Skip to main content

Arithmetic Circuits and Polynomial Replacement Systems

  • Conference paper
  • First Online:
FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2000)

Abstract

This paper addresses the problems of counting proof trees (as introduced by Venkateswaran and Tompa) and counting proof circuits, a related but seemingly more natural question. These problems lead to a common generalization of straight-line programs which we call polynomial replacement systems. We contribute a classification of these systems and we investigate their complexity. Diverse problems falling in the scope of this study include, for example, counting proof circuits, and evaluating ∪,+-circuits over the natural numbers. The former is shown #P-complete, the latter to be equivalent to a particular problem for replacement systems.

Research performed in part while on leave at the Universität Tübingen. Supported by the (German) DFG, the (Canadian) NSERC and the (Québec) FCAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender, A. Ambainis, D. Mix Barrington, S. Datta, and H. LêThanh. Bounded depth arithmetic circuits: Counting and closure. In Proceedings 26th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Berlin Heidelberg, 1999. Springer Verlag. To appear.

    Google Scholar 

  2. M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. In Proceedings 12th Computational Complexity, pages 134–148. IEEE Computer Society, 1997.

    Google Scholar 

  3. E. Allender. Making computation count: arithmetic circuits in the nineties. SIGACT News, 28(4):2–15, 1998.

    Article  Google Scholar 

  4. L. Babai and L. Fortnow. Arithmetization: a new method in structural complexity theory. Computational Complexity, 1:41–66, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. Journal of Computer and System Sciences, 57:200–212, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line programs. Journal of the ACM, 30:217–228, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Kaltofen. Greatest common divisors of polynomials given by straightline programs. Journal of the ACM, 35:231–264, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. V. Matiasjevič. Hilbert’s Tenth Problem. Foundations of Computing Series. MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  9. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceedings 5th ACM Symposium on the Theory of Computing, pages 1–9. ACM Press, 1973.

    Google Scholar 

  10. I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal of the Association for Computing Machinery, 25:405–414, 1978.

    MATH  MathSciNet  Google Scholar 

  11. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal of Computing, 8(3):411–421, 1979.

    Article  MathSciNet  Google Scholar 

  12. H. Venkateswaran. Circuit definitions of non-deterministic complexity classes. SIAM Journal on Computing, 21:655–670, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proceedings 6th Structure in Complexity Theory, pages 270–284. IEEE Computer Society Press, 1991.

    Google Scholar 

  14. L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few processors. SIAM Journal on Computing, 12:641–644, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Venkateswaran and M. Tompa. A new pebble game that characterizes parallel complexity classes. SIAM J. on Computing, 18:533–549, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. W. Wagner. The complexity of problems concerning graphs with regularities. Technical report, Friedrich-Schiller-Universität Jena, 1984. Extended abstract in Proceedings 11th Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 176, pages 544–552, 1984.

    Google Scholar 

  17. K. W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Informatica, 23:325–356, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Yang. Integer circuit evaluation is PSPACE-complete. In Proceedings 15th Computational Complexity Conference, pages 204–211. IEEE Computer Society Press, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McKenzie, P., Vollmer, H., Wagner, K.W. (2000). Arithmetic Circuits and Polynomial Replacement Systems. In: Kapoor, S., Prasad, S. (eds) FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2000. Lecture Notes in Computer Science, vol 1974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44450-5_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-44450-5_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41413-1

  • Online ISBN: 978-3-540-44450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics