

A. Ambler, S.B. Calo, and G. Kar (Eds.): DSOM 2000, LNCS 1960, pp. 119 - 131, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Meta-management of Dynamic Distributed Network
Managers (MEMAD)

Ran Giladi1,2 and Merav Gat2

1InfoCyclone Inc.
ran@infocyclone.com

2Communication Systems Engineering Department
Ben-Gurion University of the Negev, Beer-Sheva 89105, Israel

ran@bgumail.bgu.ac.il

Abstract. Distributed network management systems (NMS) have become a
crucial necessity, especially for overcoming centralized NMS restrictions such
as scalability and inefficient use of network resources. Such systems will also
be instrumental in meeting the need for high-power computers and storage
capabilities on the NMS platform. Modern technologies used in distributed
NMS include management by delegating agents and mobile codes. These
methods lead to the creation of a hierarchical architecture, since it simplifies
management of the distributed agents. Peer management results in a dynamic,
survivable and efficient way of managing the network, but it requires a
complicated metamanagement mechanism to handle the managers. This study
suggests an architecture for this purpose. We term this model Meta-
Management of dynamic Distributed network managers (MEMAD). The
purpose of MEMAD is to enable Peered Distributed Managers (PDMs) to
manage the network by executing delegated or predetermined common
management tasks. MEMAD defines a small, shared, replicated, and partitioned
database as well as inter-communication SNMP based primitives for providing
PDMs with the ability to cooperate efficiently in managing the network.

1 Introduction

Most network management systems available today are based on a centralized
network management architecture. This simple architecture is composed of two
entities: the Network Element (NE) which contains an Agent (a server with a small
footprint), that holds management information concerning its managed NE, and a
Manager (a client that runs applications). The Manager provides the management
applications with a network view while it manages the agents by polling and
processing their information. The agent and the manager communicate by using the
standard simple network management protocol (SNMP) [1]. The manager performs
most of the management work – polling, processing and controlling the Network
Elements (NEs), while the agents access the NE information base in order to retrieve
or update management information.

Ran Giladi and Merav Gat 120

In recent times, Web-based management systems have begun to use a technology that
somewhat differs from SNMP systems in that the management station communicates
with its users or applications via Web-based GUI (e.g., HTML, XML) [13,15]. Web-
based technology also allows Network Elements to respond with HTML pages instead
of with SNMP, CMIP, or DMI messages to the management station [14].
In large and complex networks, the managers have to control a vast number of agents
and perform all the information processing to the extent that the managers are loaded
with information coming from all the agents. As a result, the managers’ limited
resources and network accesses bottleneck the management system. Additional
problems such as increased network congestion, a high probability of disconnecting
agents from the manager, slow responses from managers, and lack of redundancy
have thwarted the centralized network management architecture from efficiently
managing today’s networks.
Of late, we have begun to witness a new approach to network management that, in
principle, decentralizes network management, or better yet distributes it. The
distributed network management approach deals mostly with the distribution of
network management applications by delegating management tasks to other
management entities for execution. Modern technologies presently used in this kind
of distributed network management are usually hierarchically structured, since
management of the distributed agents is simple and inherent in such structures.
Management by delegation (MbD) was among the first mechanisms to be proposed
for hierarchical network management [2]. By delegating management tasks to specific
agents, the manager’s load is decreased and the tasks are executed close to the
Network Elements (NE). This leads to a decrease in management traffic, higher
availability of the NEs, and less dependency on the manager. However, for executing
management tasks delegated by a manager, it has become necessary to devise a
flexible and generic mechanism to serve as an extension to the agent.
Another approach to hierarchical network management [3] introduced the
SubManager as a dual function entity. This manager delegates management tasks to
the SubManager with access authorization to the relevant NEs and their agents. The
SubManager then executes the task while polling the agents for the required
information. This hierarchical model uses an SNMP framework and extends the
Management by Delegation model by enlarging the scope of management of the
dynamically extended entity (the SubManager).
Other approaches to distributed network management that have been suggested
include the addition of RMON (remote monitoring) capabilities [4] to the executing
entity [5], or the use of a Mid-Level-Manager and SNMP protocols. In the latter, the
Mid-Level-Manger is provided with a new MIB (management information base)
definition [6], which makes it possible to receive delegated management scripts and
execute them on the NE agents, as well as other distributed management tasks.
Recent technologies, such as mobile code, have resulted in the Mobile Agent [7]
approach. This technology implements the delegation mechanism in a slightly
different manner, in that in order to achieve better network resource utilization, every
management task is delegated and executed by several agents and servers. The use of
recent technologies, such as mobile code, intelligent agents, etc. [8-10], provides
more sophisticated and efficient distributed methods than the various hierarchical

