} can be revealed with probability 1/6. O

We can now present a protocol-dependent non-interactive computational zero-
knowledge proof system for the language 3 — COL:

The proof system:

Input: A graph G = (V, E) (denote n = |V|).

Reference string: An independently and randomly chosen inconsistency tests for
each one of the edges of the complete graph K , where for each node all the
triplets of characters associated with it are consistent. In other words, with each
node we associate a (n—1) x 3 matrix of characters, where two columns contains
only WC characters and one contains only non-WC characters. For each matrix
the position of the non-WC column is chosen randomly and independently.
The proof:

1. P’s proof is divided into two stages:
(a) For each node in V', P swaps two columns of the matrix associated with
it to create a new matrix.
(b) For each edge in E, P performs the inconsistency test associated with it
(with the new matrices from stage 1(a)).
2. V accepts if and only if P passes all the inconsistency tests.

Proof of correctness:

Completeness: Let v be a 3-coloring of G. For each node there is a (n — 1) x 3
matrix of characters associated with it. With each such matrix we associate a
color according to the position of the non-WC column. In stage 1(a), for each
node, if the matrix does not represent the color of the node according to v, P
swaps the non-WC column with a WC one so that the new matrix will represent
the right color. If the matrix does represent the right color, P swaps the two
WC columuns. Since v is a legal 3-coloring of G, after stage 1(a) all the matrices
of adjacent nodes are inconsistent and P will always pass all the inconsistency
tests (claim 11).

Soundness: The fact that there is no legal 3-coloring of G means that it is
impossible to bring the matrices to a state where for every two adjacent nodes
the matrices associated with them are inconsistent (otherwise the state of the
matrices will define a valid 3-coloring). Therefore for at least one edge in E, P
will always fail the inconsistency test (claim 12).

! Note that in the protocol-dependent model the dealer does not have access to the
input, therefore he must prepare an inconsistency test for every possible edge.
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Simulation:

1. (simulation of the reference string) Associate with each node a (n — 1) x 3
matrix of WC characters. This is done by committing on 9n(n — 1) bits of
value 1.

2. (simulation of stage 1(a)) For each node in V', choose randomly two columns
in the matrix associated with it and swap them.

3. (simulation of stage 1(b)) For each e € E, choose a random permutation of
{1,2,3} and reveal the two triplets of characters associated with e (i.e. the
simulation of the inconsistency test for e) to be this permutation.

The security property of the bit-commitment scheme ensures that the real ref-
erence string and the simulated one are computationally indistinguishable.

Let v be a 3-coloring of G. Let ¢ € {1,2,3} be the color of v € V according
to v. Let A, be the matrix associated with v in the real proof. The position of
the non-WC column in A, is chosen randomly. If A, represents the color ¢, and
this happens with probability 1/3, then the two WC columns (the columns that
do not represent c¢) will be swapped in stage 1(a). Otherwise A, represents one
of the other two colors, with probability 1/3 for each one, and then the column
that represents ¢ will be swapped with the non-WC column. So in stage 1(a) the
two columns that will be swapped in A, are random and since the position of
the non-WC column was chosen independently for all the matrices this is also
the case for all the matrices together.

After all the matrices were brought in stage 1(a) to a state where every two ad-
jacent nodes have inconsistent matrices, in every inconsistency test in stage 1(b)
a random permutation of {1,2,3} will be revealed (claim 13). Since the values
for the inconsistency tests were chosen independently, all the permutations that
will be revealed in stage 1(b) will be random and independent. O

Remark: The proof system presented above requires that the reference string
will contain O(n?) bit commitments. The reason for this is that the structure
of the graph is unknown in advance and the dealer must prepare an incon-
sistency test for each possible edge (i.e. for every edge in the complete graph
with n nodes). However, if we use a more ”structured” N P-complete problem
such as the coloring problem on a wrapped de Bruijn graph ([20]), where only
O(nlogn) local tests are needed we can improve the number of bit-commitments
to O(nlogn). A proof system for this problem will be presented in the full version
of this paper.

4.2 Non-interactive Proofs with Preprocessing

The notion of non-interactive zero-knowledge proofs with preprocessing was first
introduced by [7]. In their model, the proof system is divided into two stages:
first, before there is a statement to prove, the prover and the verifier execute
an interactive protocol which ends with both of them agreeing on a common
reference string. Then, when there is a statement to prove, the prover sends a
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single message to the verifier, and the latter decides whether to accept or re-
ject according to the input, the prover’s message, and the reference string. The
original proof system required that the reference string will contain O(n?) bit
commitments to prove that a 3-CNF formula of length n is satisfiable, and it was
based on the assumption that one-way functions exist. [16] gave a non-interactive
zero-knowledge proof system with preprocessing that requires less bit commit-
ments and also has the property that multiple statements can be proven based
on a single reference string. However, this came at the expense of a stronger
cryptographic assumption, namely oblivious transfer.

The protocol-dependent model seems to be close to the non-interactive with pre-
processing model. In both cases the prover’s message is based on a non-random
reference string. In the protocol-dependent model, a trusted (polynomial-time)
dealer provides the reference string and in the preprocessing model the prover
and the verifier agree on it in advance. Indeed, the proof system we introduced in
the previous section can be easily changed to work in the preprocessing model.
To see that, notice that the following language is in N P:

L = {(s,1") : s € {0,1}P°W(") 5 is a valid reference string for the protocol-
dependent proof system for 3 — COL (of a graph with n nodes)}

The proof system (in the preprocessing model) will be:

Stage 1 (interactive): The prover chooses a reference string in the same way
the dealer chose it in the protocol-dependent model. Then the prover proves
interactively and in zero-knowledge that this string is in L. Since L € NP, such
a proof exists under the assumption that one-way functions exists ([11]).
Stage 2 (non-interactive): Continue as in the protocol-dependent model.

This proof system improves [7] as it is based on the same assumption and it
requires that the reference string will contain only O(nlogn) bit commitments
to prove a statement of size n.

4.3 Efficient Provers and Applications

Note that the protocol in section 4.1 requires that the prover will have com-
putational power sufficient to reverse the bit commitments of the dealer, i.e. to
compute the inverse of a one way function. For the protocol to be applicable we
would like it to work for an efficient prover, that is, a polynomial-time prover
with an auxiliary input containing a witness for the N P statement. For this we
will have to change the cryptographic assumption, and instead of the bit com-
mitment to be based on any one way function we would like it to be based on a
family of unapproximable trapdoor predicates ([9]).

The proof system requires now an additional preliminary step: the prover sends
to the dealer a predicate for which he knows the trapdoor to, and the dealer uses
it for his bit commitments. Now the prover can reverse the bit commitments,
and the protocol continues as before.

Non-interactive zero-knowledge proofs were shown to be useful in many applica-
tions. For applications where the prover is also the dealer (e.g. digital signature
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schemes secure against adaptive chosen message attack [2] and memoryless key
distribution [2]) the protocol-dependent model will still work. This is because the
prover will commit on the bits and therefore will be able to open them at a later
stage. It is in the prover’s best interest that the reference string will be correctly
prepared. For public key cryptosystems secure against chosen ciphertext attack
([5], [18]) this is not the situation. The key-generator can not generate the pub-
lic key (that includes the reference string) without knowing which predicate to
use for the bit-commitments (the one that the prover knows the trapdoor for).
Therefore the prover must notify it in advance which predicate to use. This is a
major drawback because for each prover we will need a different public key.

5 Concluding Remarks

We showed that if we assume that the (polynomial-time) dealer has access to
the input to the protocol as well as private coins then every language that has
a statistical zero-knowledge proof system also has a non-interactive statistical
zero-knowledge proof system. It would be very interesting to understand whether
these assumptions are required for SZ K to be done non-interactively.

In the Computational zero-knowledge setting, we showed an efficient (in term
of the number of bit-commitments) protocol — dependent NICZ K protocol for
every language in IV P. The protocol is based on the assumption of the existence
of one-way functions (for unbounded provers), or on the assumption of the exis-
tence of a family of unapproximable trapdoor predicates (for efficient provers).
We also showed how this model can replace the traditional model in some ap-
plications such as secure digital signatures. For secure public-key cryptosystems
the use of our model raises problems, namely that a public-key is generated
for a particular prover (sender) and can not be used by anyone. If we could
avoid this problem, we would get a very interesting result, that the use of non-
interactive zero-knowledge proofs in order to get a public-key cryptosystem that
is secure against chosen cipher text attack does not impose a stronger crypto-
graphic assumption than the public-key encryption itself. This is due to [9] who
showed that the existence of a (semantically secure) public-key cryptosystem is
equivalent to the existence of a family of unapproximable trapdoor predicates.
Current use of non-interactive zero-knowledge in the random reference string
model is based on the stronger assumption that there is a family of trapdoor
permutations.
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