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Abstract. Batch verification can provide large computational savings
when several signatures, or other constructs, are verified together. Sev-
eral batch verification algorithms have been published in recent years,
in particular for both DSA-type and RSA signatures. We describe new
attacks on several of these published schemes. A general weakness is
explained which applies to almost all known batch verifiers for discrete
logarithm based signature schemes. It is shown how this weakness can be
eliminated given extra properties about the underlying group structure.
A new general batch verifier for exponentiation in any cyclic group is
also described as well as a batch verifier for modified RSA signatures.

1 Introduction

Modular exponentiation is a fundamental operation for most practical digital
signature schemes. The computational expense of both signing and verifying
signatures is mainly due to the modular exponentiation required. Several tech-
niques have been proposed in the literature to reduce this expense, including use
of small exponents, and multi-exponentiation techniques [21]. An alternative way
to realize a computational reduction is through use of batch cryptography.

Batch cryptography is relevant in settings where many signatures (or other
primitives) need to be generated and/or verified together. Electronic commerce
applications are prime examples, as typically many customers interact with the
same merchant or banking server. Although techniques have been developed to
improve signature generation [6,16], the majority of the recent work in the area
has focused on the batch verification of signatures. These techniques all exploit
the homomorphic properties of exponentiation in various groups to combine a
set of exponentiations into one equation whose computational effort is effectively
divided amongst all the individual exponentiations required.

The purpose of this paper is to illustrate flaws in a number of published batch
verifiers; in some cases they are broken whilst in others we show that they do
not provide the strength of verification claimed. We show that an observation
of Bellare et al. [1], regarding the restrictions on use of certain batch verifiers,
has much more serious consequences than they imply; in most applications this
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makes the tests ineffective. Through stronger assumptions on the group structure
we show how these tests may be repaired.

1.1 Background

The idea of batch cryptography was introduced by Fiat [6,7]; his scheme amor-
tized the private key operations for RSA and so was designed to assist in the
signing and decryption operations. His idea was to batch a number of messages
together, perform one full-scale modular exponentiation to sign the messages si-
multaneously, and then split apart the batch into individually signed messages.
This is achievable due to the homomorphic property of RSA and the use of
multiple, relatively prime, public exponents, an idea introduced by Chaum [4].

Batch verification for DSA signatures was introduced by Naccache, M’Räıhi,
Raphaeli and Vaudenay [15]. Their scheme is designed to verify several DSA
signatures at once by checking that a batch criterion holds and is much more
efficient than sequential verification of individual DSA signatures1. Harn sub-
sequently proposed a new method for DSA signatures requiring interaction be-
tween signer and verifier [10] and later devised a non-interactive version [11].

Early work concerning (non-interactive) batch verification was also published
by Yen and Laih [22]. Their verification techniques are proposed for batch veri-
fication of a modification of the Schnorr or Brickell-McCurley signature schemes
as well as for RSA. The principle, once again, is based upon the homomorphic
properties of the respective scheme. Yen and Laih also note that to remain se-
cure from attack, the verifier must choose random exponent values and apply
these during batch verification. These values prevent the signer from attempting
to introduce false signatures that would otherwise satisfy the batch verification
criterion (the properties of this test are discussed in more detail in section 1.2).

Recently, Bellare, Garay, and Rabin [1,2] described several techniques for
conducting batch verification of exponentiation with high confidence that false
values have not been mixed into the batch. The technique which they refer to
as the small exponents test, is very similar to the algorithms of Naccache et al.
[15] and Yen and Laih [22], while their more sophisticated bucket test turns out
to be more efficient for larger batch instances.

1.2 Batch Verification of Exponentiation

First we give a general idea of how batch verification of exponentiation works
in a group. Consider the situation where we are given n elements y1, y2, . . . , yn,
all in a multiplicative group G, and n exponents x1, x2, . . . , xn, all integers up
to some size (we will become more specific shortly). A fixed element g ∈ G is
known. The idea of batch verification is to check that yi = gxi for each i without
having to make this explicit calculation n times. In the case that the xi values
are indeed the discrete logarithms of the respective yi values we will say that
1 An earlier version of the paper of Naccache et al. included an additional interactive
batch verifier. Lim and Lee [12] showed that this version is not secure.
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the batch is correct. A good batch verification algorithm should identify, at least
with high probability, whenever one or more of the xi values is not the discrete
logarithm of the respective yi.

All the known batch verification techniques are based on the multiplicative
property of the group. Specifically, if the batch is correct then the following
equation holds.

n∏
i=1

yi = g
Pn

i=1 xi (1)

It is easily checked that the converse is false: if equation 1 holds then it need
not be the case that the batch is correct. For example, adding a constant to
one xi value and subtracting the same constant from a different xi value does
not change equation 1 but invalidates the batch. Another example is where the
correct xi values are randomly permuted.

Various authors [15,22] have noticed this and suggested that, to turn equation
1 into a useful batch verifier, randomisation should be introduced. This is done by
multiplying the xi values by small random values which must also be introduced
as small exponents for the yi values. An attacker who wishes to have an incorrect
batch accepted has to anticipate which random values will be used. We follow
Bellare et al. [1] and call this idea the small exponents test. The algorithm is
shown in table 1. Bellare et al. prove that the small exponents test is a good
batch verifier with error bounded by 2−l as long as q, the order of the group G, is
prime. It can be seen that the algorithm uses one full exponentiation in G plus n
multiplications to obtain x and finally the cost of the n small exponentiations to
find y. Bellare et al. use a multi-exponentiation algorithm to show that the total
average cost is l+n(1+l/2) multiplications in addition to the full exponentiation.

Given: g a generator of the group G of prime order q, and
(x1, y1), (x2, y2), . . . , (xn, yn) with xi ∈ Zq and yi ∈ G. Also a security parameter l.
Check: That ∀i ∈ {1, . . . , n} : yi = gxi .

1. Pick s1, . . . , sn ∈ {0, 1}l at random.
2. Compute x =

Pn
i=1 xisi mod q and y =

Qn
i=1 ysi

i .
3. If gx = y then accept, else reject.

Table 1. Small exponents test for batch verification of exponentiation [1]

We will concentrate on the small exponents test in this paper. Bellare et
al. also propose a variation which they call the bucket test which can be more
efficient for large batches. Our general results apply also to the bucket test and
we discuss the difference further in section 3.2.

A critical assumption in the small exponents test is that the yi values lie in
the group of prime order,G. This rules out the case where G is the multiplicative
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group Z∗
n for n composite as used in RSA and related algorithms. Nevertheless,

Bellare et al. have shown that there is a simpler form of verification, which
they called screening, that applies to RSA signatures2. Screening shows that
the signatures must have, at some time, been formed by the true owner of the
private key even though none of the individual claimed signatures might actually
be correct. Screening is sufficient in applications where it is not necessary to
possess the signatures, but only to know that the messages were signed; an
example might be bulk verification of certificates.

1.3 Central Observation and Contribution

As mentioned above, it is a requirement in the proof of correctness of the small
exponents test that all operations are performed within a group G of prime
order. Bellare et al. suggest that in practice this is not really a restriction as this
setting is commonplace in many modern cryptographic schemes.

They observe that when the order of G is not prime the small exponents
test will not work. For an example they use G = Z

∗
p, which has non-prime order

p − 1. Let g be a generator of Z∗
p, and suppose y = gx mod p. Under these

assumptions the small exponents test will not detect the invalid batch with two
pairs (x,−y mod p), (x, y) when the small exponent for the first pair is even,
which occurs with probability 1/2. Notice that if y lies in some prime order
subgroup G then −y cannot lie in G.

The theme of this paper revolves around the requirement of working in a
prime order group, and can be summarised in two significant observations.

1. Several authors have ignored this requirement. We give explicit attacks to
show that their proposed batch verifiers do not work as advertised.

2. Even when this requirement is stated, it is not usually possible to check effi-
ciently that it actually holds in a batch presented for verification. This makes
most applications, including batch verification of DSA signatures [2,15], in-
appropriate unless additional properties hold.

The remainder of this paper is structured as follows. In the next section we
show that the claimed strong RSA batch verifiers proposed by Yen and Laih [22]
actually provide only the weaker screening property. We also present an explicit
attack on the batch DSA verifiers of Harn [11], showing that an outsider can forge
a batch signature for messages of his choosing. In the following section we outline
a general attack that is applicable to verifiers of signatures in batches, illustrating
how this may be applied to the small exponents test for batch verification of
DSA signatures [2,15]. The attack allows the true signer to have false signatures
accepted by the verifier. We then demonstrate how this general attack may be
avoided by careful choice of the prime modulus used and give a generalised
small exponents test for any cyclic group. We finally present a batch verifier for
modified RSA signatures.
2 Coron and Naccache [5] pointed out that screening can fail if duplicate messages are
present. A modified version of screening was later proven correct by Bellare et al. [2].
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2 Specific Attacks on Batch Verification Schemes

In this section we look at two schemes for batch verification which do not operate
in prime order groups. The first works with a composite modulus, while the
second performs a modular reduction before verification which destroys the group
structure. We show that in both cases the verification does not provide the
assurances claimed.

2.1 Yen and Laih’s RSA Batch Verification

Yen and Laih [22] proposed a variation of ElGamal signatures suitable for batch
signature verification. Here we consider the RSA batch verification technique
that they devised as a performance comparison with their proposed scheme.
They have essentially proposed to use the small exponents test in the RSA multi-
plicative group. Specifically, suppose that S1, . . . , Sn are claimed RSA signatures
[18] on messages m1, . . . ,mn (where these messages have been pre-processed by
any chosen hashing and redundancy functions). If the signatures are correct then
Si = md

i mod N where d is the RSA private exponent and N the modulus. Small
exponents s1, . . . , sn are chosen randomly of length l. The batch verification is
then to test if the following equation holds, where e is the RSA public exponent.(

n∏
i=1

Ssi

i

)e

≡
n∏

i=1

msi

i mod N (2)

Notice that this test is not as efficient as the small exponents test described
in table 1 because it is not possible for the verifier to add the exponents on
the left hand side modulo the group order. Furthermore, in practice a small
value of e is often used which severely limits the benefit of batch verification.
For example, if e = 3 then the batch verification can never be as efficient as
individual verification of the signatures with any reasonable failure probability.
But regardless of the test’s efficiency it is wrong to assume that is provides more
than screening; this means that use of the small exponents is redundant since
Bellare et al. showed that equation 2 provides screening with all si = 1, at least
in the case of full domain hashing.

The simplest attack is to replace some Si values by −Si and some mi values
by −mi (all modulo N). Then the test will still succeed with probability 1/2
depending on the parity of the si values chosen. This attack can be launched
by any party. It can be compounded by the signer who can choose an element
α of small order t in the multiplicative group (t should be smaller than 2l).
Any Si value can then be replaced by αSi mod N and the test will succeed with
probability 1/t. Note that it is easy to find such an α if the factorisation of N is
known.

2.2 Harn’s DSA Batch Verification

Harn [11] proposed an algorithm which is essentially a direct application of
equation 1 to variants of DSA signatures. Specifically he considers the following
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signature algorithm. Primes p and q are chosen with q|p − 1 and a generator g
of the group G of order q is published. A user’s private key is a number x in Zq

and the corresponding public key is y = gx mod p. A signature of a message m
(again pre-processed by hashing) is a pair (r, s) where both r and s lie in Zq. A
claimed signature pair is correct if the following verification equation holds.

r = (gsr−1 mod qymr−1 mod q mod p) mod q

Now suppose that m1, . . . ,mn is a batch of messages with corresponding set
of claimed signatures (r1, s1), . . . , (rn, sn). Applying the multiplicative property,
the following equation holds, which is also the proposed batch verification test.

n∏
i=1

ri mod q = (g
Pn

i=1 sir
−1
i mod qy

Pn
i=1 mir

−1
i mod q mod p) mod q (3)

Our first observation is that this test can provide no more than screening.
For suppose that a batch of correct signatures is known. Keep the ri values the
same and then choose the n − 1 values s′1, . . . , s

′
n−1 randomly and finally solve

the equation
n∑

i=1

s′ir
−1
i mod q =

n∑
i=1

sir
−1
i mod q

to obtain the value s′n. Then the batch (r1, s′1), . . . , (rn, s′n) satisfies the test but
almost certainly none of the signatures is correct.

Now we show that the situation is compromised even further by an explicit
attack. With high probability it is possible for an attacker who is not the signer
to find signatures for any chosen message set. We only need to assume that the
attacker has any known signature for this scheme: this gives values A, B and C
with A = (gByC mod p) mod q. We suppose that the attacker has chosen two
messages for signing, say m1 and m2 (the attack is easily generalised to any
number of messages). The attack works by making verification equation 3 the
same as for the known signature. This is done in two steps.

1. Solve for r1 and r2 to ensure that
r1r2 ≡ A mod q

m1r
−1
1 +m2r

−1
2 ≡ C mod q.

2. Solve for s1 and s2 to ensure that

s1r
−1
1 + s2r−1

2 ≡ B mod q.

The simultaneous equations in step 1 can be reduced to the quadratic equa-
tion (m2/A)r21−Cr1+m1 mod q which can be solved by completion of the square
as long as the discriminant C2 − 4m1m2/A is a quadratic residue modulo q. On
the assumption that m1 and m2 are random (they are the result of hashing) this
will be the case with probability 1/2. Step 2 can then be completed by choosing
s1 randomly and solving for s2.
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The attack can be generalised for any number of messages to be forged. In
step 1 all but two of the ri values can be chosen randomly and then the remaining
two found by solving a quadratic equation as described above. Step 2 proceeds
as above with all but one of the si values chosen at random. It is interesting
to note that this attack will not work if random small exponents are added to
the verification equation. However, since there is no security proof it would be
dangerous to rely on such a test.

3 General Attack on the Small Exponents Test

In this section we show that the small exponents test described in table 1 is
much less useful that it at first appears. We will show that many of the proposed
applications for the test are, in fact, not appropriate at all.

3.1 Attacking Batch Verification of DSA

In order to explain the weakness we first describe the batch DSA verification
proposed by Bellare et al. [2]. (Note that this application was not included in
the shortened version of the paper published at Eurocrypt’98 [1]). As previously
suggested by Naccache et al. [15] the verification algorithm is applied not to the
original DSA signature scheme but to a slightly altered version.

The setting is again in a subgroup G of Z∗
p of prime order q where a user’s

private key is x ∈ Zq with public key y = gx ∈ G. The signature of a (pre-
processed) messagem is a triple (λ, s,m) which satisfies the following verification
equation, where r = λ mod q.

λ = gms−1 mod qyrs−1 mod q mod p

The difference in original DSA is that λ is replaced by r, and the verification
equation is reduced modulo q. This means that the original DSA signature is only
twice the size of q instead of the size of q plus the size of p in the revised version.
Since typical sizes of p and q would be 1024 and 160 bits respectively, this is
a significant extra overhead which might be worthwhile for the computational
gains of batch verification. Note that the modified version can easily be converted
into an original DSA version at any time by replacing λ with r. Bellare et al.
applied the small exponents test to a batch of modified DSA signatures as shown
in table 2.

We now apply our main observation to the algorithm: at no time in the
algorithm is it checked that the λi values are actually within the group G as
they should be. Once this is observed it is straightforward to develop an attack.
(In contrast to the attack in section 2.2 only the true signer can carry out this
attack.) Similar to the attack on Yen-Laih’s algorithm in section 2.1, the idea
of the attack is to replace one or more λi values by −λi and the signatures will
be accepted with probability 1/2. Because the bi values in the test depend on
λi the attacking signer needs to choose λi first and then find si. Specifically the
signer proceeds as follows to run the attack with one or more of the messages
mi.
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Given: Public parameters p, q, g a public key y and a batch of claimed signatures:
(λ1, s1, m1), . . . , (λn, sn, mn) with si ∈ Zq and λi ∈ G. Also a security parameter l.

Check: That ∀i ∈ {1, . . . , n} : λi = gmis−1
i mod qyris−1

i mod q mod p.

1. For i = 1, . . . , n set ai = s−1
i mi mod q and bi = s−1

i λi mod q.
2. Pick w1, . . . , wn ∈ {0, 1}l at random.
3. Compute A =

Pn
i=1 aiwi mod q, B =

Pn
i=1 biwi mod q, and R =

Qn
i=1 λwi

i .
4. If gAyB = R then accept, else reject.

Table 2. Small exponents test for batch verification of modified DSA [2]

1. Choose ki randomly in Zq and set Li = gki mod p.
2. Set λi = −Li mod p, ri = λi mod q and si = k−1

i (mi + xri) mod q.
3. Present (λi, si,mi) to the verifier as part of the batch.

