Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1983))

Abstract

Given a data set, consisting of n-dimensional binary vectors of positive and negative examples, a subset S of the attributes is called a support set if the positive and negative examples can be distinguished by using only the attributes in S. In this paper we consider several selection criteria for evaluating the “separation power” of supports sets, and formulate combinatorial optimization problems for finding the “best and smallest” support sets with respect to such criteria. We provide efficient heuristics, some with a guaranteed performance rate, for the solution of these problems, analyze the distribution of small support sets in random examples, and present the results of some computational experiments with the proposed algorithms.

This work was partially supported by the Grants in Aid by the Ministry of Education, Science, Sports and Culture of Japan (Grants 09044160 and 10205211). The visit of the first author to Kyoto University (January to March, 1999) was also supported by this grant (Grant 09044160). The research of the first and third authors were supported in part by the Office of Naval Research (Grant N00014-92-J-1375). The first author thanks also the National Science Foundation (Grant DMS 98-06389) and DARPA (Contract N66001-97-C-8537) for partial support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Almuallim and T. Dietterich. Learning Boolean concepts in the presence of many irrelevant features. Artificial Intelligence 69 (1994) 279–305.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Agrawal, T. Imielinski and A. Swami. Mining association rules between sets of items in large databases. In: International Conference on Management of Data (SIGMOD 93), (1993) pp. 207–216.

    Google Scholar 

  3. D. Angluin. Queries and concept learning. Machine Learning 2 (1988) 319–342.

    Google Scholar 

  4. A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely or infintely many irrelevant attributes. Journal of Computer and System Sciences 50 (1995) pp. 32–40.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence 67 (1997) 245–285.

    Article  MathSciNet  Google Scholar 

  6. A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth. Occam’s razor. Information Processing Letters 24 (1987) 377–380.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Boros, P.L. Hammer, T. Ibaraki and A. Kogan. Logical analysis of numerical data Mathematical Programming 79 (1997), 163–190.

    MathSciNet  Google Scholar 

  8. E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz and I. Muchnik. An implementation of logical analysis of data. IEEE Trans. on Knowledge and Data Engineering 12 (2000) 292–306.

    Article  Google Scholar 

  9. E. Boros, T. Horiyama, T. Ibaraki, K. Makino and M. Yagiura. Finding Small Sets of Essential Attributes in Binary Data. DIMACS Technical Report DTR 2000-10, Rutgers University, 2000; ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/-TechReports/2000/2000-10.ps.gz

  10. E. Boros, T. Ibaraki and K. Makino. Error-free and best-fit extensions of a partially defined Boolean function. Information and Computation 140 (1998) 254–283.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Boros, T. Ibaraki and K. Makino. Logical analysis of binary data with missing bits. Artificial Intelligence 107 (1999) 219–264.

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Brauer and M Scherf. Feature selection by means of a feature weighting approach. Technical Report FKI-221-97, Institute für Informatik, Technische Universität München, 1997.

    Google Scholar 

  13. N. Bshouty and L. Hellerstein. Attribute-efficient learning in query and mistakebound models. J. of Comput. Syst. Sci. 56 (1998) 310–319.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Caruana and D. Freitag. Greedy attribute selection. In: Machine Learning: Proceedings of the Eleventh International Conference, (Rutgers University, New Brunswick, NJ 1994), pp. 28–36.

    Google Scholar 

  15. Y. Crama, P. L. Hammer and T. Ibaraki. Cause-effect relationships and partially defined Boolean functions. Annals of Operations Research 16 (1988) 299–326.

    Article  MathSciNet  Google Scholar 

  16. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining, (AAAI Press/The MIT Press, 1996.)

    Google Scholar 

  17. M.A. Hall and L.A. Smith. Practical feature subset selection for machine learning. In: Proceedings of the 21st Australasian Computer Science Conference (Springer Verlag, 1998) pp. 181–191.

    Google Scholar 

  18. G. John, R. Kohavi and K. Pfleger. Irrelevant features and the subset selection problem. In: Machine Learning: Proceedings of the Eleventh International Conference, (Rutgers University, New Brunswick, NJ 1994), pp. 121–129.

    Google Scholar 

  19. K. Kira and L. Rendell. The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, Menlo Park, (AAAI Press/The MIT Press, 1992), pp. 129–134.

    Google Scholar 

  20. N. Littlestone. Learning quickly when irreleveant attributes abound: a new linearthreshold algorithm. Machine Learning 2 (1988) 285–318.

    Google Scholar 

  21. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed representations. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, (1996) pp. 189–194.

    Google Scholar 

  22. H. Mannila, H. Toivonen and A.I. Verkamo. Efficient algorithms for discovering association rules. In: AAAI Workshop on Knowledge Discovery in Database (U.M. Fayyad and R. Uthurusamy, eds.) (1994) pp. 181–192.

    Google Scholar 

  23. Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, 1994.

    Google Scholar 

  24. J. R. Quinlan. Induction of decision trees. Machine Learning 1 (1986) 81–106.

    Google Scholar 

  25. L. G. Valiant. A theory of the learnable. Communications of the ACM 27 (1984) 1134–1142.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boros, E., Horiyama, T., Ibaraki, T., Makino, K., Yagiura, M. (2000). Finding Essential Attributes in Binary Data. In: Leung, K.S., Chan, LW., Meng, H. (eds) Intelligent Data Engineering and Automated Learning — IDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents. IDEAL 2000. Lecture Notes in Computer Science, vol 1983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44491-2_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-44491-2_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41450-6

  • Online ISBN: 978-3-540-44491-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics