
Power Analysis, What Is Now Possible...

Mehdi-Laurent Akkar1�, Régis Bevan2, Paul Dischamp2, and Didier Moyart2

1 Bull CP8, 68 route de Versailles,
78431 Louveciennes, France.

ml.akkar@free.fr
2 Oberthur Card systems,

25 rue Auguste Blanche, 92800 Puteaux, France.
{r.bevan, p.dischamp, d.moyart}@oberthurcs.com

Abstract. Since Power Analysis on smart-cards was introduced by Paul
Kocher [KJJ98], the validity of the model used for smart-cards has not
been given much attention. In this paper, we first describe and ana-
lyze some different possible models. Then we apply these models to real
components and clearly define what can be detected by power analysis
(simple, differential, code reverse engineering...). We also study, from a
statistical point of view, some new ideas to exploit these models to at-
tack the card by power analysis. Finally we apply these ideas to set up
real attacks on cryptographic algorithms or enhance existing ones.

Keywords: Smart-cards, Power analysis, DPA, SPA.

1 Power Consuming Models for Smart-Cards

In cryptographic protocols, we normally assume that the attacker has at most
the knowledge of the algorithm used and some input and/or output values. In the
attack on smart-cards based on power-analysis, the situation is quite different: we
assume the attacker has access to more than this, namely, see (within a certain
limit) what is done during the computation. Therefore, we need to specify what
kind of knowledge could be extracted from a card.

1.1 Sensitive Instructions

As opposed to modern computers, the smart-card processor is very limited in
terms of capabilities, registers and memory. Usually, the arithmetic or the logi-
cal operations (xor, or, add...) are executed through a special register (e.g. the
A-accumulator for Intel 8051 compatible family). Therefore, the programmer
cannot load the variables to registers, execute the instructions on them and
afterwards store them in their final positions in the memory. So, during the en-
tire execution of a program, the micro-controller is always loading/saving the
output of the calculation to/from memory. Moreover, the limited memory of the
� Research done while at Oberthur Card Systems.

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 489–502, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

490 Mehdi-Laurent Akkar et al.

devices often obliges the programmer to implement his code in a straightforward
manner.

The limited set of instructions is another advantage for the attacker: usually,
all the instructions involve at most two 8-bits variables for the input and one
for the output. In most cases one or two of these variables is a special register.
Taking advantage of this, the attacker can easily study nearly all the instruction
set.

For these reasons, it seems reasonable to assume that a good point to attack
a smart-card is when the processor is loading/saving a value.

1.2 Some Consumption Models

A smart-card, even if it is one of the most simple processors, consists of a lot
of different blocks: the processor itself, the memory, the Bus ... This is why we
need to consider a very general model to represent it correctly. All these blocks
are perturbed by external parameters and so will react differently everytime (the
power supply can fluctuate, so the clock ...).

Executing an instruction on a smart-card, like on most micro-controllers,
takes several machine cycles. For example, the XOR of two values could be
processed as follows by the CPU:

– analyze which instruction is to be executed (e.g. XOR);
– load the variables;
– execute the calculation;
– store the result.

Those operations can of course be pipelined and so are not serial in time.
This first (simple) analysis shows that, to model the power consumption of a
smart-card, several things need to be taken into account:

– the instruction which is executed;
– the data involved in the calculation (input, output);
– the location in RAM/ROM of the instruction executed and the data;
– the instructions involved before and after the instruction considered;
– some random fluctuation.

Based on these considerations and some experimentations we consider here
the following general model: the power consumption of an instruction I (an
array P [I, 1..n] where n is the number of point during the acquisition of the
instruction) could be represented as follows:

P [I] = Pgen[I] × Ngen

+ Pin[I, Vin] × Nin

+ Pout[I, Vin, Vout] × Nout

+ Plast[I ′, V ′] × Nlast

Power Analysis, What Is Now Possible... 491

Where:

– Pgen is the general consumption of the instruction and Ngen the fluctuation
of Pgen (i.e. location of the code in ROM/EEPROM);

– Pin[Vin] is the power consumption of the input operand (we shall see that
in first approximation, the power consumption does not depend on the in-
struction executed) and Nin the noise associated;

– Pout[I, Vin, Vout] is the power consumption of the output operand (this time,
of course, it depends on the nature of the instruction) and Nout the noise
associated;

– Plast[I ′, V ′] represents the influence of the preceding instructions and their
input/output and Nlast/next the associated noise.

