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Abstract. We consider a problem which was stated in a request for
comments made by NIST in the FIPS97 document. The question is
the following: Can we have a digital signature public key infrastruc-
ture where the public (signature verification) keys cannot be abused for
performing encryption? This may be applicable in the context of, say,
exportable/escrow cryptography. The basic dilemma is that on the one
hand, (1) to avoid framing by potentially misbehaving authorities we do
not want them to ever learn the “signing keys” (e.g., Japan at some point
declared a policy where signature keys may be required to be escrowed),
and on the other hand (2) if we allow separate inaccessible public signa-
ture verification keys, these keys (based on trapdoor functions) can be
used as “shadow public-keys,” and hence can be used to encrypt data in
an unrecoverable manner. Any solution within the “trapdoor function”
paradigm of Diffie and Hellman does not seem to lead to a solution which
will simultaneously satisfy (1) and (2).

The cryptographic community so far has paid very limited attention to
the problem. In this work, we present the basic issues and suggest a pos-
sible methodology and the first scheme that may be used to solve much
of the problem. Our solution takes the following steps: (1) it develops
the notion of a nested trapdoor which our methodology is based on, (2)
we implement this notion based on a novel composite “double-decker”
exponentiation technique which embeds the RSA problem within it (the
technique may be of independent interest), (3) we analyze carefully what
can be and what cannot be achieved regarding the open problem by NIST
(our analysis is balanced and points out possibilities as well as impossi-
bilities), and (4) we give a secure signature scheme within a public key
infrastructure, wherein the published public key can be used for signa-
ture verification only (if it is used for encryptions, then the authorities
can decrypt the data). The security of our scheme is based on RSA. We
then argue how the scheme’s key cannot be abused (statically) based
on an additional assumption. We also show that further leakages and
subliminal leakages when the scheme is in (dynamic) use are not added
substantially beyond what is always possible by a simple adversary; we
call this notion competitive leakage. We also demonstrate such simple
leaking adversary.

We hope that our initial work will stimulate further thoughts on the
non-trivial issue of signature-only signatures.

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 97–115, 2000.
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1 Introduction

Traditionally, implementations of efficient digital signature algorithms have been
constructed such that the public verification keys can be made to function as en-
cryption keys. The separation of an encryption capability from that of signature
verification seems interesting in general, especially in the contexts of exportable
cryptography. In fact, in any formulated policy for encryption, it seems that
bodies like recovery agents have no legitimate need to be able to obtain the
signing private keys of other users. But in all of the traditional systems, sign-
ing infrastructures can immediately be used as a shadow public key encryption
infrastructures (a notion put forth by Kilian and Leighton [KL95]). Thus, the
natural question posed by NIST, given the needs of the US federal agencies, was:
“How can a public-key system incorporating both privacy as well as signatures
which does not support unrecoverable encryption be designed?” This problem
(the “NIST problem” in the sequel) was specifically stated in detail in a request
for comments made by NIST in a revision of the DSA FIPS [FIPS97]. It read as
follows:

“The Administration policy is that cryptographic keys used by Federal agen-
cies for encryption (i.e., to protect the confidentiality of information) shall be
recoverable through an agency or third-party process and that keys used for dig-
ital signature (i.e., for integrity and authentication of information) shall not be
recoverable. Agencies must be able to ensure that signature keys cannot be used
for encryption. Any algorithms proposed for digital signature must be able to
be implemented such that they do not support encryption unless keys used for
encryption are distinct from those used for signature and are recoverable.”

Comments were received from various computer security companies. Yet
none of the comments attempted to give a technical solution to the problem.
The problem as stated seems quite nontrivial. It implies the existence of a pub-
lic key scheme and infrastructure that can only be used for signatures and not
for public key encryptions. The problem as a whole is a purely technical chal-
lenge (the need to separate escrowed encryption from signature was noted in
[FY95, An97]). In this paper we attempt a solution to this problem. Note that
minimizing the abuse and direct leakage of a signature scheme will make such
a scheme more easily exportable, and may help prevent that which almost hap-
pened in Japan where policy makers a number of years ago attempted to escrow
signature keys for law enforcement purposes.

Obviously in any on-going communication system, if one allows leakage us-
ing timing channels and other side information like correct/incorrect message
structure (or other side subliminal channels) one cannot prevent leakage of in-
formation, and this information can be used cryptographically (say, for key ex-
changes). For such covert channels, no crypto at all is in fact needed, and just a
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marking scheme (e.g. error correcting code) or a timing convention is needed. In
fact, against such attacks, communication itself has to be halted forever, which
is unrealistic. This is what Rivest has pointed out as the “Chaffing and Winnow-
ing” method [R98] using authentication channels for marking. Knowing that we
cannot eliminate covert channels, the harder question is “what can be done to
prevent ‘direct use’ of the published signature verification key for encryption?”
as asked by NIST. Here we also add (perhaps beyond NIST’s requirements) the
issue of preventing (as much as possible) additional direct leakages when the
scheme is dynamically used. We seek to eliminate leakage channels with much
larger bandwidth (and amount of work) when compared to trivial covert chan-
nels; we call this property “competitive leakage,” borrowing terminology from
the field of on-line algorithms.

The above issues together try to eliminate the added advantage for “abusers”
resulting from the direct introduction (publishing and using) of a signature
scheme. One has to understand what can and cannot be done in this area,
and the answer has to be scientific and forthright. We take a first step in this
direction by attempting to answer the publicly posed NIST problem.

2 Analysis of the NIST Problem

We want to prevent published keys from being abused for encryption and fur-
ther prevent direct and easy use of a small number of published signatures for
encryption. We note that the difficulty of completely formalizing abuse-freeness
(especially in the context of signature schemes) has been noted in the literature
(see Desmedt et al. [D89, BD-etal96]). We add a key registration and publication
stage to a signature scheme, and we define a digital signature infrastructure that
is “signature-only” as following:

Definition 1. A Signature-Only Digital Signature Infrastructure is a digital sig-
nature algorithm (which is secure against existential forgeries under adaptive
chosen plaintext attacks [GMRi88]) with the following additional properties:

1. Security: It is not possible for the CA’s (together with hypothetical other
authorities) to forge a signature of any user in the system (even an existential
forgery attack).

2. Published Key misuse freeness: The public verification key cannot be
used to encrypt data in an unrecoverable manner.

3. Published Key leakage resistance: The public verification key has a very
small subliminal channel (e.g., < 32 bits or so), and thus cannot be used to
effectively display a complete shadow public key.

4. Signature leakage resistance: The signatures created using the private
signing key are shadow public key resistant. Namely, it is not possible to use
the properties of a given signature per se, to derive a shadow public-key. In
addition we can strengthen the requirement and demand competitive leakage:
the number of signatures (and complexity of derivation) required to get a
shadow public key is approximately the same as in a trivially leaking channel
(available by the communication).
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The first property above strengthens the traditional security and requires it
to hold against the certification authorities (CA) which may hold extra infor-
mation. The second property deals with abuse as required by NIST, whereas
the other properties deal with add-on leakage of the system (compared to a non
cryptographic system), which we have added to NIST’s original requirement. We
note that we do not attempt to eliminate subliminal leakage, but rather try to
minimize add-on leakage as compared to existing trivial channels. In fact, we
will show that every on-going signing leads to trivial (unavoidable) leakage.
Additional related work: The notion of a subliminal channel has been sug-
gested by Gus Simmons [Si85]. A subliminal channel in a cryptosystem is a
channel that allows a user of the system to leak information of his or her choos-
ing through that channel. Simmons showed that information can be leaked in
digital signatures, including DSA signatures [Si93]. It is known that in many
operational environments, covert channels inherently exist. Within the context
of key recovery systems, Kilian and Leighton showed that subliminal channels
can be exploited to display unescrowed public keys within channels that exist
in escrowed public keys, which are displayed by the CA [KL95]. They call this
form of attack which easily adds a public key directory, shadow public key abuse.
Abuses of cryptosystems have been discussed by Desmedt [D89]. It was origi-
nally believed (by some) that the NSA designed DSA [DSS91] could not be used
for public key encryption or key exchange operations. Yet it was shown how
the DSA verification key can be used for encryption (overtly [NR94] and even
covertly within a single signature [YY97]). Such capabilities cannot be permitted
if one is to design a scheme solving the NIST problem.
Methodology: In our methodology, we first discuss the security of the scheme
(reducing from a known problem), we then show (under a new assumption)
how the public keys in the scheme we present cannot be used as trapdoors
in known systems in the sense that, if they are used, then the authorities are
able to recover data encrypted with them. We then present methods that limit
additional subliminal leakage of information. We do not employ cumbersome
interactive techniques (e.g., the schemes in [D89, KL95]), but rather we employ
non-interactive methods that assure that near-random choices of public param-
eters are made (making random choices via the use of one-way hash functions
which are regarded as random oracles– an idea rooted in the DSA parame-
ter generation procedure). We also guarantee leakage-freeness in the signatures
themselves by using deterministic (and pseudorandomized) signing algorithms
rather than randomized signing algorithms.

To claim security, we reduce the ability to forge (by the CA which holds more
information than the signature verifying users) to the ability to break RSA as a
one-way function (in the random oracle model). We assume RSA is a one-way
function:
Security Assumption: Given n ∈ Z+ s.t. n = pq where p and q are distinct
random primes of size k, and a fixed e ∈ Z+ s.t. gcd(e, φ(n)) = 1, and given
a random c ∈ Z∗

n, finding m ∈ Z∗
n s.t. me = c (mod n) is hard (i.e., for any

polynomial it takes more than polynomial in k time, for all k large enough).
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Naturally, we need to claim that a public key cannot be used for public key
encryptions. Since public key information is available, we must assume or show
the non-existence of a (probabilistic) poly-time algorithm that uses the public
key as it was created to encrypt data without the CA being able to decrypt that
data. This is how the notion of a “nested trapdoor” helps: on one hand the CA
cannot sign (since the CA does not know the innermost trapdoor or otherwise
is in violation of the security assumption), but on the other hand, the CA can
decrypt based on the information it holds (using the middle trapdoor).

For the outermost trapdoor, we now give the new assumption about the
public key information that forms the basis for our proposed scheme. It is needed,
given the state of the art of subliminal freeness in signature schemes. It basically
states (based on the state of the art) that once the factorization of a randomly
generated specially structured number is known (and its structure proven), it
cannot serve as a public encryption key. More precisely:

No-Abuse Assumption: There does not exist a secure public key encryption
algorithm that takes n as the input public key, where n (of size k) is the product
of two large known (to the CA only, in our case) primes p and q with p =
2tp1q1 + 1 and q = 2q2 + 1, such that p1 and q1 are secret primes, t is a small
public safe prime, and q2 is prime (and given e a fixed number of size polynomial
in k, such that gcd(e, φ(φ(n))) = 1).

Note that even though p1q1 is known (to the CA only), the encryption algo-
rithm does not know it since it only takes n (and e) as input. Given the state
of the art, the above assumption is mathematically plausible (its validation is
an interesting issue, and knowing whether a weaker assumption suffices is left
open). The plausibility of the assumption can be supported as follows:

– The assumption’s public refutation can be done by proposing an encryption
scheme which bypasses the above factorization knowledge (of the CA in our
case) by using either (1) an old trapdoor, or (2) a new one. The latter, in
fact, would be an interesting new public key suggestion.

– If a more general version of the assumption (not restricting to the exact
structure of n above but using generic n) does not hold, then it implies the
existence of a shadow public key attack on any factoring based key escrow
system where w.l.o.g. p− 1 is hard to factor.