Meta-management of Dynamic Distributed Network Managers (MEMAD) 121

methods commonly implemented (for example, peer distributed network management
and fully distributed network management [11] as well as improved delegation
mechanisms [12]).
Nevertheless, most of the afore-mentioned approaches lack a proper mechanism for
controlling the distributed managers, especially in non-hierarchical distributed
management systems and their derivatives. We call this problem the metamanagement
problem because while the execution burden is shifted from the centralized manager
to other mid-level management entities, the (human) manager still has to plan,
configure and control the participating mid-level managers, the task distribution, and
the execution process. These activities are essential for preventing redundancy,
contradiction, and inconsistent management activities. For large scaled networks this
task is virtually impossible if not automated.
In this work, we suggest a peered distributed network management model, which is
based on a meta-management distributed architecture (MEMAD) that handles Peered
Distributed Managers (PDMs). In this system, each PDM can implement a fully
functional management application and execute its own management tasks. The PDM
can also receive and execute a delegated task or a mobile agent from some
management application.
In every distribution system, we are confronted with inherent difficulties and
overhead regarding the management and the synchronization of the distributed
elements. The suggested MEMAD architecture enables the PDMs to operate
optimally and dynamically according to the network, to the PDMs states and to the
applications, while utilizing minimum network resources. MEMAD deals with the
metamanagement of the PDMs, rather than the managerial tasks the PDMs have to
perform. Self-configuration, information and task distribution, backup, recovery,
remote, and proxy operations of the PDM will be supported by MEMAD, regardless
of the management activity the PDM is involved with for the management
application. MEMAD does not deal with the distribution (by delegation, mobile
agents or otherwise) of management applications; rather it guarantee that the
management of the PDMs is carried out precisely, effectively, and efficiently.
Each PDM that uses MEMAD is an autonomous system that controls its own physical
management domain. It communicates and cooperates with other PDMs, it responds
to messages from management applications and PDMs, it learns, and it is proactive.
The union of these physical management domains and the resulting response from the
PDMs cover the entire network and the entire range of the NMS functions.
The organization of the paper is as follows: The following section presents
MEMAD’s architecture and the PDM model. The main algorithms are presented in
section 3. Implementation and future work are described in section 4 and section 5
concludes the paper.

2 The MEMAD Architecture

The MEMAD architecture for peered distribution of network management deals with
how PDMs cooperate to carry out network management tasks, regardless of whether

Ran Giladi and Merav Gat 122

the tasks are predetermined or delegated according to need. Each PDM manages its
Network Elements (e.g., via SNMP) and is responsible for doing so in some territory
that is defined in terms of space or function. MEMAD ensures that all PDMs are
synchronized and cover the desired network efficiently and without overlapping or
holes. Although we implemented MEMAD to deal with network scope in terms of
space, it can be implemented also in terms of functions.

2.1 Objectives

MEMAD was designed so that all legacy systems can be integrated with a consistent
peered or fully distributed network management. In other words, it allows SNMP
agents to participate in a scalable and efficient distributed management system
without altering the agents. MEMAD’s components and primitives are kept as simple
as possible, thus enabling all kinds of distribution mechanisms (peered or otherwise,
that are using mobile agents or delegated tasks) to function optimally (optimal in the
sense of network traffic, response time, scalability, processing power, storage
capabilities, etc.). MEMAD enables distributed network management to be
implemented without tedious human planning and configuration, while maintaining
load balancing and moderate network resource usage.