1.3 Consumption Model for the Data

Intrinsic behaviour of the micro-controller hardware shows the following charac-
teristics :
– there are some gates which commute when a value changes (0 → 1 or 1 → 0);
– the bus drives the bit of information (so the value of a bit changes the

consumption);
– some bits influence some other places in the micro-controller (e.g. the carry,

the overflow);
– writing a 0 or a 1 does not consume the same power.

Taking these considerations into account, we can define the following different
models:

- Global : P [x] = Kx

- Linear : P [x] =
∑nbits

i=0 xi × Pi

- Flipping: P [x] = F (x, xlast)
- Quadratic: P [x] =

∑nbits

i=0

∑nbits

j=0 X00ij P00ij + X01ij P01ij

+X10ij P10ij + X11ij P11ij

where:
- Xabij = 1 iff xi = a and xj = b
- Pabij is the associated consumption.
- xi corresponds to bit i of x.

The global model is the most general one: it implies a specific consumption
for every possible value.
The linear model assumes that every bit has a specific weight and is indepen-
dent of the other bits. For example if you fix Pi = 1 for all i ≤ n you obtain a
”hamming weight consumption” model.
The flipping model can represent the case where the last value influences the
consumption. For example if you take F = HW (data ⊕ datalast) - where HW
is the hamming weight - it represents the number of bit flips between the last
data which has been manipulated and the actual one.
The quadratic is more powerful. It can represent component where the consump-
tion depends on the value of the bits taken two at a time.

Now let us see how this model is correlated to reality.

492 Mehdi-Laurent Akkar et al.

2 Real Smart-Cards

All the results given are based on two different models of smart-card processors1:
a low cost model and a more powerful one. But after further experimentation it
seems that most smart-cards behave in a similar way to the defined consumption
models.

We want to point out that some aspects have not been considered in the
present paper:

– it was assumed that the instructions all had the same consumption model;
– the influence of past instructions were not taken in account.

2.1 Generalities

It appears that most of the processor consumption is due to the instruction
being executed. The associated noise is relatively small and probably takes into
account the previous executed instructions; the rest of the consumption comes
from the values involved in the calculation (input and output).

Instruction Data Last instructions/datas Noise after filtering
85% 9% 5% 1%

2.2 Validity of the Memory Models in Practice

Many people have concluded (cf. [KJJ98, CJRR99a, BS99]) that the consump-
tion of the card directly depends on the Hamming weight, or the number of
changes 0 ↔ 1 in the binary value considered. It appears that the Hamming
weight model is not adapted to the two smart-cards we studied.

The diagrams in figure 1 show the consumption associated with the storage
of a value in RAM ordered by hamming weight, and this for the two different
smart-cards. If this hypothesis was true we should see an increasing curve which
is not the case. By ordered we mean that the values x1 . . . x256 of the average
consumption of the ”store-i” instruction were taken and ordered by respecting
the following: xi < xj ⇐⇒ HW (i) < HW (j) where HW (i) represents the
Hamming weight of i. If HW (i) = HW (j) then we did order the value comparing
their consumption.

One can see from figure 1 that for a given consumption, one would get dif-
ferent hamming weight values.

We need to find a more appropriate model. We have ordered the values of
consumption to have a reference to the correct model. The goal was to find
an order on [0..255] which is close to the real order obtained by sorting the
power consumptions. Due to the architecture of the micro-controller we have
decomposed the value n ∈ [0, 256] in its binary form n1, .., n8. The first idea
was to find a ”linear” order: this means assigning some weight to the different

1 the exact models are obviously not given here

Power Analysis, What Is Now Possible... 493

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200
Low Cost Component / Load Instruction / Hamming Weight Model

Data

C
o

n
su

m
p

ti
o

n

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
High Cost component / Load Instruction / Hamming Weight Model

Data

C
o

n
su

m
p

ti
o

n

Fig. 1. Hamming Weight Model

bits of n. To compare n to m, once the weights p1, ..., p8 have been chosen,
you compare n1.p1. + ... + n8.p8 to m1.p1 + ...m8.p8. For example the hamming
weight corresponds to p1 = p2 = ... = p8 = 1 and the natural order to pi = 28−i.
Taking for pi the average difference of consumption of the bit i (comparing the
consumption between ”load(x)” and ”load(y)” where xj = yj except for the bit
i (see below figure 3)) we obtain the following curves (figure 2)

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200
Low Cost Component / Load Instruction / Best Linear Model

Data

C
o

n
su

m
p

ti
o

n

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
High Cost Component / Load Instruction / Best Linear Model

Data

C
o

n
su

m
p

ti
o

n

Fig. 2. Best Linear Model

We can clearly see that even if the results are satisfying, we are still far from
the expected curve for the low end component (we add a ”reference” curve : the
curve obtained by sorting the consumption). To check if the ”linear” model was
correct, we computed for all values the difference caused by changing just one
bit in the operand.

494 Mehdi-Laurent Akkar et al.

The table in fig. 3 presents all the results. The ’bit i’ column is obtained by
the following computation: the 128 values where the i’th bit was 0 were taken and
for each individual value the i’th bit was turned on. The individual consumption
changes were measured. Then, we extract the minimum and the maximum of
the 128 values and compute the average and the standard deviation to sum up
the results:

Component Consumption bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

average 11.9 11.3 11.4 12.1 7.0 32.3 34.5 44.85
low min −12.1 −25.6 −15.1 −15.4 −30.0 1.2 −8.0 7.2
cost max 40.5 42.2 45.7 60.0 45.0 67.6 73.7 86.7

standard deviation 10.3 11.7 10.8 13.6 14.1 11.9 16.9 16.3

average 12.1 −21.9 16.1 10.7 14.1 −20.1 −5.0 10.3
high min 5.3 −27.7 8.5 5.7 7.7 −25.3 −11.0 3.6
cost max 17.0 −15.5 24.0 18.1 19.7 −14.0 2.4 16.9

standard deviation 2.3 2.4 2.4 2.4 2.4 2.4 2.8 2.7

Fig. 3. Comparison in mV of the influence of one bit on low and high cost
component

We can notice some interesting things that explain previous curves:

In both components, one can notice that flipping a bit from 0 to 1 does
not affect the consumption by an equal difference. Moreover it can either in-
crease or decrease the consumption. So it shows that in this case the hamming
weight model is totally inadequate.

The influence of each bit is not increasing or decreasing with its position
inside the byte.

For the low cost component, the variance is very important (i.e. for the bit
6, it can increase or decrease the consumption) explaining that the ”best linear
model” is not adequate. But, if we consider the following simplified quadratic
model: we consider only the terms bibi+1 (a bit only influences the bit just before
and just after); then the curve is very close to the sorted one (not presented here).

For the high cost component the variance is significantly reduced. The silicon
founder may have tried to separate the consumption of each bit, inducing this
difference.

Now that we have a better model, let us see statistically how much informa-
tion we can get from a card.

Power Analysis, What Is Now Possible... 495

3 Attacks

In this section, we will consider that the following models are good enough to
be as precise as the ideal one:

– simplified boolean polynomials of degree 2 for the low cost smart-card;
– best linear model for the high cost smartcard.

3.1 Existing Attacks

One of the most common attack by power-analysis is the DPA attack against
DES. For more details, see [KJJ98]. The interesting aspect here is that this
attack is based on the following assumption:

On average, the consumption of the card computing with values x such as
xi = 0 2 can be distinguished from the consumption where xi = 1.

We need to prove this assumption. It would be obvious if the card was re-
specting the Hamming weight model, but, judging by our results, this is not
clear. Table 4 presents some results about the efficiency of a DPA attack. We
have computed the average consumption of the set of x such as xi = 0 (resp
xi = 1).

Component Consumption for bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

low xi = 0 0.474 0.475 0.475 0.473 0.485 0.429 0.424 0.402
cost xi = 1 0.526 0.525 0.525 0.527 0.515 0.571 0.575 0.598

high xi = 0 0.444 0.398 0.425 0.450 0.434 0.406 0.476 0.452
cost xi = 1 0.556 0.602 0.575 0.550 0.566 0.593 0.524 0.548

Fig. 4. Efficiency of a DPA attack on low cost and high cost component

The table above confirms the experimental attack: the difference between the
two distributions is quite important for every bit of data. But this attack being
based on an imperfect model, we have tried to use a better model to enhance
existing attacks and imagine new ones.

3.2 PODPA (Perhaps Optimal Differential Power Analysis)

Theory: Ordering the consumption, we compute the sets of value A and B such
that:

– A and B are disjoint, A ∪ B = [0, ..255]
– |A|=|B|=128
– ∀(x, y) ∈ A × B, consumption(x) < consumption(y)

2 xi is the bit i of x

496 Mehdi-Laurent Akkar et al.

Then we obtain a much higher difference between the consumption of subset
A and B than in the usual DPA case:

– 36.7% / 63.3% for the low cost component;
– 34.3% / 65.7% for the high cost one.

In real attacks, this results in an improvement by a factor 5 (number of messages
needed for a successful attack). Moreover, in critical situations (low quality ac-
quisition, cards allowing few tries), it could result in a sufficient improvement to
make an otherwise unsuccessful attack work.

Practical Scenario: we assume for this example that the scheme of DES is
known. As in the classical DPA attack, we repeat the following operations on
several DES acquisitions with the message M :

– apply IP (DES Initial Permutation) to M ;
– apply the expansion permutation to the 32 right bits of IP (M);
– guess 6 bits of the key (output of the first round key scheduling) and XOR

it to the corresponding part of the message;
– those 6 bits will be the input of the S-Box table look-up.

In the classical attack we consider one bit of the output of the S-Boxes. But
here, we will just separate the set [0, 63] (6 input bits of the S-Boxes) in two
optimal subsets by the method explained in the last section. Then, by analyzing
all the 6 bits guesses, we can determine the single correct guess. Indeed, by
definition of the subsets, it will be the difference curve with the biggest peak.

Remarks:
To realize this attack, we need to know the optimal linear model for the con-

sumption of the smart-card: in reality, this information is not obtained easily3.
So we have to find an experimental method to determine the consumption model.
The easiest method is to implement the ”usual” DPA attack to determine a key
on one component. Next, to analyze the leaking instruction (in the DPA attack)
for every possible input; one can do this knowing the message and the key. And
then the results can be applied to every implementation of crypto-algorithms on
the same component.

Even if this example is specific, it highlights under which conditions this at-
tack could be applied: one has to go through the algorithm with a known message
until a part of the key is involved and mixed with the message. This situation is
quite general for secret and public key algorithms. (i.e. AES candidates, RSA,
ECC ...)

3 Such information is considered proprietary by the silicon manufacturers

Power Analysis, What Is Now Possible... 497

3.3 BPA: Binary Power Analysis

We will now study another type of attack, the Binary Power Analysis.

Theory: In many secret key algorithms (like DESX, cellular phone algo-
rithms...), the ”whitening” technique is used to increase the size of the key with-
out modifying the algorithm used or using multiple encryption. The method used
is the following: before (respectively after) the algorithms core, the message (the
result) is xored (whitening operation) with a part of the key.

e.g.: whitening a 8-bit message M0 . . . M7 with a 8-bit key K = K0 . . . K7

– for(i=0..8) do Mi = Mi ⊕ Ki

– C = Encrypt(M)
– for(i=0..8) do Ci = Ci ⊕ Ki

This method, from a power analysis point of view, prevents a DPA-like sim-
ulation on the message. Unfortunately, it is quite easy to attack this operation
by power analysis and then use the usual attack on the algorithm core. This is
based on the fact that if a bit of the key is 0 the associated bit in the message
will remain unaltered.

Here are the BPA attack operations :

– Obtain n curves {Tk}k=1..n associated with the messages Mk

– for(i=0..8) do (if there are 8 bytes)
• for(j=0..8) (8 bits / byte)

∗ Separate the curves in 2 subsets according to the bit j of byte i of
all messages Mk

∗ Subtract the average of the 2 subsets
– Process the results to determine the whitening key possibilities

The last step needs more explanations to understand how the separation is done
in practice.

Practical Scenario: The graphic 5 presents the results of the analysis of a
whitening operation (just one byte).

In this case, the analysis is quite easy. The XOR operation is executed in 3
steps: first the input values are loaded, then the xor is executed, lastly the result
is stored. So, when attacking a special bit, on average the consumption will not
change when the key bit is 0 and will when the key bit is 1. In this case, we can
quite easily recover the key byte by comparing the beginning and the end of the
instruction: K = 00001001 4

One can find more details about the attack in [CJRR99a].

4 In this case the second peak of each part is representative of the key bit.

498 Mehdi-Laurent Akkar et al.

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

6.8 6.9 7 7.1 7.2

x 10
4

−0.01

0

0.01

Bit 1

Bit 2

Bit 3

Bit 0 Bit 4

Bit 5

Bit 6

Bit 7

Fig. 5. Whitening operation on a low cost component

3.4 DiPA: Direct Power Analysis

If the consumption model of a card is well known, some very powerful attacks
can be set up, avoiding two restriction of DPA like attacks:

– Why just separate the consumption in only two sets?
– Why only do an average differential analysis?

Considering the consumption distribution, it is surely possible to distinguish
more than two parts in the consumption curves and build more sophisticated
attacks. For examples, one can construct boolean or linear formulas on key-bits
or key-bytes like:

– The i-byte of the key is one of these values...
– The bit j and k are equal...
– If bit j and i are different then...
– bi+bj+bk=2...

One can then extract some bits of the key by appropriate computation (involving
boolean solving methods, Gröbner basis...).

Power Analysis, What Is Now Possible... 499

Moreover, if you have a reasonable model for the card, the important point
is that all these equations can be obtained with separate acquisitions and does
not involve any averaging or differential. You can extract information on each
individual computation done by the card.

For example, with the DES, you can extract a lot of information: you can
have a very precise idea of the key if you can (and this is possible in reality)
localize operations during the end phase of the key-scheduling (just before the
xor preceding the S-box operation). You obtain 16 sets of boolean equations on
the 6 bits values of the keys. If the accuracy of the model is good (number of
subsets in [0, 255] > 8) you can recover the entire key with just one acquisition
and even without knowing which message is being encrypted.

3.5 Countermeasures

In reality, many countermeasures exist to prevent power analysis attacks on the
smart-card:

– desynchronisation of the measures: dummy operations, random frequency
clock...;

– randomization of the operations: i.e. random permutations;
– transformations of the data: i.e. public key blinding, Duplication method

[GP99], masking methods[Mes00, CJRR99b].

3.6 Using Previous Results

We summarize some generals ”counter-countermeasures” to these countermea-
sures:

- Pattern Recognition (to localize interesting instructions from dummy
operations): it appears that the general power comsumption of an algorithm
does not change from one acquisition to the other. Moreover it could be that
every type of instruction (arithmetic, boolean, load and store ...) and every type
of adressing mode has a particular consumption profile. Hence, it might be pos-
sible to classify every assembly instruction by its power consumption. Such a
study has been undertaken with some success. Knowing the instruction profile,
one could disassemble part of the code or at least retrieve some instruction class.
Consumption profile helps in synchronising the curves when an external glitch
is not provided. Last but not least, an attacker could see what type of counter-
measures have been implemented in the code (use of random parameters). The
signals are first filtered in order to remove any local noise. Then, the adequate al-
gorithms (classical matching algorithms) are used to retrieve a given instruction
in a set of power consumption curves.

- Synchronizing a randomized clock: a hardware counter-measure a-
gainst waveform attacks consists in using a random clock. Experimentally, it is
possible to quite quickly rebuild the synchronous signals from the randomized
signals. Once again, the signals are processed with an adequate filter in order to
remove any local variations. As a result, it is easy to recognize (studying the first

500 Mehdi-Laurent Akkar et al.

6.5 7 7.5 8 8.5 9

x 10
4

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0 100 200 300 400
−0.04

−0.02

0

0.02

0.04

0.06

Instruction: Return Instruction: Load

0 100 200 300
−0.05

0

0.05

0.1

The 4 pikes correspond to a "load" matched instruction

Fig. 6. Pattern Recognition example

and second derivate) the clock cycles. Then, according (or not) to a reference
curve, one can expand or shrink every single clock cycle of a given curve. The
procedure is then repeated for every clock cycle of the signal. One can then
re-use normal DPA attacks.

- Transformations/Masking Methods: we will just present here an
example. Often in the DES (due to its structure), the card computes randomly
with the data or with the flipped data (M = M ⊕ 0xFF..F) to protect the
card against a bit prediction of the data. But using the PODPA method, we
can neutralize this countermeasure. Knowing the consumption distribution of
the component, we proceed as follows:

– construct the 128 pairs (x, x⊕255) for x < 128 with its average consumption
(c(x) + c(x ⊕ 255))/2;

– order the pairs by consumption;
– construct two subsets with the 64 lower/higher consumption pairs;
– proceed a PODPA attack with this distribution.

This attack will work because it does not distinguish x and x ⊕ 255 for all
x ∈ [0, 255] (there are in the same subset). Moreover, in most components, the
consumption of these two subsets is quite different (similar to the usual DPA bit

Power Analysis, What Is Now Possible... 501

selection subsets). For example, this attack is very efficient against the counter-
measure explained in [Mes00]. It exploits a small leakage when transforming an
”arithmetic” mask into a ”logical” mask. However we want to point out the fact
that the PODPA attack does not defeat ”arithmetic” or ”logical” masks, just
the transformation from one to the other.

Unfortunately, DiPA attacks can counteract masking countermeasures men-
tioned in ([Mes00, CJRR99b]). The reason is the following: in their security
proof, they are assuming that the information is extracted from several mes-
sages. But, with our attack some information about the key is extracted from
each computation and not from the comparison of different acquisitions.

4 Summary of an Effective Attack

– Acquire sufficient signals to obtain general information.
– Apply adequate DSP5 to determine the type of clock and retrieve the struc-

ture of the program (rounds, countermeasures ...).
– By statistical test (variance) check if the execution is deterministic.
– Obtain sufficient curves of a specific part of the algorithm.
– Rescale if needed (noise, random clock...).
– By usual methods extract one key.
– Use SPA analysis to obtain more information about the card consumption.
– Now one is able to use PODPA, POSPA or DiPA attacks to ”easily” break

the card.
– One can directly attack other algorithms using the same card model!

5 Conclusions

We have shown that there are several potential attack scenarios which need to
be further explored. These attacks require a more detailed study of the com-
ponent than a classical DPA. A better knowledge of the behaviour of the chip
enables to conduct powerful attacks even with little knowledge of the algorithm
implementation.

References

[BS99] E. Biham and A. Shamir. Power analysis of the key scheduling of the
AES candidates. Second AES Candidate Conference, 1999.

[CJRR99a] S. Chari, C. Jutla, J.R. Rao, and P. Rohatgi. A cautionary note regarding
evaluation of AES candidates on smart-cards. CHES, 1999.

[CJRR99b] S. Chari, C. Jutla, J.R. Rao, and P. Rohatgi. Towards sound approaches
to counteract power-analysis attacks. Crypto, 1999.

[GP99] L. Goubin and J. Patarin. DES and differential power analysis, the du-
plication method. CHES, 1999.

5 Digital Signal Processing

502 Mehdi-Laurent Akkar et al.

[KJJ98] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
Web Site: www.cryptography.com/dpa, 1998.

[Mes00] T.S. Messerges. Securing the AES finalists against power analysis attacks.
FSE, 2000.

	Power Analysis, What Is Now Possible...
	Power Consuming Models for Smart-Cards
	Sensitive Instructions
	Some Consumption Models
	Consumption Model for the Data

	Real Smart-Cards
	Generalities
	Validity of the Memory Models in Practice

	Attacks
	Existing Attacks
	PODPA (Perhaps Optimal Differential Power Analysis)
	BPA: Binary Power Analysis
	DiPA: Direct Power Analysis
	Countermeasures
	Using Previous Results

	Summary of an Effective Attack
	Conclusions
	References