Main Idea: Now that we discussed the assumptions, let us describe briefly
the main idea behind the scheme. The value φ(φ((n)) effectively constitutes the
private signing key of the user, Zφ(n) is the domain in which the signatures are
computed, and Zn is the domain in which signature verification is performed.
Our scheme is setup such that neither φ(n) nor φ(φ(n)) is known to the verifier,
and such that only knowledge of n is needed to verify. Also, we insure that φ(n)
is known to the CA. Hence, any PKCS predicated on the difficulty of factoring n
provides no security against the CA. So, in our scheme there is “double-decker”
exponentiation. The upper most deck is known only to the signer, the middle
deck is known to the CA and the signer, and the bottom deck is known to
everyone. We call this a nested trapdoor construction.
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Note that double-decker techniques based on the discrete log problem have
been utilized before [St96, CaSt97, YY98]. However, the novel double-decker
application we present requires the use of composites and is predicated on the
problem of factoring.

Remark: Naturally, any infrastructure that provides authenticity can be abused
via leakage by criminals to permit authenticated communications which are un-
tappable (since there are non cryptographic means to leak data). This is irrel-
evant since the problem posted by NIST appears to deal with direct abuse of
signatures for encryption (obviously, NIST did not overlook the possibility of
subliminal/covert channel use and direct “key exchanges”). For instance, the
certified signature keys can be used to conduct an authenticated key exchange.
When criminals are given the ability to authenticate themselves then this type
of abuse is entirely unavoidable. Hence, the property that we require is
that criminals be forced to go outside of the provided key recov-
ery/authentication mechanisms to conduct the untappable authen-
ticated communications (e.g., force criminals to do a key exchange, which
they can authenticate if they so choose). What is achieved here, in fact, is that
under our assumptions and in our proposed system, a user cannot abuse keys
directly, and usage of the system competitively, to conduct secure communica-
tion. Recall that by ‘competitively’ we mean that we do not allow substantial
increase in leakage via the keys or the signatures (requirements beyond NIST’s
original problem). The scheme can therefore be viewed as the first unescrowed
digital signature scheme which, as much as possible, does not defeat the purpose
of a recoverable PKI when added to a recoverable PKI on its outset (but re-
quires extra work from abusers). We note that in general, in the area of abusing
escrow encryption, the malicious adversaries can always bypass the system and
the remaining scientific challenges are to protect against more benign adversaries
which do not invest much extra effort (e.g., they use the available keys) or when
this bypassing is to be revealed by other means in the communication system.

3 Re–examination of Existing Signature Schemes

In this section we will analyze the shortcomings of various digital signature
algorithms in light of the NIST requirement. None of the schemes were designed
with NIST’s problem in mind, so these are not weaknesses but rather a reflection
of the state of the art.
RSA: We take the opportunity to look at an RSA variant which makes the
RSA signing function a uniform trapdoor permutation via pre-hashing. In this
system, n is the product of two large primes p and q, and e is a public value
such that gcd(e, (p − 1)(q − 1)) = 1. e and n are the user’s public verification
keys, and the inverse of e mod φ(n) is d, the user’s private signing key. The
signature on m is s = H(i||m)d mod n, where i is the smallest positive integer
making H(i||m) mod n ∈ Z∗

n (as in [BR93]). To verify a signature we check that
se mod n = H(i||m). Clearly (e, n) can be used to encrypt data. If d, p, or q is
given to the authorities, it follows that the authorities (CA) can forge signatures.
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This applies to Rabin [Ra78] and every factoring based scheme, including Esign
where n = p2q.
ElGamal and Relatives: In ElGamal [ElG85], the public key is y = gx mod p,
where x is the private signing key. Here g is a public generator modulo the
public prime p. If the private key x is not given to the authorities, y can be
used for encryption (e.g., the ElGamal encryption scheme). If x is given to the
authorities, obviously they can forge signatures. The same holds for DSA, Elliptic
Curve DSA, Schnorr, undeniable signatures, Nyberg and Rueppel, etc.
Fiat-Shamir: In Fiat-Shamir, n is the product of two primes and none of the
users know the factorization of n. To generate a public key, a user generates k
different quadratic residues v1, v2,...,vk modulo n. This vector is the public key.
The scheme therefore succumbs to the following shadow public key attack. The
user chooses a random x and squares it to get v1. Let g = v1 be a generator of
hopefully a large subgroup containing all quadratic residues in Z∗

n. To generate
v2, a malicious user chooses w at random and sets v2 = g2w mod n. Thus, v1
and v2 are quadratic residues, and constitute a shadow public key for generalized
ElGamal mod n. The shadow private key is 2w. (Even, if we only have v2, v1
can be derived from n and the user’s name, or be a constant)
Okamoto ’92: To date, no large subliminal channel in this scheme is known.
Recall that in this scheme, the verification key is v = g1

−s1g2
−s2 mod p. Here

g1 and g2 have order q modulo the public prime p. The values for g1, g2, and
q are public. The private key is (s1, s2). Both s1 and s2 are chosen randomly
modulo q. Okamoto is based on the representation problem modulo p (and so
are fail-stop signatures).

To sign a message m in Okamoto, we choose r1, r2 ∈R Zq. We then compute
e = H(g1r1g2

r2 mod p,m). Here H is a one-way hash function. We then compute
y1 = r1 + es1 mod q and y2 = r2 + es2 mod q. The signature on m is the triple
(e, y1, y2). To verify the signature we check that e = H(g1y1g2

y2ve mod p,m).
At first sight it seems as if the scheme is a good candidate for a solution. For,

suppose that we don’t give to the authorities s1 and s2. Then the authorities
can’t forge signatures. But, then we need to insure that v cannot be used as
a shadow public key. Suppose that v can be used as a public key in a public
key encryption algorithm. Since Okamoto is extendible to three or more bases,
maybe there is no encryption algorithm if the representation uses three bases,
or four bases, etc. This line of reasoning begs the question as to whether or not
there exists a ‘generalized Okamoto’ public key encryption algorithm.

We will now answer this question in the affirmative. Indeed, there is a public
key algorithm that uses public keys based on the representation problem with
any number of bases. We will demonstrate this algorithm where two bases are
used. To public key encrypt a message m using v as in Okamoto’s scheme, we
do the following:

1. k ∈R Zq, a = gk
1 mod p, b = vk mod p, c = g2

km mod p

2. The ciphertext of m is (a, b, c)
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To decrypt we compute:

1. a′ = a−s1 mod p which equals g1−s1k mod p

2. b′ = b/a′ mod p which equals g2−s2k mod p

3. m = c/(b′−s2
−1

) mod p

This algorithm can be easily extended to handle representations using more
bases. The ciphertext is an (m+1)-tuple if m bases are used in the representation
of v. Thus, this scheme and it’s extentions using more bases does not meet the
requirements.
Naor Yung signature scheme: A digital signature algorithm (which is pre-
sented as an important plausibility result, not as an efficient scheme) was pre-
sented in [NY89] that is based on the existence of one-way permutations (Rompel
uses this exact setting but with any one-way function). The system is provably
secure against adaptive chosen message attacks. It operates by having each user
publish a row of windows, where each window is a pair of values that form
commitments of the user via a one-way permutation value. Since the scheme
(and its follow up work) is not based on trapdoor functions it departs from the
Diffie-Hellman paradigm. Does this mean it is shadow public key resistant? No,
the problem is that even though the system itself does not employ a trapdoor
function, it could display one subliminally assuming trapdoor functions exist.
The problem is that each window can leak several (say, 20) subliminal bits, thus
allowing the system to directly leak a shadow public key (e.g., an RSA public
key which is not held by the authorities).

4 The Signature Scheme

In this section we describe our construction which is a first answer to the NIST
problem. We present the scheme and the user registration procedure.

4.1 Key Generation

Let e be an odd value (fixed and bounded as discussed below). Let M be a
security parameter (which is say, a power of 2). Let p1 and q1 be M/2 bit
primes. Let q = 2q2 + 1 be a safe prime. These primes adhere to the following
constraints for proper system operation:

1. Each of p1 − 1, q1 − 1, and q2 − 1 have a large prime in their factorization.
2. gcd(e, (p1 − 1)(q1 − 1)(q2 − 1)) = 1.
3. There exists an M1-bit (e.g., M1 = 63) safe prime t s.t. p = 2tp1q1 + 1 is

prime1 and s.t. gcd(e, φ(t)) = 1.

1 An alternate implementation chooses (q − 1)/2 to have the same form as (p − 1)/2,
but (q − 1)/2 has a different factorization.
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If we want |pq| to be a power of 2, we can choose q to be M−M1−1 bits long.
We incorporate t into p− 1 to make key generation fast. To provide protection
against shadow public key abuse (see [KL95] for the attack on composites), the
following additional constraints are needed to reduce subliminal leakage:

1. s and s′ are chosen (randomly).
2. H1(s) (or H1(s) + 1, see below) is the same as the upper half of the bits in

the bit representation of p1q1.
3. q is chosen by computing q = H(s′) and testing for primality and strong pri-

mality (more elaborate methods are possible, e.g., the method for generating
parameters for DSA).

To accomplish step 2, an algorithm similar to [L98, YY96] can be employed.
Thus, either H1(s) is the upper order bits, or H1(s) + 1 is the upper order bits
due to a borrow bit being taken. Here H1 and H are suitable (ideal) one-way
hash functions. This step is to avoid the leakage of M/2 bits in the composite
p1q1. The values p, q, and t are found to satisfy the above. The key generation
algorithm then performs the following computations:

1. n1 = 2tp1q1q2
2. Compute the smallest value s′′ that makes g′ = H2(s, s′, s′′, n) a genera-

tor mod p, g′′ = H3(s, s′, s′′, n) a generator mod q, and gcd(xi, n1) = 1,
where xi = h

′
i(s, s

′, s′′, n, i) for i = 1, ...,K (K odd), and H2, H3, h
′
i being

appropriate ideal hash functions. We insist that s′′ is, say, at most 24 bits
in length.

3. Chinese remainder g ≡ g′ mod p with g ≡ g′′ mod q to get g mod pq (g then
has order λ(pq)).

4. n = pq
5. Compute gi = gxi mod n for i = 1, ...,K
6. d = e−1 mod φ(φ(n)) (We will use φ2 to denote φ(φ()).)
7. Compute T to be a NIZK proof of knowledge of the factorization of (p−1)/2t

into two distinct primes (in the random oracle model). A modification of
the techniques of [GHY89] and [BFL91] enables this (the short proof of
[PS00] may apply as well). T can also be an interactive ZK proof if we allow
interaction.

Note that n1 = λ(n) is the Carmichael function λ of n. The public verification
key is (g, g1, ..., gK , e, n). The private signing key of the user is (x1, x2, ..., xK ,
d, n1). To register the public verification key with the CA, the user sends to the
CA the tuple (s, s′, s′′, p, q, t, e, T ). The value for s′′ must be sent, to assure the
CA with very high probability that g′ generates Zp. In practice n is about twice
the size of a regular RSA modulus.

It is obviously imperative that the g, gi’s and n, when taken together, cannot
easily allow n to be factored. Otherwise, the composite λ(n) would be available
to all users and could be used as a shadow public key. Since random g, gi’s are
samplable, the following fact holds:

Fact 1 The values for the g, gi’s and n, when taken together, cannot be used to
factor n.
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4.2 CA Registration

The CA receives (s, s′, s′′, p, q, t, e, T ). The CA computes v1 to be (p − 1)/2t.
The CA then sets z to be the upper half of the bit representation of v1. The CA
computes n, g′, g′′, g, and the gi’s in the same way as the user. The CA verifies
all of the following things:

1. p is prime, t is prime, t | p− 1,|p− q| is large, g′′ generates Zq, etc.
2. H1(s) or H1(s) + 1 equals z.
3. g(p−1)/2, g(p−1)/t, g(p−1)/v1 �= 1 mod p.
4. checks that T is valid.

T convinces the CA that the user knows the signing private key. T and
step 1 proves that there are 16 possible orders for g′. T and step 3 proves that
ordp(g′) ∈ {2tp1, 2tq1, 2tp1q1}, i.e., it can be only 3 of those 16. Recall that if
p is prime and w | p − 1, then the number of least residues mod p with order
w is φ(w). Since g′ is chosen by an oracle, it has order 2tp1 with probability
(t − 1)(p1 − 1)/p, which is guaranteed to be negligible since v1 must be made
difficult to factor. By making p large enough, this quantity is still negligible even
after a polynomial number of oracle queries by a cheating prover. The same
holds for 2tq1. So, the order of g′ mod p is 2tp1q1 with overwhelming probability.
Anyway, recently an efficient method to prove in ZK that a number is maximal
order was shown [JY00]. Clearly g has order λ(n) if g′ and g′′ are generators.
Similarly, the CA verifies that the order of gi’s (for i = 1, ...,K) are the same as
the order of g (i.e., that gcd(xi, n1) = 1).

If all of the verifications pass then the CA publishes (and certifies) the string
(g, g1, ..., gK , e, n) as the user’s public verification key.

4.3 Signing and Verifying Messages

Let a||b denote the concatenation of string a with string b, let hi’s be ideal full
domain hash functions into {1, 3, 5, ..., (n+ 1)/2 − 1} (a random oracle answer
concatenated with a 1 as the least significant bit). To sign an arbitrary message
m, the user computes c = (x1h1(j||m)+x2h2(j||m)+ ...+xKhk(j||m))d mod n1,
where j > 0 is the smallest integer making all hj(j||m) mod n1 ∈ Z∗

n1
(as

required by the full domain hash method [BR93], and will be 1 almost always,
thus for brevity we omit the notation j||m and use m instead). The signature on
m is c. Note that the signer can use the Chinese Remaindering method to make
signing faster. The verifier checks that:

1. c < n/2

2. gh1(m)
1 ∗ g2h2(m) ∗ ... ∗ gK

hK(m) (mod n) = gce

(mod n)

If (1) and (2) are not satisfied then the signature is rejected. To substantiate
verification (1), we need to show that λ(n) < n/2 for all properly chosen n’s.
This can be seen from the following.
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λ(n) = lcm(p− 1, q − 1) = lcm(2tp1q1, 2q2) = 2tp1q1q2

n/2 = (1/2)(4tp1q1q2 + 2tp1q1 + 2q2 + 1) > 2tp1q1q2

So, the claim holds. The reason we insist on making signatures less than n/2
is to avoid subliminal leakage of information in signatures. Below we elaborate
more on this.

Note that since e > 2 the only way to verify the signature is to determine
gce

mod n by exponentiating e times:

((gc mod n)c mod n)c... mod n

This is necessary because the modulus in the exponent is unknown to the
verifier, thus the verifier cannot first compute ce mod n1 and then use this as
the exponent for g. Note that signing is done in the upper most deck with the
signature value in the middle-deck, and verification is performed in the bottom
deck. The system therefore utilizes composite-based double-decker exponentia-
tion. For efficiency we assume e to be small (theoretically, e which is polynomial
in the size of n is still feasible).

Proposition 2. Signature verification is complete (i.e., properly generated keys
and signatures will always verify).

Proof. If n is generated properly, then verification (1) will always pass. Now
consider verification (2). One can verify that ce = x1h1(m) + x2h2(m) + ... +
xKhK(m) mod λ(n). Since g and the gi’s have order λ(n), by the construction
of the gi’s the claim is proved. 	


5 Security Against Forgeries: Validation Proof

Recall that the user sends to the CA the tuple (s, s′, s′′, p, q, t, e, T ). We need
to show that given this information, and given a polynomial number of mes-
sage/signature pairs, it is not possible for the CA to forge messages (i.e., that
the CA can’t choose messages and sign them, or even produce existential forg-
eries). We will do this in two steps. First we will show that the tuple that is given
to the CA during certification does not help the CA forge, then we will show
that a slight modification of our system is identical in security to RSA, and that
this modification implies that our scheme is also secure. We will then show even
further that in the random oracle model, our system is secure against adaptive
chosen message attacks (we are aware of the advantages of having such proofs,
e.g. [BR93], as well as the existence of limitations for certain implementation
constructs which are not applied here [CGH98]).

Note that the CA knows λ(n), since λ(n) = n1 = (1/2)(p − 1)(q − 1). The
CA does not know φ(φ(n)), since the CA doesn’t know the factorization of p1q1.
We need to show that no information about the factorization of p1q1 is leaked
to the CA by (s, s′, s′′, p, q, t, e, T ), excluding deliberate leakage (i.e., assuming
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honest user). First, nothing is leaked by T since this is a zero-knowledge proof.
Also, t need not even be sent by the user, since it can be found easily by the CA.
The seeds s, s′, and s′′ contribute the information constituting the upper order
bits of p1q1, the prime q, and the generators g′, g′′, and the exponents bringing
g to gi where i = 1, ...,K, and nothing else, since they constitute the preimages
under the random oracle hash functions H1, H2, and H3, and h

′
1, ..., h

′
K . To see

this, note that under the random oracle assumption, each hash value is chosen
uniformly at random from its respective set, and the result is therefore inde-
pendent (as viewed by all poly–time algorithms) of the random hash function’s
input. It follows that the only information leaked by s, s′, and s′′ is the upper
order bits of p1q1 (which is already known to the CA from p), and also q, g′,g′′,
g, and g1, ..., gK . If we can show that no information about the factorization of
p1q1 is leaked by g′ then we will be done.