2.2 Components and Network Setup

NE

Agent
MIB

MAI
GUI

MEMAD

PDM
Mgt Tsk MA Dlg/IA

MEMAD
prot drv

MAI
GUI

MEMAD

PDM
Mgt Tsk MA Dlg/IA

MEMAD
prot drv

NE

Agent
MIB

NE

Agent
MIB

NE

Agent
MIB

MEMAP

MEMAP MEMAPMEMAP MEMAP

SN
M

P

SN
M

P
SNM

P

SNM
P

MAI - Management
Application Interface
PDM - Peered
Distributed Manger
NE - Network Element

GUI - Graphical User Interface
MEMAP - MEMADProtocol
Mgt Tsk - Management Task
MA - Mobile Agent
Dlg/IA - Delegated task/
Interlligent Agent

Fig. 1. Peer Distributed Management Entities

Meta-management of Dynamic Distributed Network Managers (MEMAD) 123

MEMAD defines a minimal set of entities as well as their capabilities (see Figure 1).
They are described as follows:
• The Management Application Interface (MAI) is a very “thin client” which is

separate from the manager and is used as an interface to the outside world.
Through the management application interface and its GUI, a human manager can
retrieve information and observe, hence, control the network.

• The Peered Distributed Manager (PDM) is the main entity of the model. This
manager executes either a full management application or a delegated task on a
limited group of Network Elements. The management application consists of a
fixed set of management rules and tasks that enable the manager to perform
independent activities on its Network Elements.

• The Agent remains within its traditional “thin server” architecture.

The PDM operates within the network where it manages the Network Elements
(agents) for which it is responsible, and communicates with its peers and with the
MAI addressing him, according to MEMAD definitions, as illustrated in Figure 2:

CS

Adjacent Domain Adjacent Domain

Adjacent Domain
Local Domain

Second OrderAdjacent
Domain

Router

RouterRouter

PDM

MD

MR - Management Region
MD - Management Domain
CS - Control Scope

MRMR MR

MR MR
MR

Fig. 2. Management Scope Definitions

• The Domain defines a sub-network (e.g., class B or C in IP networks). A Local
domain of a PDM is the domain where this PDM is physically placed. An Adjacent
domain of a PDM is a domain separated from the local domain by one router.

• The Management region (MR) is the collection of consecutive IP addresses within
a specific domain. The management region of a PDM contains the agents to be
managed by this PDM.

Ran Giladi and Merav Gat 124

• The Control scope (CS) is the union of those domains in which a PDM can have
any management region. In our work we restrict the control scope of a PDM to its
local domain and all its adjacent domains.

• The Management domain (MD) of the PDM is its collection of management
regions inside its control scope.

• The Management weight (MW) of a PDM is measured as the number of all the
agents it manages.

• The Local PDM of a domain is the PDM that is physically placed in that domain,
and the Adjacent PDM of a domain is the PDM placed in one of the adjacent
domains.

We emphasize that the PDM has the sole responsibility for its management domain
(unless it allows some other PDM to access its territory). However, several PDMs
might reside in a sub-network (one domain). In that case, they will have to split the
domain between them as equally as possible. There is also a situation when there is no
PDM in a domain, and a PDM from another domain (usually an adjacent domain)
“takes over” this domain as if it were its own. This “take over” can occur while the
control scope is being reorganized, and will be carried out in as balanced a way as
possible among all the PDMs in the system.

2.3 MEMAD Functions

In order to implement MEMAD we first had to construct a minimal set of functions.
These functions include configuration, information distribution and aggregation
(information regarding the network management itself), fault tolerance, and proxy
management of various kinds, all of which are described below:
• The Configuration function enables a dynamic, adaptive and auto-configuration of

the PDMs in the managed network, and includes primitives such as: “hello”, “I
heard you”, “who manage”, “I manage”, “acquire”, “my world”,
“manager down”, “unmanaged MR” and “re-managed MR”. Another set
of primitives is concerned with load balancing of the PDM configuration and
includes: “balance”, “balance information”, “balance start”,
“balance start information”, “balance end”, “update”,
“update others”, and “update split”.

• Management information distribution and aggregation include primitives such as:
“query”, “sub-query”, “answer”, and “sub-answer”.

• Fault tolerance is a function that maintains a constant backup of the essential
information and allows uninterrupted management and fast recovery. It includes
choosing the right PDM to be the “hot backup” PDM, handling a partial
replication of the metamanagement database in the network, and recovery
processes. The extent of the replication is kept to a minimum so the network traffic
stays low, while ensuring continuous operation and rapid recovery.

• Proxy management is a function that allows the PDM to share management tasks
with other PDMs in the managed domain, or to allow other, remote PDMs to
manage the domain. Primitives supporting this function include: “remote”,
“share”, “data”, “data OK”, “lengthen”, “lengthen OK”, etc. These

Meta-management of Dynamic Distributed Network Managers (MEMAD) 125

primitives contain permission mechanisms that assure the security, period and
scope of proxy management.

2.4 The PDM Database

Each PDM holds a management database that enables its management activities to be
executed. The PDM has to manage its management domain in cooperation with other
PDMs in the system at the same time that it performs its own distributed network
management tasks. The PDM’s database can be implemented using MIB tables (as we
did in this study) or it can use other implementations.
The database contains a full description of the management domain and the control
scope of the PDM. A description of other PDMs and their domains are sufficiently
detailed in the database so as to enable MEMAD to operate.
The database is composed of three categories of information:
• A Class hierarchy that describes all the entities in the PDM’s environment

(device, link, node, role, etc.).
• A Collection of all the entities currently active in the PDM’s environment

and their detailed attributes.
• Detailed management information about the PDM’s control scope:

management regions, the entities residing in these regions, other active peers,
management domains and management states, etc.

When the PDM is initiated, its database contains only its class hierarchy. In the
process of identifying other peer managers (even before executing the “load
balancing” algorithm), the PDM polls them for the necessary information about their
management domains. Once the PDM finishes the initial data acquisition process, it
updates the database with the relevant changes that occurred in its environment.

2.5 MEMAD Protocol (MEMAP)

The MEMAD protocol (MEMAP) was devised to enable PDMs to communicate both
with each other and with the MAIs. The MEMAP is applied between the MEMAD
layers in each PDM or MAI participating in the distributed management. We
implemented the database using an MIB structure, and used SNMP queries to tunnel
the MEMAP, although other methods are possible (e.g., CORBA, WEBM, etc.).
The MEMAP consists of a set of messages that enable primitives such as those
described in section 2.3 to be transferred.

2.6 MEMAD Procedures

MEMAD ensures that all its participating components are able to provide a coherent
and consistent view of the network, and that they share the managerial tasks equally.
For this, MEMAD entities must inter-communicate and operate in the following way:

Ran Giladi and Merav Gat 126

A user (or management application) approaches one of the MAIs for some
management task (get or set some attribute in the network, analyze or produce
collective information, etc.). This MAI uses its MEMAD layer to reach a default
PDM (usually one that was placed in the same domain), and hands over the
management task to this PDM.
This PDM becomes the “organizer” PDM, and activates a process, which we call the
Integrator process. This process uses its PDM MEMAD layer to find the relevant
PDMs for executing the required management tasks by checking the required tasks
(e.g., IP addresses) with the management domains of all the PDMs listed in its PDM’s
database. The organizer PDM then retrieves the information, sets attributes, or
initiates management tasks in these PDMs via their MEMAD layers. The PDMs
operate with their Network Elements via their common interface, SNMP, CMIP,
DMI, etc. The responses are then collected by the organizer PDM, aggregated (see,
for example, [13]), and sent to the querying MAI.
In order to locate the relevant PDMs for the various managerial tasks, the PDMs must
be configured in a way that makes them recognizable to all MEMAD participants.
This configuration is a dynamic process, and is carried out by the PDMs themselves.
The PDMs divide the network among themselves by assigning parts of the network to
each of them as their management domains. Whenever there is a change in a PDM’s
status (e.g., a disconnection, a failure, etc.), the managed Network Elements are
regrouped and assigned again to the PDMs, so that the management weight of the
PDMs is distributed equally. A description of the underlying algorithms is provided in
section 3.1.
Initially, there are no PDMs present, and no management activities. Any PDM joining
the system defines its management domain. The first PDM to appear takes over the
whole network. Other new PDMs will check with the active PDMs and build their
own group of Network Elements and management domains, thereby decreasing the
management weight from their peers. This procedure of reorganization is carried out
using a load-balancing algorithm that will be explained in section 3.2.
This self-configuration, i.e., the dynamic definition of the management domains, also
takes place when a PDM fails (while its backing PDM initiates the reorganization
procedure), or on a periodical basis initiated by a local PDM.
Other procedures support the PDMs in maintaining a fault tolerance system, ease of
operation and other special requirements. These include backup and recovery
processes, remote management, and shared management processes. The backup
management enables every PDM to be backed-up by one of its peers (see section 3.3).
The remote management procedure allows a temporary connection between two
PDMs to be established. It enables a PDM to take a respite from management
activities without being declared as failed, and it allows a remote PDM to take control
over its management domain. A PDM that needs time off finds another PDM that
agrees to serve as its remote manager for a predetermined period of time. During the
remote connection, the remote manager takes responsibility for all management
activities in the management domain of its connected PDM. When the remote
connection ends, the original PDM returns to manage its own (updated) management
domain. Another motivation for this kind of proxy management results from the need

