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Attaque par décimation des systémes de chiffrement par
flot

Résumé : Ce rapport présente une nouvelle attaque des systémes de chiffrement par flot
dénommeée Attaque par décimation. Elle exploite la propriété qui par décimation d’ordre d
de la suite de sortie d’un registre & décalage, permet souvent de considérer un registre plus
court pour décrire la séquence extraite par cette décimation. Le registre simulé est alors
attaqué plus facilement ce qui permet de retrouver initialisation du registre de départ.
Cette attaque, quand elle est possible, est d’une complexité beaucoup moins importante que
toutes les attaques par corrélation (rapides ou non) connues & ce jour. Un nouveau critére
de résistance est ainsi défini. Des résultats numériques et de complexité sont donnés pour
une attaque & chiffré seul.

Mots-clés : chiffrement par flot, registres & décalage, attaque par corrélation, attaque par
corrélation rapide, décimation de séquence
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1 Introduction

Despite growing importance of block ciphers, stream ciphers remain a very important class
of cipher systems mainly used by governmental world.

In a binary additive stream cipher, the ciphertext is obtained by bitwise addition of
the plaintext to a pseudo-random sequence called the running key. This latter is produced
by a pseudo-random generator whose initial state constitutes the secret key. Most real-
life designs center around Linear Feedback Shift-Register (LFSR) combined by a nonlinear
Boolean function. Different variant exist: clock-controlled systems, filter generators, multi-
plexed systems, memory combiners, decimated generators,... This paper will focus on the
most common class of combination generators depicted in Figure 1.

LFSR 1 T
T
LFSR 2 2 ¥

LFSR n

Figure 1: Nonlinear combination generator

The cryptanalyst’s problem often deals with that of recovering the initial states of some
LFSRs, assuming that the structure of the generator is known to him.State of the art in
generic stream ciphers cryptanalysis can be summarized as follows: correlation and fast
correlation attacks. Both exploit an existing correlation (of order k) between the running
key o and some linear combination of the k input variables z;,,z;,,... ,Z;,. A so-called
divide and conquer attack is conducted which consists to try to recover the initial state of
the k target LFSRs independently of the other unknown key bits. Such correlations always
exist but functions offering a good cryptographic resistance generally offer a high correlation
order k thus imposing on the cryptanalyst to consider simultaneously several LESRs [6]. In
this case it is obvious that the k distinct LFSRs can be seen as a unique LFSR of length L;
the length and the feedback polynomial P of this LFSR can be derived from the feedback
polynomials of the constituent polynomials [17]. In the following we will generalize by
speaking of the unique target LFSR of length L. A single LFSR will then be a particular
case for k =1.

e In correlation attacks [18, 19], the 2L — 1 possible initializations of the LFSR are
exhaustively tried and each time its corresponding produced sequence x is compared
to the captured running key . The initialization yielding the closest awaited statistical
bias is supposed to be the correct one. This attack is limited by the length L of the
target LFSR (by now L = 50) since it requires 2* — 1 trials and practical attacks can
deal with only correlation order k¥ = 1 (i.e. considering only one LFSR). Moreover
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4 E. Filiol

the longer the LFSR is and the lower the correlation value, the longer the necessary
running key sequence will be. This attack is nowadays no longer efficient except for
weak schemes.

e Fast correlation attacks were introduced by Meier and Staffelbach [13] and avoid ex-
amining all possible initializations of the LFSR. The output of the target LFSR is
considered to have passed through a noisy channel, most frequently modelled by the
Binary (Memoryless) Symmetric Channel, BSC with some error probability p < %,
where € = % — p is usually very small. In this setting, an LFSR output sequence of
fixed length N can be considered as a (N, L) binary linear code. Each of its codewords
can be uniquely related to a possible initialization. Then the cryptanalyst’s problem
becomes a decoding problem in the presence of a BSC with strong noise. Meier and
Staffelbach attack uses iterative decoding process for low-density parity-check codes
when feedback polynomial is of low-weight. Minor improvements have then been ob-
tained [3, 14, 15]. Johansson and Jonsson recently presented new powerful ideas by
considering convolutional codes [8] and turbo-codes [9]. Canteaut and Trabbia in [2]
show that Gallager iterative decoding [7] with parity-check equations of weight 4 and
5 is usually more efficient than all other previous attacks since it successfully decodes
very high error probabilities with a relatively feasible time and memory complexity.

All these attacks have the length L of the target LFSR as major limitation (particularly
when the correlation order % is high). As soon as L increases too much and € is too small, the
memory and complexity requirements explode, making these attacks unfeasible. This paper
presents how to bypass this limitation. By considering d-fold clocking (or d-th decimation)
of the target LFSR output sequence, we show how to use a simulated shorter LFSR thus
improving the known attacks. This approach is particularly efficient when dealing with long
LFSRs or with combining functions of high correlation order of real-life designs. With a
relatively longer sequence we significantly reduce the complexity and suppress the memory
requirements of the best known attack (Canteaut and Trabbia [2]). Moreover this attack
consider only the LFSR length and not the feedback polynomial. We will only consider
ciphertext only attack to make this attack more realistic.