Suppose that given a generator g′ of Zp, and given p, an oracle A can be used
to factor p−1, where p is prime. In other words,A(g′, p) outputs the factorization
of p − 1. Then A can be used to factor any composite n as follows. Choose a
prime k randomly s.t. 2kn+1 is a prime number p′. Choose a value h ∈R Zp′ and
run A(h, p′). If A fails, choose (k, h) over and repeat. Since there are φ(p′ − 1)
generators of Zp′ , we expect to factor n with probability φ(p′ − 1)/(p′ − 1) each
time we invoke A. Thus, p− 1 will be factored in expected poly–time. We have
shown via random reduction that factoring n is no harder than implementing
the oracle A. So, implementing the oracle A which uses g′ and p to factor p− 1
is no easier than factoring n. Since g′ is chosen (accessed) almost randomly , it
follows that g′ contributes in no way to the CA’s ability to factor (p − 1)/2t.
Thus, we have shown that:

Lemma 3. No information about the factorization of p1q1 (and hence φ2(n)) is
leaked to the CA by (s, s′, s′′, p, q, t, e, T ).

To forge, the CA need not necessarily output a c satisfying c < λ(n), since the
users who will perform verifications do not know λ(n) = n1. The CA therefore
needs only to output a c < n/2 s.t. gx1h1(m)+x2h2(m)+...+xKhK(m) (mod n) =
gce

(mod n) to forge, since users can be certain that c must be less than n/2.
But, if the CA knows a valid c > n1, then the CA knows a valid signature in
the correct range, since c mod n1 < n1. Thus, a CA can output an acceptable
forgery implies that it knows a forgery in the correct range. The following proves
that forgeries are possible in our system by the CA iff the CA can break RSA.

Theorem 4. The CA can forge signatures of users in our system (without hash-
ing) using exponent e iff the CA can forge signatures in the RSA scheme (without
hashing) using exponent e.

Proof. Let n = pq, and let e be a small number s.t. gcd(e, φ(φ(n))) = 1. Fur-
thermore, let t be a safe prime, and let p = 2tp1q1 + 1, q = 2q2 + 1, and q2
be prime. Suppose that the CA has an oracle Ae that uses an exponent e such
that when given (n,m) produces c < n/2 s.t. gx1m+...+xKm mod n = gce

mod n.
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In other words, c = Ae(n,m) < n/2 is a valid signature on m in our algo-
rithm (without hashing), hence the CA can forge signatures in our system. Let
n′ be an RSA modulus, i.e., n′ = p3q3 where p3 and q3 are prime. Let the
RSA exponent be the same e as in our scheme. Thus, gcd(e, φ(n′)) = 1. Let
d′ be s.t. ed′ + wφ(n′) = 1 for some integer w. The CA can use Ae to forge
RSA signatures for the public key (e, n′) by choosing a small safe prime t ran-
domly s.t. p′ = 2tn′ + 1 is prime, and by choosing a random safe prime q′

where q′ = 2q′′ + 1. The CA makes sure that gcd(e, φ(t)φ(q′′)) = 1. Let d′′

be s.t. ed′′ = 1 mod φ(2tp3q3q
′′). To forge an RSA signature, the CA chooses

r ∈R Z∗
λ(p′q′) and computes c′ = r−1Ae(p′q′, rem/(x1 + ...+ xK)) mod 2tn′q′′.

It follows that c′ = md′′
mod 2tn′q′′. The CA then sets c = c′ mod n′.

c′ = md′′
+ k2tp3q3q

′′ for some integer k

c = c′ mod p3q3 = md′′ mod λ(p3q3) mod p3q3

But, d′′ mod λ(p3q3) is the inverse of e modulo λ(p3q3). To see this note that,

ed′′ + vλ(2tp3q3q
′′) = 1 for some integer v

But, λ(p3q3) | λ(2tp3q3q
′′). So, e(d′′ mod λ(p3q3)) = 1 mod λ(p3q3). Thus, c

is a valid signature on m in RSA mod p3q3.
Conversely, suppose that the CA can forge signatures in the RSA scheme

using the exponent e. So, assume that the CA has an oracle Be that uses e, a
composite of two different primes n1 and a messagem, that produces a valid RSA
signature c mod n1 onm. That is, c = Be(n1,m) is a valid RSA signature onm. A
CA knowing the composite p1q1 and the prime q2 of a user can use Be as an oracle
to forge in our system as follows. The CA computes c′ = Be(p1q1, r

em(x1 + ...+
xK))/r mod p1q1 where r is chosen randomly from its respective message space,
and computes c′′ = (m(x1 + ... + xK))e−1

mod 2tq2. Note that it was verified
by the CA that gcd(e, φ(t)) = 1, p = 2tp1q1 + 1 is prime, and that q = 2q2 + 1
is a safe prime. The CA Chinese remainders c′ mod p1q1 with c′′ mod 2tq2 to
produce c mod 2tp1q1q2. 	


Note that the above proof constitutes a randomized reduction where if oracle
Ae exists, then we show the existence of only one other oracle, namely oracle
Be, and vice-versa (i.e., existence of Ae does not necessarily imply the existence
of Be′ for all e′). However, we need only assume that every oracle succeeds on a
fixed fraction of the message space. Thus, our system is no more or less secure
than RSA. Since the above holds for the CA, clearly the same holds for all of
the users in the system, who have access to even less information than the CA.

We will now prove that our signature scheme is secure against adaptive chosen
message attacks under the random oracle model, assuming that RSA is secure.
Since t and q2 are known to the CA, the CA can always compute the partial
signature c1 = (x1h1(m) + x2h2(m) + ... + xKhK(m))e−1 mod φ(tq2) mod 2tq2
on a message m. Therefore, when the user sends the CA a signature c on mes-
sage m, the user can send the signatures c1 and c2 = (x1h1(m) + x2h2(m) +
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... + xKhK(m)e−1 mod λ(p1q1) mod p1q1 instead, since the CA can just Chinese
Remainder c1 and c2 to get c. For the purposes of this proof, we will assume
a digital signature scheme in which everyone knows p, q, t, g′, g′′, and the
gi’s and in which the two signatures (c1,c2) constitute the actual signature
on m. The generation and verification of c1 is straightforward, and the gen-
eration and verification of c2 is as in RSA with hashing. Though it is impor-
tant to note that this proof holds for the specific full domain hash function
Hash(m) = x1h1(m) + x2h2(m) + ... + xKhK(m). Now, since the basic hi are
random oracles over their domain (of odd numbers), and adding mod n1 assures
that we stay within the domain (provided K is odd), we can use Hash as an
ideal (random oracle) hash function (over a certain domain), and the arguments
of the security of the full domain hash hold.