Meta-management of Dynamic Distributed Network Managers (MEMAD) 127

of a PDM to watch some domain in a detailed resolution which is required by its
management application. In this case, the remote manager initiates the procedure.
The sharing management procedure enables yet another type of temporary connection
to be created whose purpose is to lighten the management’s burden. This PDM looks
for a peer that will agree to share its management domain for this period of time.
During the shared session the volunteer PDM is responsible for all the management
activities of the managed Network Elements that it has received from the initial PDM.
Upon ending the connection, the initial PDM fully remanages its management
domain.

3 MEMAD Algorithms

This section presents some of the main algorithms of the MEMAD architecture.

3.1 PDM Initiation

The initiated PDM’s database is empty, thus the PDM is not aware of any other
PDMs or agents in the system. Neither is he aware of the control scope nor of any
other domain. There is no “super-manager” from which the new PDM can get
information, nor is there a “super-manager” to introduce the initiated PDM to other
PDMs. Consequently, the PDM has to search and learn the control scope by itself and
then introduce itself to its peers within this control scope. During this “introduction”
the PDM can seek information from other PDMs so as to fill his database. The PDM
initiates a load balance algorithm after it learns the control scope, and then becomes
an active PDM, that is equal to its peers.
To learn about its control scope, the initializing PDM performs a topology analysis.
After the control scope is known, the PDM discovers other PDMs by broadcasting
introduction messages to all domains within its control scope. Every PDM that
receives an introduction message acknowledges it with information on the control
scope and on other PDMs in its local or adjacent domains. In other words, the
initializing PDM discovers another PDMs when it receives information regarding
their network view. Both the initializing and the discovered PDMs are synchronized,
and the initializing PDM synchronizes also with the PDMs he learnt about from the
discovered PDMs. This method enables scalability, because it is not necessary to
reach all PDMs while initializing, and due to the asynchronous way the PDMs are
discovered and updated.

3.2 Load-Balance Algorithm

This algorithm deals with the load-balance between the participating PDMs and the
distribution of management domains among the PDM within the control scope. Load
balancing means distributing the load of management activities as evenly as possible
between the managers, but it can be based on any optimal criteria. Examples might

Ran Giladi and Merav Gat 128

include traffic, complexity of management tasks, a PDM load or response time,
quantity of Network Elements, physical distance from Network Elements, network
resources or their utilization, significance of Network Elements, reliability or quality
of links and subnetworks, or a combination of these criteria. We implemented a
simple objective function that is based on the quantity of the managed Network
Elements and their network distance from the PDM, according to which the load-
balance was computed. Thus, balancing the load in our implementation means that
there exists an equal quantity of managed Network Elements per PDM in the vicinity
of the PDM.
The load-balance algorithm is used when a new PDM enters the system or when a
PDM terminates (gracefully or not), or on a periodical basis.
The algorithm is executed under the following constraints:
• Only one PDM at a time, within a certain control scope, can execute the load-

balance algorithm. For the execution of load-balance it is necessary that all
communicating PDMs be synchronized (non-communicating PDMs are not
relevant).

• A PDM will always first be assigned to its local domain. It might also be assigned
to other domains in its control scope, if they don’t have any local PDMs.

