

City, University of London Institutional Repository

Citation: Culbertson, W. B., Malzbender, T. & Slabaugh, G. G. (2000). Generalized Voxel

Coloring. In: Triggs, B., Zisserman, A. & Szeliski, R. (Eds.), Vision Algorithms: Theory and
Practice. (pp. 100-115). Springer. ISBN 3-540-67973-1 doi: 10.1007/3-540-44480-7_7

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4695/

Link to published version: https://doi.org/10.1007/3-540-44480-7_7

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Generalized Voxel Coloring

W. Bruce Culbertson, Thomas Malzbender

Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94306 USA
{bruce_culbertson, tom_malzbender}@hp.com

Greg Slabaugh

Georgia Institute of Technology
slabaugh@ece.gatech.edu

Abstract. Image-based reconstruction from randomly scattered views is a
challenging problem. We present a new algorithm that extends Seitz and Dyer’s
Voxel Coloring algorithm. Unlike their algorithm, ours can use images from
arbitrary camera locations. The key problem in this class of algorithms is that of
identifying the images from which a voxel is visible. Unlike Kutulakos and
Seitz’s Space Carving technique, our algorithm solves this problem exactly and
the resulting reconstructions yield better results in our application, which is
synthesizing new views. One variation of our algorithm minimizes color
consistency comparisons; another uses less memory and can be accelerated with
graphics hardware. We present efficiency measurements and, for comparison,
we present images synthesized using our algorithm and Space Carving.

1 Introduction

We present a new algorithm for volumetric scene reconstruction. Specifically, given
a handful of images of a scene taken from arbitrary but known locations, the
algorithm builds a 3D model of the scene that is consistent with the input images. We
call the algorithm Generalized Voxel Coloring or GVC. Like two earlier solutions to
the same problem, Voxel Coloring [1] and Space Carving [2], our algorithm uses
voxels to model the scene and exploits the fact that surface points in a scene, and
voxels that represent them, project to consistent colors in the input images. Although
Voxel Coloring and Space Carving are particularly successful solutions to the scene
reconstruction problem, our algorithm has advantages over each of them. Unlike
Voxel Coloring, GVC allows input cameras to be placed at arbitrary locations in and
around the scene. This is why we call it Generalized Voxel Coloring. When checking
the color consistency of a voxel, GVC uses the entire set of images from which the
voxel is visible. Space Carving usually uses only a subset of those images. Using full
visibility during reconstruction yields better results in our application, which is
synthesizing new views.

New-view synthesis, a problem in image-based rendering, aims to produce new
views of a scene, given a handful of existing images. Conventional computer graphics

Presented at Vision Algorithms: Theory and Practice, held in conjunction with the
IEEE International Conference on Computer Vision, 21-22 September 1999,

Corfu, Greece. Copyright 1999 Hewlett-Packard Company.

typically creates new views by projecting a manually generated 3D model of the
scene. Image-based rendering has attracted considerable interest recently because
images are so much easier to acquire than 3D models. We solve the new-view
synthesis problem by first using GVC to create a model of the scene and then
projecting the model to the desired viewpoint.

We first describe earlier solutions to the new-view synthesis and volumetric
reconstruction problems. We compare the merits of those solutions to our own. Next,
we discuss GVC in detail. We have implemented two versions of GVC. One uses
layered depth images (LDIs) to eliminate unnecessary color consistency comparisons.
The other version makes more efficient use of memory. Next, we present our
experimental results. We compare our two implementations with Space Carving in
terms of computational efficiency and quality of synthesized images. Finally, we
describe our future work.

2 Related Work

View Morphing [3] and Light Fields [4] are solutions to the new-view synthesis
problem that do not create a 3D model as an intermediate step. View Morphing is one
of the simplest solutions to the problem. Given two images of a scene, it uses
interpolation to create a new image intermediate in viewpoint between the input
images. Because View Morphing uses no 3D information about the scene, it cannot in
general render images that are strictly correct, although the results often look
convincing. Most obviously, the algorithm has limited means to correctly render
objects in the scene that occlude one another.

Lumigraph [5] and Light Field techniques use a sampling of the light radiated in
every direction from every point on the surface of a volume. In theory, such a
collection of data can produce nearly perfect new views. In practice, however, the
amount of input data required to synthesize high quality images is far greater than
what we use with GVC and is impractical to capture and store. Concentric Mosaics
[6] is a similar technique that makes the sampling and storage requirements more
practical by restricting the range over which new views may be synthesized. These
methods have an advantage over nearly all competing approaches: they treat view-
dependent effects, like refraction and specular reflections, correctly.

Stereo techniques [7, 8] find points in two or more input images that correspond to
the same point in the scene. They then use knowledge of the camera locations and
triangulation to determine the depth of the scene point. Unfortunately, stereo is
difficult to apply to images taken from arbitrary viewpoints. If the input viewpoints
are far apart, then corresponding image points are hard to find automatically. On the
other hand, if the viewpoints are close together, then small measurement errors result
in large errors in the calculated depths. Furthermore, stereo naturally produces a 2D
depth map and integrating many such maps into a true 3D model is a challenging
problem [9].

Roy and Cox [10] and Szeliski and Golland [11] have developed variations of
stereo that, in one respect, resemble voxel coloring: they project discrete 3D grid
points into an arbitrary number of images to collect correlation or color variance

statistics. Roy and Cox impose a smoothness constraint both along and across
epipolar lines, which produces better reconstructions compared with conventional
stereo. A major shortcoming of their algorithm is that it does not model occlusion.

Szeliski and Golland’s algorithm models occlusion but not as generally as GVC.
Specifically, their scheme for finding an initial set of occluding gridpoints is unlikely
to work when the cameras surround the scene. However, the authors are ambitious in
recovering fractional opacity and correct color for voxels whose projections in the
images span occlusion boundaries a goal we have not attempted.

Faugeras and Keriven [12] have produced impressive reconstructions by applying
variational methods within a level set formulation. Surfaces, initially larger than the
scenes, are refined using PDEs to successively better approximations of the scenes.
Like GVC, their method can employ arbitrary numbers of images, account for
occlusion correctly, and deduce arbibrary topologies. It is not clear under what
conditions their method converges or whether it can be easily extended to use color
images. Neither Szeliski and Golland nor Faugeras and Keriven have provided
runtime and memory statistics so it is not clear if their methods are practical for
reconstructing large scenes.

Voxel Coloring, Space Carving, and GVC all exploit the fact that points on
Lambertian surfaces are color-consistent they project onto similar colors in all the
images from which they are visible. These methods start with an arbitrary number of
calibrated1 images of the scene and a set of voxels that is a superset of the scene. Each
voxel is projected into the images from which it is visible. If the voxel projects onto
inconsistent colors in several images, it must not be on a surface and, so, it is
carved that is, declared to be transparent. Otherwise, the voxel is colored, i.e.,
declared to be opaque and assigned the color of its projections. These algorithms stop
when all the opaque voxels project into consistent colors in the images. Because the
final set of opaque voxels is color-consistent, it is a good model of the scene.

Voxel Coloring, Space Carving and GVC all differ in the way they determine
visibility, the knowledge of which voxels are visible from which pixels in the images.
A voxel fails to be visible from an image if it projects outside the image or it is
blocked by other voxels that are currently considered to be opaque. When the opacity
of a voxel changes, the visibility of other voxels potentially changes, so an efficient
means is needed to update the visibility.

Voxel Coloring puts constraints on the camera locations to simplify the visibility
computation. It requires the cameras be placed in such a way that the voxels can be
visited, on a single scan, in front-to-back order relative to every camera. Typically,
this condition is met by placing all the cameras on one side of the scene and scanning
voxels in planes that are successively further from the cameras. Thus, the
transparency of all voxels that might occlude a given voxel is determined before the
given voxel is checked for color consistency. Although it simplifies the visibility
computation, the restriction on camera locations is a significant limitation. For
example, the cameras cannot surround the scene, so some surfaces will not be visible
in any image and hence cannot be reconstructed.

1 We define an image to be calibrated if, given any point in the 3D scene, we know where it

projects in the image. However, Saito and Kanade [13] have shown a weaker form of
calibration can also be used.

Space Carving and GVC remove Voxel Coloring’s restriction on camera locations.
These are among the few reconstruction algorithms for which arbitrarily and widely
dispersed image viewpoints are not a hindrance. With the cameras placed arbitrarily,
no single scan of the voxels, regardless of its order, will enable each voxel’s visibility
in the final model (and hence its color consistency) to be computed correctly.

Several key insights of Kutulakos and Seitz enable algorithms to be designed that
evaluate the consistency of voxels multiple times during carving, using changing and
incomplete visibility information, and yet yield a color-consistent reconstruction at
the end. Space Carving and GVC initially consider all voxels to be opaque, i.e.
uncarved, and only change opaque voxels to transparent, never the reverse.
Consequently, as some voxels are carved, the remaining uncarved voxels can only
become more visible from the images. In particular, if S is the set of pixels that have
an unoccluded view of an uncarved voxel at one point in time and if S? is the set of
such pixels at a later point in time, then S ⊆ S?. Kutulakos and Seitz assume a color
consistency function will be used that is monotonic, meaning for any two sets of
pixels S and S? with S ⊆ S?, if S is inconsistent, then S? is inconsistent also. This
seems intuitively reasonable since a set of pixels with dissimilar color will continue to
be dissimilar if more pixels are added to the set. Given that the visibility of a voxel
only increases as the algorithm runs and the consistency function is monotonic, it
follows that carving is conservative no voxel will ever be carved if it would be
color-consistent in the final model.

Space Carving scans voxels for color consistency similarly to Voxel Coloring,
evaluating a plane of voxels at a time. It forces the scans to be front-to-back, relative
to the cameras, by using only images whose cameras are currently behind the moving
plane. Thus, when a voxel is evaluated, the transparency is already known of other
voxels that might occlude it from the cameras currently being used. Unlike Voxel
Coloring, Space Carving uses multiple scans, typically along the positive and negative
directions of each of the three axes. Because carving is conservative, the set of
uncarved voxels is a shrinking superset of the desired color-consistent model as the
algorithm runs.

While Space Carving never carves voxels it shouldn’t, it is likely to produce a
model that includes some color-inconsistent voxels. During scanning, cameras that are
ahead of the moving plane are not used for consistency checking, even when the
voxels being checked are visible from those cameras. Hence, the color consistency of
a voxel is, in general, never checked over the entire set of images from which it is
visible. In contrast, every voxel in the final model constructed by GVC is guaranteed
to be color consistent over the entire set of images from which it is visible. We find
the models that GVC produces, using full visibility, project to better new views.

3 Generalized Voxel Coloring

We have developed two variants of our Generalized Voxel Coloring algorithm. GVC-
LDI is an enhancement of GVC, the basic algorithm. The carving of one voxel
potentially changes the visibility of other voxels. When an uncarved voxel’s visibility
changes, its color consistency should be reevaluated and it, too, should be carved if it

is then found to be inconsistent. GVC-LDI uses layered depth images (LDIs) [14, 15]
to determine exactly which voxels have their visibility changed when another voxel is
carved and thus can reevaluate exactly the right voxels. In the same situation, GVC
does not know which voxels need to be reevaluated and so reevaluates all voxels in
the current model. Therefore, GVC-LDI performs significantly fewer color-
consistency evaluations than GVC during a reconstruction. However, GVC uses
considerably less memory than GVC-LDI.

Like Space Carving, both GVC and GVC-LDI initially assume all voxels are
opaque, i.e. uncarved. They carve inconsistent voxels until all those that remain
project into consistent colors in the images from which they are visible.

3.1 The Basic GVC Algorithm

GVC determines visibility as follows. First, every voxel is assigned a unique ID.
Then, an item buffer [16] is constructed for each image. An item buffer, shown in
figure 1a, contains a voxel ID for every pixel in the corresponding image. While the
item buffer is being computed, a distance is also stored for every pixel. A voxel V is
rendered to the item buffer as follows. Scan conversion is used to find all the pixels
that V projects onto. If the distance from the camera to V is less than the distance
stored for the pixel, then the pixel’s stored distance and voxel ID are over-written
with those of V. Thus, after a set of voxels have been rendered, each pixel will contain
the ID of the closest voxel that projects onto it. This is exactly the visibility
information we need.

Once valid item buffers have been computed for the images, it is then possible to
compute the set vis(V) of all pixels from which the voxel V is visible. Vis(V) is
computed as follows. V is projected into each image. For every pixel P in the
projection of V, if P’s item buffer value equals V’s ID, then P is added to vis(V). To
check the color consistency of a voxel V, we apply a consistency function consist() to
vis(V) or, in other words, we compute consist(vis(V)).

reconstruction
volume

item
buffer

reconstruction
volume LDI

AB A B A

B A∅(a) (b)

Fig. 1. The data structures used compute visibility. An item buffer (a) is used by GVC and
records the ID of the surface voxel visible from each pixel in an image. A layered depth image
(LDI) (b) is used by GVC-LDI and records all surface voxels that project onto each pixel.

Since carving a voxel changes the visibility of the remaining uncarved voxels, and
since we use item buffers to maintain visibility information, the item buffers need to
be updated periodically. GVC does this by recomputing the item buffers from scratch.
Since this is time consuming, we allow GVC to carve many voxels between updates.
As a result, the item buffers are out-of-date much of the time and the computed set
vis(V) is only guaranteed to be a subset of all the pixels from which a voxel V is
visible. However, since carving is conservative, no voxels will be carved that
shouldn’t be. During the final iteration of GVC, no carving occurs so the visibility
information stays up-to-date. Every voxel is checked for color consistency on the final
iteration so it follows that the final model is color-consistent.

As carving progresses, each voxel is in one of three categories:

• it has been found to be inconsistent and has been carved;
• it is on the surface of the set of uncarved voxels and has been found to be

consistent whenever it has been evaluated; or
• it is surrounded by uncarved voxels, so it is visible from no images and its

consistency is undefined.

We use an array of bits, one per voxel, to record which voxels have been carved.
This data structure is called carved in the pseudo-code and is initially set to false for
every voxel. We maintain a data structure called the surface voxel list (SVL) to

initialize SVL
for every voxel V

carved(V) = false
loop {

visibilityChanged = false
compute item buffers by rendering voxel s on SVL
for every voxel V ∈ SVL {

compute vis(V)
if (consist(vis(V)) = false) {

visibilityChanged = true
carved(V) = true
remove V from SVL
for all voxels N that are adjacent to V

if (carved(N) = false and N ∉ SVL)
add N to SVL

}
}
if (visibilityChanged = false) {

save voxel space
quit

}
}

Fig. 2. Pseudo-code for the GVC algorithm. See text for details.

identify the second category of voxels. The SVL is initialized to the set of voxels that
are not surrounded by other voxels. The item buffers are computed by rendering all
the voxels on the SVL into them. We call voxels in the third category interior voxels.
Though interior voxels are uncarved, they do not need to be rendered into the item
buffers because they are not visible from any images. When a voxel is carved,
adjacent interior voxels become surface voxels and are added to the SVL. To avoid
adding a voxel to the SVL more than once, we need a rapid means of determining if
the voxel is already on the SVL; we maintain a hash table for this purpose.

When GVC has finished, the final set of uncarved voxels may be recorded by
saving the function carved() or the SVL. Pseudo-code for GVC appears in figure 2.

3.2 The GVC-LDI Algorithm

Basic GVC computes visibility in a relatively simple manner that also makes efficient
use of memory. However, the visibility information is time-consuming to update.
Hence, GVC updates it infrequently and it is out-of-date much of the time. This does
not lead to incorrect results but it does result in inefficiency because a voxel that
would be evaluated as inconsistent using all the visibility information might be
evaluated as consistent using a subset of the information. Ultimately, all the
information is collected but, in the meantime, voxels can remain uncarved longer than
necessary and can therefore require more than an ideal number of consistency
evaluations. Furthermore, GVC reevaluates the consistency of voxels on the SVL
even when their visibility (and hence their consistency) has not changed since their
last evaluation. By using layered depth images instead of item buffers, GVC-LDI can
efficiently and immediately update the visibility information when a voxel is carved
and also can precisely determine the voxels whose visibility has changed.

Unlike the item buffers used by the basic GVC method, which record at each pixel
P just the closest voxel that projects onto P, the LDIs store at each pixel a list of all
the surface voxels that project onto P. See figure 1b. These lists, which in the pseudo-
code are called LDI(P), are sorted according to the distance of the voxel to the
image’s camera. The head of LDI(P) stores the voxel closest to P, which is the same
voxel an item buffer would store. Since the information stored in an item buffer is
also available in an LDI, vis(V) can be computed in the same way as before. The LDIs
are initialized by rendering the SVL voxels into them.

The uncarved voxels whose visibility changes when another voxel is carved come
from two sources:

• They are interior voxels adjacent to the carved voxel and become surface voxels
when the carved voxel becomes transparent. See figure 3a.

• They are already surface voxels (hence they are in the SVL and LDIs) and are
often distant from the carved voxel. See figure 3b.

= SVL voxel

= voxel with changed visibility

= recently carved voxel

= interior voxel

(b)

carved voxelscarved voxels

(a)

Fig. 3. When a voxel is carved, there are two categories of other voxels whose visibility
changes: (a) interior voxels that are adjacent to the carved voxel and (b) voxels that are already
on the SVL and are often distant from the carved voxel.

Voxels in the first category are trivial to identify since they are next to the carved
voxel. Voxels in the second category are impossible to identify efficiently in the basic
GVC method; hence, that method must repeatedly evaluate the entire SVL for color
consistency. In GVC-LDI, voxels in the second category can be found easily with the
aid of the LDIs; they will be the second voxel on LDI(P) for some pixel P in the
projection of the carved voxel. GVC-LDI keeps a list of the SVL voxels whose
visibility has changed, called the changed visibility SVL (CVSVL in the pseudo-code).
These are the only voxels whose consistency must be checked. Carving is finished
when the CVSVL is empty.

When a voxel is carved, the LDIs (and hence the visibility information) can be
updated immediately and efficiently. The carved voxel can be easily deleted from
LDI(P) for every pixel P in its projection. The same process automatically updates the
visibility information for the second category of uncarved voxels whose visibility has
changed; these voxels move to the head of LDI lists from which the carved voxel has
been removed and they are also added to the CVSVL. Interior voxels adjacent to the
carved voxel are pushed onto the LDI lists for pixels they project onto. As a
byproduct of this process, we learn if the voxel is visible; if it is, we put it on the
CVSVL. Pseudo-code for GVC-LDI appears in figure 4.

4 Results

We present the results of running Space Carving, GVC, and GVC-LDI on two image
sets that we call “toycar” and “bench”. In particular, we present runtime statistics and
provide, for side-by-side comparison, images synthesized with Space Carving and our
algorithms. The experiments were run on a 440 MHz HP J5000 computer.

The toycar and bench image sets represent opposite extremes in terms of how
difficult they are to reconstruct. The toycar scene is ideal for reconstruction. The
seventeen 800×600-pixel images are computer-rendered and perfectly calibrated. The
colors and textures make the various surfaces in the scene easy to distinguish from
each other. The bench images are photographs of a natural, real-world scene. In
contrast to the toycar scene, the bench scene is challenging to reconstruct for a

initialize SVL
render SVL to LDIs
for every voxel V

carved(V) = false
copy SVL to CVSVL
while (CVSVL is not empty) {

delete V from CVSVL
compute vis(V)
if (consist(vis(V)) = false) {

carved(V) = true
remove V from SVL
for every pixel P in projection of V into all images {

if (V is head of LDI(P))
add next voxel on LDI(P) (if any) to CVSVL

delete V from LDI(P)
}
for every voxel N adjacent to V with N ∉ SVL {

N_is_visible = false
for every pixel P in projection of N to all images {

add N to LDI(P)
if (N is head of LDI(P))

N_is_visible = true
}
add N to SVL
if (N_is_visible)

add N to CVSVL
}

}
}
save voxel space

Fig. 4. Pseudo-code for the GVC-LDI algorithm. See text for details.

number of reasons: the images are somewhat noisy, the calibration is not as good, and
the scene has large areas with relatively little texture and color variation.

We reconstructed the toycar scene in a 167×121×101-voxel volume. Four of the
input images are shown in figure 7. New views synthesized from Space Carving and
GVC-LDI reconstructions are shown in figure 8. There are some holes visible along
one edge of the blue-striped cube in the Space Carving reconstruction. The coloring in
the Space Carving image has a noisier appearance than the GVC-LDI image.

We used fifteen 765×509-pixel images of the bench scene and reconstructed a
75×71×33-voxel volume. We calibrated the images with a product called
PhotoModeler Pro [17]. The points used to calibrate the images are well dispersed
throughout the scene and their estimated 3D coordinates project within a maximum of
1.2 pixels of their measured locations in the images. Four of the input images are
shown in figure 9. New views synthesized from Space Carving and GVC
reconstructions are shown in figure 10. The Space Carving image is considerably
noisier and more distorted than the GVC image.

Figures 5 and 6 show the total time Space Carving, GVC, and GVC-LDI ran on the
toycar and bench scenes until carving completely stopped. They also illustrate the
rates at which the algorithms converged to good visual representations of the scene.
We used reprojection error to estimate visual quality. Specifically, we projected
models to the same viewpoint as an extra image of the actual scene, and computed the
errors by comparing corresponding pixels in the projected and actual images.

Due to the widely varied color and texture in the toycar scene, the color
consistency of most voxels can be correctly determined using a small fraction of the
input image pixels that will ultimately be able to view the voxel in the final model.
Thus, many voxels that must be carved can, in fact, be carved the first time their
consistency is checked. Space Carving, with its lean data structures, checks the
consistency of voxels faster (albeit, less completely) than the other algorithms and
hence, as shown in figure 5, was the first to converge to a good representation of the
scene. After producing a good model, Space Carving spent a long time carving a few
additional voxels and was the last to completely stop carving. However, this
additional carving is not productive visually. Unlike the other two algorithms, GVC-

10

20

30

40

50

60

0 20 40 60 80
time (minutes)

re
pr

oj
ec

tio
n

er
ro

r

Space Carving

GVC

GVC-LDI

Fig. 5. Convergence of the algorithms while reconstructing the “toycar” scene.

LDI spends extra time to find all the pixels that can view a voxel when checking a
voxel’s consistency. In the toycar scene, this precision was not helpful and caused
GVC-LDI to converge the slowest to a good visual model. Ultimately, GVC and
GVC-LDI reconstructed models with somewhat lower reprojection error than Space
Carving.

The convergence characteristics of the algorithms were different for the bench
scene, as shown in figure 6. The color and texture of this scene make reconstruction
difficult but are probably typical of the real-world scenes that we are most interested
in reconstructing. In contrast to the toycar scene, many voxels in the bench scene are
very close to the color-consistency threshold. Hence, many voxels that must be carved
cannot be shown to be inconsistent until they become visible from a large number of
pixels. Initially, all three algorithms converge at roughly the same rate. Then Space
Carving stops improving in reprojection error but continues slow carving. GVC and
GVC-LDI produce models of similar quality, both with considerably less error than
Space Carving. After an initial period of relatively rapid carving, GVC then slows to a
carving rate of several hundred voxels per iteration. Because, on each of these
iterations, GVC recalculates all its item buffers and checks the consistency of
thousands of voxels, it takes GVC a long time to converge to a color-consistent
model. For the bench scene, the efficiency of GVC-LDI’s relatively complex data
structures more than compensates for the time needed to maintain them. Because
GVC-LDI finds all the pixels from which a voxel is visible, it can carve many voxels
sooner, when the model is less refined, than the other algorithms. Furthermore, after

30
40
50
60
70
80
90

100

0 10 20 30 40 50 60
time (minutes)

re
pr

oj
ec

tio
n

er
ro

r

Space Carving
GVC

GVC-LDI

Fig. 6. Convergence of the algorithms while reconstructing the “bench” scene.

toycar bench

Space Carving 12.70 M 4.24M

GVC 3.15 M 2.54M

GVC-LDI 2.14 M 526M

Table 1. The number of color consistency evaluations performed by the algorithms while
reconstructing the “toycar” and “bench” scenes.

carving a voxel, GVC-LDI only reevaluates the few other voxels whose visibility has
changed. Consequently, GVC-LDI is faster than GVC by a large margin. On both the
toycar and the bench scene, GVC-LDI used the fewer color consistency checks than
the other algorithms, as shown in table 1.

All three algorithms keep copies of the input images in memory. The images
dominate the memory usage for Space Carving. GVC uses an equal amount of
memory for the images and the item buffers and, consequently, uses about twice as
much memory as Space Carving, as shown in table 2. The LDIs dominate the memory
usage in GVC-LDI and consume an amount of memory roughly proportional to the
number of image pixels times the depth complexity of the scene. The table shows that
GVC-LDI uses considerably more memory than the other two algorithms. Memory
consumed by the carve and SVL data structures is relatively insignificant and,
therefore, the voxel resolution has little bearing on the memory requirements for GVC
and GVC-LDI.

toycar bench
Space Carving 43.2 MB 26.1 MB
GVC 85.7 MB 53.9 MB
GVC-LDI 462.0 MB 385.0 MB

Table 2. The memory used by the algorithms while reconstructing the “toycar” and “bench”
scenes.

Kutulakos and Seitz have shown that for a given image set and monotonic
consistency function, there is a unique maximal color-consistent set of voxels, which
they call V*. Since GVC and GVC-LDI do not stop carving until the remaining
uncarved voxels are all color-consistent and since they never carve consistent voxels,
we expect them to produce identical results, namely V*, when used with a monotonic
consistency function. However, monotonic consistency functions can be hard to
construct. An obvious choice for consist(S) would take the maximum difference
between the colors of any two pixels in S. However, using distance in the RGB cube
as a difference measure, this function is O(n2) on the size of S and has poor immunity
to noise and high-frequency color variation. We actually use standard deviation for
the consistency function and it is not monotonic. Consequently, GVC and GVC-LDI
generally produce models that are different but similar in quality.

5 Future Work

We have devised a reformulation of the GVC algorithm that we hope to implement in
the near future. Our current implementation renders each voxel into each image twice
per iteration in the outer loop, once to update the item buffers and a second time to
gather color statistics for consistency checking. We treat voxels as cubes and render
them by scan-converting their faces, a process that is time-consuming. In our new
implementation, we will eliminate the second rendering. Instead, after updating an
item buffer, we will scan its pixels, using the voxel IDs to accumulate the pixel colors

into the statistics for the correct voxels. Besides reducing the amount of rendering,
this approach has three other benefits. First, we will not need the item buffer again
after processing an image. Thus, the same memory can be used for all the item
buffers, reducing the memory requirement relative to our current implementation.
Second, the rendering that is still required can be easily accelerated with a hardware
graphics processor. Third, the processing that must be performed on one image is
independent of the processing for the rest of the images. Thus, on one iteration, each
image can be rendered on a separate, parallel processor.

We believe LDIs have great potential for use in voxel-based reconstruction
algorithms. A hybrid algorithm could make the memory requirements for LDIs more
practical. In such an approach, an algorithm like GVC would be used to find a rough
model. GVC runs most efficiently during its earliest iterations, when many voxels can
be carved on each iteration. Once a rough model has been obtained, GVC-LDI could
be used to refine local regions of the model. The rough model should be sufficient to
find the subset of images from which the region is visible. The subset is likely to be
considerably smaller than the original set, so the memory requirements for the LDIs
should be much smaller. GVC-LDI would run until the model of the region converges
to color-consistency. If the convergence is slow, GVC-LDI should be much faster
than GVC.

The algorithms described in this paper find a set of voxels whose color
inconsistency falls below a threshold. It would be preferable to have an algorithm that
would attempt to minimize color inconsistency to find the model that is most
consistent with the input images. We have already mentioned that LDIs can
efficiently maintain visibility information when voxels are removed from the model,
i.e. carved, but, in fact, they can also be used to efficiently maintain visibility
information when voxels are moved or added to the model. Thus, LDIs could be a key
element in an algorithm that would add, delete, and move voxels in a model to
minimize its reprojection error.

6 Conclusion

We have described a new algorithm, Generalized Voxel Coloring, for constructing a
model of a scene from images. We use GVC for image-based modeling and
rendering specifically, for synthesizing new views of the scene. Unlike most earlier
solutions to the new-view synthesis problem, GVC accommodates arbitrary numbers
of images taken from arbitrary viewpoints. Like Voxel Coloring and Space Carving,
GVC colors voxels using color consistency, but it generalizes these algorithms by
allowing arbitrary viewpoints and using all possible images for consistency checking.
Furthermore, GVC-LDI uses layered depth images to significantly reduce the number
of color consistency checks needed to build a model. We have presented experimental
data and new images, synthesized using our algorithms and Space Carving, that
demonstrate the benefit of using full visibility when checking color consistency.

Acknowledgements

We would like to thank Steve Seitz for numerous discussions. We are indebted to
Mark Livingston, who performed the difficult task of calibrating the bench image set.
We are grateful for the support of our management, especially Fred Kitson.

References

1. S. Seitz, Charles R. Dyer, “Photorealistic Scene Reconstruction by Voxel Coloring”,
Proceedings of Computer Vision and Pattern Recognition Conference, 1997, pp. 1067-
1073.

2. K. N. Kutulakos and S. M. Seitz, “What Do N Photographs Tell Us about 3D Shape?”
TR680, Computer Science Dept. U. Rochester, January 1998.

3. S. Seitz, Charles R. Dyer, “View Morphing”, Proceedings of SIGGRAPH 1996, pp. 21-30.
4. M. Levoy and P. Hanrahan, “Light Field Rendering”, Proceedings of SIGGRAPH 1996, pp.

31-42.
5. S. Gortler, R. Grzeszczuk, R. Szeliski, M. Cohen, “The Lumigraph”, Proceedings of

SIGGRAPH 1996, pp. 43-54.
6. H. Shum, H. Li-Wei, “Rendering with Concentric Mosaics”, Proceedings of SIGGRAPH

99, pp. 299-306.
7. W. E. L. Grimson, “Computational experiments with a feature based stereo algorithm”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7, no. 1, January
1985, pp. 17-34.

8. M. Okutomi, T. Kanade, “A Multi-baseline Stereo”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, No. 4, April 1993, pp. 353-363.

9. P. J. Narayanan, P. Rander, T. Kanade, “Constucting Virtual Worlds Using Dense Stereo”,
IEEE International Conference on Computer Vision, 1998, pp. 3-10.

10. S. Roy, I. Cox, “A Maximum-Flow Formulation of the N-camera Stereo Correspondence
Problem”, IEEE International Conference on Computer Vision, 1998, pp. 492-499.

11. R. Szeliski, P. Golland, “Stereo Matching with Transparency and Matting”, IEEE
International Conference on Computer Vision, 1998, pp. 517-524.

12. O. Faugeras, R. Keriven, “Complete Dense Stereovision using Level Set Methods”, Fifth
European Conference on Computer Vision, 1998.

13. H. Saito, T. Kanade, “Shape Reconstruction in Projective Grid Space from Large Number
of Images”, Proceedings of Computer Vision and Pattern Recognition Conference, 1999,
volume 2, pp. 49-54.

14. N. Max, “Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buffers”,
Eurographics Rendering Workshop 1996, pp 165-174.

15. J. Shade, S. Gortler, L. He, R. Szeliski, “Layered Depth Images”, Proceedings of
SIGGRAPH 98, pp. 231-242.

16. H. Weghorst, G. Hooper, D. P. Greenberg, “Improving Computational Methods for Ray
Tracing”, ACM Transactions on Graphics, 3(1), January 1984, pp. 52-69.

17. Eos Systems Inc., 205-2034 West 12th Ave., Vancouver B.C. V6J 2G2, Canada.

Fig. 7. Four of the seventeen images of the toycar scene.

Fig. 8. New views projected from reconstructions of the toycar scene. The image on the left
was created with Space Carving, the image on the right with GVC-LDI. There are some holes
visible along one edge of the blue-striped cube in the Space Coloring reconstruction. The
coloring in the Space Carving image has a noisier appearance than the GVC-LDI image.

Fig. 9. Four of the fifteen input images of the bench scene.

Fig. 10. New views projected from reconstructions of the bench scene. The image on the left
was created with Space Carving. The image on the right was created with GVC. The Space
Carving image is considerably noisier and more distorted than the GVC image.