Theorem 5. Assuming the random oracle assumption holds on the hi’s, and
assuming that our security assumption holds (i.e., RSA being a one-way func-
tion), the signatures c2 are secure against adaptive chosen message attacks with
respect to the CA.

Proof. We apply the Full-Domain Hash analyzed in [BR93, C00] based on a
random oracle over a sub-domain of Z∗

n1
= Z∗

2tp1q1q2
(explained below), and get

a full domain hash Hash, which takes messages m and gives a random element
from that full domain. Clearly, c1 provides no assurance that m is authentic,
since c1 can be produced by anyone with the CA’s knowledge. It follows that our
digital signature scheme is secure against adaptive chosen message attacks iff the
key generation algorithm for c2, the signing algorithm for c2, and the verification
algorithm for c2 is secure against adaptive chosen message attacks. It was shown
in [BR93, C00] that indeed these algorithms (using a full-domain hash) are secure
against adaptive chosen message attacks. Now, using the Chinese Remainder
Theorem, c2 = (x1h1(m)+x2h2(m)+...+xKhK(m))e−1

mod p1q1 In the security
proof the value of c2 before the exponentiation (namely, x1h1(m) + x2h2(m) +
... + xKhK(m) is in fact assumed to be chosen by a random oracle drawing
elements from Z∗

p1q1
, which is the domain over which we want to prove security.

This can be assumed due to the 1-1 mapping between the elements assured to
be (almost always) in Z∗

n1
and the set of their remainders: c1, c2. Furthermore,

due to the random oracle assumption which gives us a degree of freedom in
fixing polynomially many values (of c2) in the attack protocol, when arguing
about a value, we can always solve for the randomly chosen c2 element of our
choice (by “playing” with the actual value of one of the basic hash values hi)
and then, in the simulation, having a desired challenged value or probed element
to be a random element of our choice in Z∗

p1q1
(which we already know the

result of applying the exponentiation to). By doing so we determined c1 with an
arbitrary value, due to the algebraic relation. Under the above proper random
oracle assumption, we can turn the signature values (c2) into desired (random)
challenges whose inverses are actually accessible anyway (by our choice), and
then “chosen plaintext” which is the input to the RSA operation is reduced
to a “random plaintext” attack on the RSA operation (namely, it reduces the
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adaptively chosen plaintext forgery attack to the security of RSA as a one-way
function into the domain of the c2 elements). The full domain hash assumption
enables us to argue that the “altered random oracle” (which is modified in only a
few polynomially-many places) is statistically indistinguishable from the original
one. A more sophisticated oracle answering strategy is in [C00]. 	


6 Arguing Published Key Abuse Freeness

To show the resistance of (g, g1, ..., gK , e, n) to abuses, it is necessary to show
two things:

1. Key misuse freeness: the values in {g, g1, ..., gK , e, n} cannot be used directly
as a shadow public key in any PKCS.

2. Key leakage resistance: the information in (g, g1, ..., gK , e, n) cannot display
enough subliminal bits to constitute a secure shadow public key.

To show (1), first notice that we claim that n cannot be used for unrecover-
able RSA/factoring-based encryptions using n as the composite modulus, simply
because the CA knows the factorization of n. From the No-Abuse assumption
there is no other way to exploit n (here is where we strongly employ this as-
sumption).

Next observe that the way g is generated, makes it random maximal order
element. Assuming discrete logarithm is a hard problem on random instances,
even when the factorization is known (this is a regular discrete log assumption),
will prevent the user from using it as a base for a public key. As for gi’s, the
CA is aware of the same information about them as the user does. Finally, since
small enough e can be fixed among all the users, it cannot be or contribute to a
shadow public key.

We will now observe a simple yet strong result which proves about the system
containing (n, e) the following:which uses a fixed e (without the g and the gi’s):

Theorem 6. If there exists a shadow public key attack on pq where pq “is” the
shadow public key then there exists a shadow public key attack on any composite
pq based key escrow system where the user chooses p and q at the users own
discretion and where p (or q) is escrowed.

This directly follows from the fact that what is published in this modified
system is exactly what is published in any composite pq based key escrow system
(where users can choose the form of, w.l.o.g., p− 1).

Next we argue (2), namely that there is no key leakage (based on the current
state of the art). We need to show that there is no subliminal channel in n of
significant bandwidth. Recall that λ(n) has p1q1 and q2 in its factorization. The
value p1q1 was generated in such a way as to minimize subliminal channels in
it. This was done by making its upper order bits a one-way hash (behaving like
a random oracle) of a random number s, and is precisely the method used to
foil high bandwidth shadow public key attacks in RSA moduli (by filling the
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subliminal channel). By forming p1q1 in this way, there can only be a small
(logarithmic length) subliminal channel in p1q1 (we may also insist that the
values chosen via the one way function have a fixed number of bits). Similarly,
q2 can only have a similarly small subliminal channel since it is chosen by a
random oracle. Since t is a small odd value, it provides no significant subliminal
channel either. It follows that λ(n) is mostly random and has no substantial
subliminal channel, so neither does n (which is built from it in a given format).