• Management domains cannot overlap.
The load-balance algorithm consists of two consecutive stages: balancing the
management load in the local domain, and balancing the management load in other
adjacent domains that contain no local PDMs.
These two stages of the load-balance algorithms are almost identical and the only
reason for the different balancing processes is the network distance criteria.
According to the objective function, a PDM should manage the closest Network
Elements it can locate. For this reason, the PDM should first balance the load in its
own local domain and only then balance the load in the other domains.
To fully synchronize the load-balance algorithm, the PDM that executes the load-
balance algorithm gets updated information from all its peers. Each PDM delivers
information about its management regions, from which the balancing PDM can derive
the management weight (MW) and the average distance attributes of the sending
PDM. Additional data assembled by the PDM that executes the load-balance
algorithm includes:
• Its distance from each management domain.
• The distance ratio (DR) of each management region (MR).

DR = distance of MR from its original (local) PDM / distance of the MR from
the balancing PDM.

• OMW - Optimal Management Weight (MW) in the domain:
OMW = MW / number of PDMs in the domain.

Once all the required information is available, the PDM that executes the load-balance
algorithm simply attaches (logically) the MRs with the lowest DR to its MD, until its
MW reaches the OMW point. Afterwards, it balances the other PDM’s load, but with
one difference in the algorithm, namely, there is no DR parameter. In this case, the
balancing PDM will try to remove an MR from one PDM and assign another PDM to

Meta-management of Dynamic Distributed Network Managers (MEMAD) 129

it if the MR remains intact. The second stage (balancing the adjacent domains) is
performed exactly as done for balancing the other PDM load in the first stage.
The load-balance algorithm is terminated when the balancing PDM notifies so to all
its peers, and when it informs them of all the changes in their management domain
(MD). Once a PDM receives a message of a changed MD, its responsibility is to
actuate these changes by sending a relevant message to the other PDMs. These PDMs
become the new managers of its prior management regions (MRs).
The synchronization of executing the load-balance algorithm among the PDMs in the
CS is achieved by using a “balancing queue” which is synchronized and maintained
by all PDMs. This queue lists all those PDMs who are waiting to execute the load-
balance algorithm. A PDM can execute its load-balance algorithm only when it
reaches the top of the queue.

3.3 Backup Management

The backup algorithm is required in order to increase MEMAD’s reliability. It
dictates that every PDM has another PDM backing it up. When a new PDM gets its
MD it has to look for a PDM to back it up. The most suitable PDM is chosen
according to a set of parameters: the shortest distance between the PDMs, the lowest
MW, and the absence of any other backup responsibilities. The new PDM polls all its
peers for the relevant information and only when it finds the right candidate does it
initiate the backup request.
Once the backup connection is made, the backed-up PDM updates its backup PDM on
a periodical basis. These update messages contain the necessary data to enable the
backed-up PDM to recover and reenter the system without starting the full process of
an initiating PDM.
If the periodical update is not received on time, or in the case when a “manager
down” message is received from another PDM, regarding the backed-up PDM, the
backup PDM will know that the backed-up PDM is faulty. The backup PDM will then
try to establish a connection with its backed-up PDM, and if it fails, the backup PDM
takes full responsibility for the backed-up PDM’s MD.

4 Implementation and Future Work

We are currently implementing MEMAD on 30 small sub-networks, using Java and
JMAPI. Screening the networks, learning its topology and locating SNMP agents is
performed with Win-Socket32, while communicating with the SNMP agents is done
with JMAPI. The communication between the PDMs is carried out using Java-RMI.
A combination of an SNMP-like protocol and RMI was created for maintaining an
SNMP-based MIB to serve as the PDM’s database.
The management task we tested dealt with the auto-discovery of network topology,
which is carried out by several PDMs in parallel. We intend to extend this
implementation for executing vast accounting management applications that call for

Ran Giladi and Merav Gat 130

continuous sampling of equipment in various places of the network, storage of huge
amounts of data, and analysis of aggregated information.

5 Conclusions

This work concentrated on the metamanagement problem of distributed network
management systems (MEMAD). We described the essential features of such systems
and designed and implemented the necessary algorithms for carrying out these
features. Finally, the system was tested by an application for network auto-discovery.
The results showed that the distributed system configured itself very quickly, and was
able to adjust itself to all changes in PDM availability, network fluctuations, and
management application requirements. MEMAD was implemented for minimum
distributed network management tasks, allowing all kinds of distributed mechanism to
be employed. MEMAD can be implemented by any distributed network mechanism
(e.g., hierarchical, delegated management tasks, intelligent agents, mobile codes,
etc.). Finally, MEMAD exhibited a dynamic auto-configuration, fault-tolerance and
responsiveness to management tasks.
Although we implemented MEMAD to deal with network scope in terms of space, it
can be implemented in terms of functions as well.

References

1. Subramanian, M.: Network Management: Principles and Practice, Addison-Wesley,
Reading, MA (2000)

2. Goldszmidt, G., Yemini, Y.: Distributed Management by Delegation. In: the 15th
International Conference on Distributed Computing Systems, Vancouver, British
Columbia (1995)

3. Siegl M., Trausmuth G.: Hierarchical Network Management: a Concept and its Prototype
in SNMPv2. Computer Networks and ISDN Systems 128 (1996) 441-452

4. Waldbusser S.: Remote Network Monitoring Management Information Base. RFC 1757
(1995)

5. Williamson B., Farrell C.: Distributed Management using Remote Monitoring
Management Information Base (RMON MIB) and Extensible Agents. Technical Report,
Curtin University of Technology (1996)

6. IETF Distributed Management Working Group (disman), RFC2591-2 and various drafts
(http://www.ietf.org/html.charters/disman-charter.html) (2000)

7. Baldi, M., Gai, S., Picco, G.: Exploiting Code Mobility in Decentralized and Flexible
Network Management. In Proceedings of the 1st International Workshop on Mobile
Agents (MA'97), Berlin, Germany (1997)

8. Cheikhrouhou, M., Conti, P., Labetoulle, J., Marcus, K.: Intelligent Agents for Network
Management: a Fault Detection Experiment. In Proceedings of the 6th IFIP/IEEE
International Symposium on Integrated Network Management (IM’99), Boston, MA
(1999) 595-609

9. El-Darieby, M., Bieszczad, A.: Intelligent Mobile Agents: Towards Network Fault
Management Automation. In Proceedings of the 6th IFIP/IEEE International Symposium
on Integrated Network Management (IM’99), Boston, MA (1999) 611-622

http://www.ietf.org/html.charters/disman-charter.html

Meta-management of Dynamic Distributed Network Managers (MEMAD) 131

10. Zapf, M., Herrmann, K., Geihs, K.: Decentralized SNMP Management with Mobile
Agents. In Proceedings of the 6th IFIP/IEEE International Symposium on Integrated
Network Management (IM’99), Boston, MA (1999) 623-635

11. Sahai, A., Morin, C.: Towards Distributed and Dynamic Network Management. In
Proceedings of the IEEE/IFIP Network Operations and Management Symposium
(NOMS’98), New Orleans, Louisiana (1998)

12. Breitgand, D., Dolev, D., Shaviner, G.: HAMSA: Highly Available Management System
Architecture, Technical Report, Hebrew University of Jerusalem (1999)

13. Anerousis, N.: A Distributed Computing Environment for Building Scalable Management
Services. In Proceedings of the 6th IFIP/IEEE International Symposium on Integrated
Network Management (IM’99), Boston, MA (1999) 547-562

14. Martin-Flatin, J.P.: Push vs. Pull in Web-Based Network Management. In Proceedings of
the 6th IFIP/IEEE International Symposium on Integrated Network Management (IM’99),
Boston, MA (1999) 3-18

15. DTMF standards concerning DMI, WBEM, DEN, http://www.dmtf.org, 1998-2000.

http://www.dmtf.org/

	Meta-management of Dynamic Distributed Network Managers (MEMAD)
	1 Introduction
	2 The MEMAD Architecture
	2.1 Objectives
	2.2 Components and Network Setup
	2.3 MEMAD Functions
	2.4 The PDM Database
	2.5 MEMAD Protocol (MEMAP)
	2.6 MEMAD Procedures

	3 MEMAD Algorithms
	3.1 PDM Initiation
	3.2 Load-Balance Algorithm
	3.3 Backup Management

	4 Implementation and Future Work
	5 Conclusions
	References