It follows that

gmis
−1
i mod qyris

−1
i mod q mod p = gki mod p = Li

and since L2
i ≡ λ2

i mod p this will go undetected if the verifier chooses this wi

to be even which happens with probability 1/2.
As with the attack on Yen-Laih, it can be generalised by substituting λi =

αLi mod p for an element α with any order t where t|p− 1 and t ≤ 2l. Usually
there will be many such t values that can be chosen. Then the signature will be
accepted with probability 1/t.

We would like to emphasise that this does not invalidate the theorem proven
by Bellare et al. regarding the security of their small exponents test since it is
an assumption in table 1 that the yi values are in the group G. Furthermore,
strictly the application is correct as long as the λi values are in G, but this is
not a reasonable assumption in practice.

3.2 Other Schemes Susceptible to the Attack

Several other published schemes make essentially the same unjustified assump-
tion. An attack on the earlier DSA batch verification scheme of Naccache et al.
[15] is identical to that proposed above. A similar attack on the batch verifier
for a Schnorr signature variant proposed by Yen and Laih [22] is possible. Note
that if all (or most) of the small exponents will be chosen to be odd, such as
is suggested by Naccache et al., the substitution should be made on an even
number of λi values for the attack to succeed.

Another application that is vulnerable is a recent proposal for batch ver-
ification of coins in Brands’ cash scheme [17]. In this proposal the merchant
essentially uses the small exponents test during the payment protocol to ver-
ify a batch of coins together; a batch test is also used by the bank at deposit
time. A possible consequence of the above attack is that a customer can frame
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a merchant since there is a high probability that the customer can have a bad
coin accepted at payment time but that it will be rejected by the bank during
deposit.

The alternative bucket test of Bellare et al. [1] is also vulnerable to the same
attack, since it basically consists of a series of small exponent tests run on random
partitions of the batch. However, in many instances it will detect the attack with
much higher probability than the small exponents test. The bucket test uses an
additional parameter m, repeats the partitioning �l/(m − 1)� times, and runs
the small exponents test with parameter m in place of l. So a value λi replaced
by −λi will be detected with probability 1/2 for every repetition, or 2−�l/(m−1)�

overall. This is still much worse than the claimed probability of failure of 2−l.

4 Repairing the Small Exponents Test

An obvious way to prevent the attack is to check that the λi values in table 2 are
indeed in G, as required by the small exponents test. However, there does not
appear to be any way to do this that does not totally negate the computational
savings of the test. For example, to test directly that λq

i mod p = 1 would require
n extra exponentiations. Note that it is not sufficient to check, for example, that
the product of the λi values are in G.

The main problem in ensuring that the proof still holds is to avoid elements
of low order in the ‘large group’. The element of order 2 is always present in Z∗

p

so we have to accept that there may sign changes in a batch that passes the test.
In this section we show that through judicious choice of p it is possible to avoid
any other problems.

4.1 Dealing with Prime Order Subgroups

First of all we assume that p is chosen to be of the form p−1 = 2rq where r and q
are both primes. The modified form of the small exponents test is shown in table
3; the differences from that in table 1 are small but significant. In particular there
is no assumption that the yi values lie in G. A consequence of this difference is
that exponentiations are only known to be correct up to a possible multiple of -1.
This should be acceptable in most applications since it can always be corrected
if a particular value is later found to be incorrect.

The computational cost of the modified test is identical to that of table 1.
Using an improved algorithm for multiexponentiation, Bellare et al. [1] calculated
the total cost of the test as l + n(1 + l/2) multiplications plus the cost of the
exponentiation. The exact cost will depend on the size of the values of p, q and
l (as well as the algorithms used for exponentiation and multi-exponentiation).
Reasonable values today might be |p| = 1024, |q| = 160 and l = 60.

Theorem 1. Suppose p is a prime and G a subgroup of Z∗
p of prime order q. If

p− 1 = 2qr where r is prime and min(q, r) > 2l then the algorithm in table 3 is
a batch verifier which fails with probability at most 2−l.
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Given: g a generator of the subgroup G of Z∗
p and (x1, y1), (x2, y2), . . . , (xn, yn) with

xi ∈ Zq and yi ∈ Z∗
p. Also a security parameter l.

Check: That ∀i ∈ {1, . . . , n} : ±yi = gxi .

1. Pick s1, . . . , sn ∈ {0, 1}l at random.
2. Compute x =

Pn
i=1 xisi mod q and y =

Qn
i=1 ysi

i .
3. If gx = y then accept, else reject.

Table 3. Modified small exponents test for batch verification of exponentiation
in Z∗

p

Proof The proof is basically similar to that of Bellare et al. for their small
exponents test but there are a few extra problems to consider. Suppose that g0
is a generator of Z∗

p and suppose, without loss of generality, that g = g2r
0 . We

can then write yi = gx′
i

0 for some x′i with 1 ≤ x′i ≤ p− 1. Suppose that the test
passes; then the following equation holds.

g2rx mod p−1
0 = g

Pn
i=1 x′

isi mod p−1
0

Because g0 is a generator of Z∗
p we have

2r(s1x1 + . . .+ snxn) ≡ x′1s1 + . . .+ x′nsn mod (p− 1)

which we may re-write as the following.

s1(x′1 − 2rx1) + . . .+ sn(x′n − 2rxn) mod (p− 1) = 0 (4)

Suppose that for at least one value of i we have ±yi 	= gxi. Without loss of
generality let us assume that i = 1. If we suppose that the values of s2, . . . , sn
have been chosen, then equation 4 is a linear equation in s1 and the number of
solutions for s1 is either 0 or ν = (p − 1, 2rx1 − x′1). Because p − 1 = 2qr, ν
can take any of the eight values {1, 2, q, r, 2r, 2q, qr, 2qr}. But the case ν = 2qr
means that 2rx1 ≡ x′1 mod p− 1 so yi = gxi which we have assumed is not true.

The next largest case is ν = qr, so that we have either 2rx1 ≡ x′1 mod p− 1
or 2rx1 + qr ≡ x′1 mod p− 1. The former possibility is ruled out and the latter
possibility means that y1 = gx′

1
0 = g2rx1+qr

0 = −gx1 which is also assumed not to
hold.

The remaining cases do not satisfy the check so we need to show that they
occur with small probability. The next largest case is ν = 2r. Although in this
case there are many solutions to equation 4, these solutions are evenly distributed
in the sense that if X is any solution for s1 then X + q is also a solution. This
means that there is at most one solution for s1 in the range 0 ≤ s1 ≤ 2l since
q > 2l. A similar argument holds for all other possible value of ν. Since s1 is
chosen randomly the probability that equation 4 holds when ±y1 	= gx1 is thus
at most 2−l. The same is then true if all s1, . . . , sn are drawn independently and
randomly. 2
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It can be seen from the proof that the requirement that p−1 = 2rq is stronger
than necessary. In fact it is necessary only that p−1 has no factors smaller than
q apart from 2. Efficient methods to generate primes satisfying either of these
conditions have been described by Lim and Lee [13]. They suggest that to satisfy
p− 1 = 2rq, the prime r should be chosen first and then random primes q of the
desired size chosen until p is prime. For |p| = 1024 only around 710 trials for q
will be required which is a very practical requirement.

4.2 Generalisation and Applications

There are a number of ways that the modified small exponents test can be
extended. We give a generalised form in table 4 which applies to any cyclic
group. This algorithm can only give assurance of the correctness of the batch up
to multiplication by an element of order less than 2l. Therefore, in applications it
will be useful to ensure that the group order has as few small factors as possible.
The following theorem shows that the algorithm is a correct batch verifier. The
proof, which is a generalisation of the proof of Theorem 1, is omitted due to
space restrictions.

Theorem 2. The algorithm in table 4 is a batch verifier which fails with prob-
ability at most 2−l.

Given: g a generator of a cyclic group H of order ω and (x1, y1), (x2, y2), . . . , (xn, yn)
with xi ∈ Zω and yi ∈ H . Also a security parameter l.
Check: That ∀i ∈ {1, . . . , n} : αyi = gxi for some element α ∈ H of order less than
2l.

1. Pick s1, . . . , sn ∈ {0, 1}l at random.
2. Compute x =

Pn
i=1 xisi mod ω and y =

Qn
i=1 ysi

i .
3. If gx = y then accept, else reject.

Table 4. Generalised small exponents test for batch verification of exponentia-
tion in any cyclic group

There are a number of useful applications of our modified small exponents tests.

– DSA batch verification can be achieved by adapting the algorithm of table 2
to verify the signature up to multiplication of each λi by -1. The algorithm
is identical except
• we require that p− 1 has no factors smaller than 2l apart from 2.
• we do not assume that λi is in a prime order subgroup.

Of course the attack in section 3.1 still holds so if this verification is to be
used it is necessary to adapt the DSS algorithm so that (r, s,m) will be a
correct signature if either of the following checks passes.
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r = (gms−1 mod qyrs−1 mod q mod p) mod q (5)

(p− r) mod q = (gms−1 mod qyrs−1 mod q mod p) mod q (6)

Although it seems intuitively reasonable that this extension to DSA signa-
tures is as secure as original DSA we do not offer any proof.

– Bellare et al. [1] have asked whether a batch verifier for exponentiation can
be found for Z∗

p rather than in a prime order subgroup. The algorithm in
table 4 answers this question in the affirmative (up to multiplication by -1)
with the condition that p− 1 has no small factors apart from 2.

– The bucket test of Bellare et al. [1] is an extension of the small exponents test
and it is immediate to extend our test in the same way. The computational
cost will be the same as that of the original bucket test.

5 Batch Verification of RSA Signatures

As mentioned previously, Bellare et al. introduced screening as a weaker form
of verification for RSA signatures. In this section we will use the ideas from
the previous section to derive batch verification of a slightly modified definition
of RSA signatures. This variation was already used by Gennaro et al. [8] in a
different context. Specifically, the set of signatures on a message m, randomised
appropriately, is defined as

SIG(m) = {Sm : Sm = αmd, ord(α) ≤ 2}.

For an RSA modulus, N = pq, there are four possible signatures of every mes-
sage. In addition to 1 and -1 there are two ‘non-trivial’ square roots of unity and
knowledge of either of these allows N to be factorised. Consequently an oracle
to forge a signature in SIG(m) can be used to forge an ordinary RSA signature
either directly or by allowing factorisation of N .

The next restriction we need is that N should be the product of two safe
primes: N = pq where (p − 1)/2 and (q − 1)/2 are also prime. Since there is
an efficient method to prove that N is of this form [3,14] this property can
be checked when the public key is certified or, if necessary, prior to the batch
verification. Our batch verification algorithm for RSA is given in table 5. The
proof of the following result is omitted due to space restrictions.

Theorem 3. The algorithm in table 5 is a batch verifier which fails with proba-
bility at most 2−l. Its cost is approximately l(n+2)+1.5|e|+n−1 multiplications
modulo N .

Batch verification of RSA is counter-productive when e is small, as the cost of
conventional sequential verification of the n signatures will be 1.5n|e| multipli-
cations. The algorithm is worthwhile when e satisfies

|e| 
 l(n+ 2)
1.5(n− 1)

+
2
3
.
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Given: A modulus N which is the product of two primes and
(S1, m1), (S2, m2), . . . , (Sn, mn) with Si, mi ∈ ZN. Also a security parameter l
with 2l < min(p′, q′).
Check: That ∀i ∈ {1, . . . , n} : αSe

i = mi for some element α ∈ Z∗
n of order not more

than 2.

1. Check that (Si, N) = 1 for all i.
2. Pick s1, . . . , sn ∈ {0, 1}l at random.
3. Compute x =

�Qn
i=1 Ssi

i

�e
mod N and y =

Qn
i=1 msi

i mod N .
4. If x = y then accept, else reject.

Table 5. Small exponents test for batch verification of RSA signatures

Thus for large n we require that |e| ≈ 2l/3 before the test becomes useful. Small
values of e such as 3 or 216 + 1 will never benefit from our batch verification.
There are certain situations where a random, or large, e is desirable [19]. For a
random e our test provides immediate gains for any reasonable size of N .

6 Conclusion

In this paper we have outlined several new attacks on batch verification tech-
niques in the literature including a general attack on batch verification which
affects most of the prominent schemes. We have shown how this attack may be
avoided by careful choice of the modulus and weakening the acceptance condi-
tion. We have also provided a new batch verifier for exponentiation in any cyclic
group and a batch verifier for modified RSA signatures. These results answer
many of the open questions posed by Bellare et al. [1].
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