Now consider g. The value g is computed based on g′ and g′′. But, g′ is chosen
by a random oracle whose input are the values s, s′, n, and s1. So, g′ has no
substantial subliminal channel. We make s, s′, and n inputs to a random oracle
and increment s′′ from zero to find g′ as a precautionary measure to limit the
amount of subliminal leakage in g. This precaution works because s′′ is small, and
thus a malicious user is forced to regenerate n if the user fails to leak enough
information in g by the time s1 reaches its maximum allowable value. Thus,
the key generation time is inhibited when key generation is modified to leak
subliminal information via g. The same argument applies to g′′, so g is mostly
random and has no substantial subliminal channel. In fact, g is effectively chosen
almost uniformly at random (by a random oracle). Furthermore gi is chosen via
xi and g, and xi is formed from the same information (under a different random
oracle) as g′ and g′′. We note that using one-way hashing to generate trap-door
free parameters was first proposed by NIST with respect to DSA. This concludes
the arguments suggesting that (g, g1, ..., gK , e, n) does not leak enough subliminal
information. In practice it may be possible to leak on the order of O(log log(n))
bits or so if an attacker works hard (searching for a pattern), but again, we
are protecting only in the relative sense: it may be that so little amount of
information can be subliminally sent outside the cryptographic system.

7 Arguing Signature Leakage Resistance

Can a single signature leak information? Clearly, if there were a way to output
more than one signature for a given m, it may be possible to leak bits of sub-
liminal information. So, we would like to show that for each message m, with
overwhelming probability there is only one valid signature c on m. Then, since
the signing algorithm is deterministic, we will be well on our way to showing
that our signatures are leakage resistant from this aspect.

Proposition 7. With overwhelming probability, it is not possible to find an m
s.t. c, c′ < n/2 will both be accepted as valid signatures on m.

Proof. From signature verification it is clear that all the valid signatures on m
are specified by

cj = jλ(n) + (x1h1(m) + ...+ xKhK(m))d mod λ(n)) < n/2, for j ≥ 0

Clearly c0 will always be a valid signature. If hj is a random oracle, then for
each m, the probability that cj is a valid signature is negligible if j ≥ 1. We will
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prove this by first proving that it holds for j = 1, and the fact that it holds for
all j > 1 will be immediate. Note that if j = 1 then cj is a valid signature iff
(x1h1(m)+ ...+xKhK(m))d mod λ(n)) < n/2−λ(n) = tp1q1+q2+1/2 Since the
hj ’s are random oracles, then (x1h1(m) + ...+ xKhK(m))d mod λ(n) is chosen
randomly from Zλ(n), independent of m. Thus, (x1h1(m) + ... + xKhK(m))d

mod λ(n) < n/2− λ(n) with probability (tp1q1 + q2 + 1/2)/(2tp1q1q2), which is
negligible. 	


Next, we analyze the leakage of a sequence of signatures, which we want
to show to be competitive, namely that there are trivial channels in the usage
of signatures that allow the leakage of a public key. Next we present a leakage
design, based on ordering of signatures only (and not assuming further timing,
errors or error correcting based leakage). This shows that in on-going usage there
are plenty of opportunities to leak information (which is expected).

Universal attack: this attack works as follows. The user encodes the shadow
public key 15 bits at a time, by successively taking 8 unique signatures at a
time, and ordering them in a specific way in the post to the bulletin board, say
(assuming that scheduling the signatures has this degree of freedom). There are
8! ways to order the signatures (which are distinguished and ordered by their
numeric value), so 15 bits can be encoded. This allows us to encode efficiently.
For example in 168 signatures we can encode a 314 bit shadow public key (e.g.
based on an elliptic curve over GF(2157)). This is a “non-cryptographic leakage”
which is trivial (and with additional covert information and better encoding we
can do with much fewer signatures).

What leakage can we produce in our system? We can, for example leak λ(n)
over the course of using the signature system, exploiting the structure of our
system. In fact, it works as following: When signing a message mi we produce
signature ci. the attacker gets information (over the integers) of the form (ci)e =
x1h1(m)+ ...+xKhK(m)+riλ(n) where the xi’s are fixed and unknown and the
unknown last (free) term (riλ(n)) a multiple of λ(n) (ri is associated with ci).
The fixed unknown xi’s can be eliminated from the expressions as additional
signatures are added, after K + 1 equations, we are left with a large integer
representing a multiple of λ(n), which can then be used as a public key (and if
the process is continued we can get smaller multiples via gcd’s and get to isolate
λ(n)). This type of leakage was pointed first by Bleichenbacher. Notice that by
choosing K large enough and choosing e large enough we force the attacker to
collect a large enough number of signatures and to work over large integers, thus
leakage in the scheme more competitive.

There is an obvious tradeoff between efficiency and the competitive factor
of this specific leakage scheme. Small K gives a signature whose signing is as
expensive as RSA (of double the size) and whose verification takes e+K expo-
nentiations (we implemented the scheme for small values). Finally, we remark
that naturally, other leakages may still exist and their presence is an open prob-
lem. It is very hard to quantify leakage of this form, and it may be that moderate
complexity measures are enough since we deal with prevention in light of existing
trivial channels (achieving “competitive leakage”).
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8 Conclusion

In reaction to NIST’s problem, we have presented a framework and an imple-
mentation for a digital signature PKI where the public verification keys cannot
be abused safely for encryption. We proved its security, argued its no-abuse prop-
erty, and further argued concretely, based on the sate of the art, why the leakage
with on-going use is competitive (compared with universally available means of
leakage, which we also pointed out). Numerous issues remain to be investigated
like the validation of our no-abuse assumption, whether our assumptions are
necessary, and whether or not weaker assumptions can be used. We employed
the random oracle proof methodology numerous times regardless of its possible
weaknesses. A question one might ask is whether or not there are solutions which
do not employ random oracles, yet are efficient, etc. (there may exist a situa-
tion where a random oracle is used for arguing that some elements are chosen
almost at random, but where standard complexity-theoretic proofs are used for
the security argument). The notion of “non-leakage” (or reduced leakage) and
its reduction and implementation is another unexplored area: formalization and
characterization of the issues, notions, and solutions in the area are left open.
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