This paper is organized as follows. Section 2 presents the theoretical tools we use in this
attack. In Section 3, the Decimation Attack (DA) itself is described and simulation results
for different cases are given. A new criterion is then defined allowing to choose LFSRs
resisting this attack. Section 4 compares decimation attack with the best known attack of
[2].

These results can be easily generalized to most other kind of stream ciphers. Numerous
details can be found at[5].

INRIA
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2 Theoretical background

2.1 Linear Feedback Shift Register sequences

A linear feedback shift register of length L is characterized by L binary connection coefficients
(pi)i<i<r. It associates to any L-bit initialization (s;)i1<¢<r a sequence (s¢)¢>o defined by
the L-th order linear recurrence relation

L

SgpL = Zpi3t+L7i; t>0.
i=1

The connection coefficients are usually represented by a univariate polynomial P over Fs,
called the feedback polynomial:

L
P(X)=1+)» pX'.
i=1

Most applications use a primitive feedback polynomial to ensure that the periods of all
sequences produced by the LFSR are maximal.

Let us consider the sequence ¢ produced by LFSR i;, LFSR i5,..., LFSR 4; combined
by a function g. The sequence o obvioulsy corresponds to the output of a unique LFSR
of length L. The length and the feedback polynomial P of this LFSR can be determined
from the feedback polynomials of the ¥ LFSRs. We have L < g(L;,, L;,, ... ,L;, ) where g is
evaluated over the integers. Equality holds when the feedback polynomials of the k¥ LFSRs
are primitive and when their degrees are coprimes [17]. Generally linear approximation of
the original combining function f is considered, that is to say g = u.z is linear. Then any
feedback polynomial of o = g(x;,, Zs,, .- - , %4, ) I8 ILicsupp(u) Fi where supp(u) = {i,u; = 1}.

2.2 Decimation of LFSR sequences

Let us consider a sequence o = 01,09, ..., produced by a LFSR of length L whose feedback
polynomial is irreducible in GF(¢)[X]. Suppose now that we operate a sampling on o at
intervals of d clock cycles (d-fold clocking) thus producing a subsequence p = p1, p2,.... In
other words, it is equivalent to the d-decimation of the original sequence o. Thus we have
pi = 0gj for j =0,1,2,... or in sequence notation p = o[d].

With d-fold clocking, the original LFSR will behave like a different LFSR which is called
the simulated LFSR [16]. The interesting question is to determine its properties, especially
relatively to the original LFSR. They are summarized in the following proposition.

Proposition 1 [16, page 146] Let o be the sequence produced by the original LFSR whose
feedback polynomial P(x) is irreducible in GF(q) of degree L. Let o be a root of P(x) and
let T be the period of P(x). Let p the sequence resulting from the d-th decimation of o, i.e.
p = ol[d]. Then the simulated LFSR, that is the LESR directly producing p has the following
properties:
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6 E. Filiol

1. The feedback polynomial P*(x) of the simulated LFSR is the minimum polynomial of
a® in GF(qh).

2. The period T* of P*(x) is equal to _gcdg:i,T)'

3. The degree L* of P*(x) is equal to the multiplicative order of q in Zy~.

Moreover all d in Cy, where C, = {k,kq,kq?,...,} mod T denotes the cyclotomic coset of k
modulo T', result in the same simulated LFSR, except for different initial contents. Finally,
every sequence producible by the simulated LFSR is equal to o[d] for some choice of the
initial contents of the original LFSR.

In real case applications, P(z) is primitive so T' = 2% — 1. Thus when T is not prime, by a
careful choice of d such that ged(2F —1,d) # 1 one may expect to obtain a simulated LFSR
shorter than the original one.

Example Let us consider the original LFSR with P(z) = X* 4+ X + 1.

e de(Cs;=1{3,6,912}, T* =5 and L* =4 since the multiplicative order of 2 in Zj;
15 4.

e de C; =1{510}, T* =3 and L* = 2 since the multiplicative order of 2 in Z3 is 2
(and P*(z) = X2+ X +1).

The feedback polynomial P*(z) of the simulated LFSR, can be obtained by applying the
Berlekamp-Massey LFSR, synthesis algorithm [11] to the sequence p.

2.3 Boolean functions for stream ciphers

A Boolean function with n variables is a function from the set of n-bit words, F%, into Fa.
The Walsh-Hadamard transform of a Boolean function f refers to the Fourier transform
of the corresponding sign function, z +— (—1)7(®):

Yu € Fg, Xp(u) = ) (-1)I@(=1)**
z€Fy

where u -  denotes the usual scalar product. The Walsh coefficient X 7(u) then estimates
the Hamming distance between f and the affine function u - x + €, € € F3, both seen as
Reed-Muller codewords [12]:

dg(fu-z+¢e)=2""1— _Txf(u) .

It is well-known that a combining function must fulfill some criteria to yield a cryp-
tographically secure combination generator (see e.g. [6]). For correlation attacks and fast
correlation attacks the main criterion is that f should be far from all affine functions regard-
ing Hamming distance. The existence of a good approximation of f by an affine function

INRIA



Decimation Attack of Stream Ciphers 7

makes fast correlation attacks feasible [2, 8, 9]. The Hamming distance between f and the
set of affine functions, called the nonlinearity of f, is given by
1 ~
NL(f) =2""" — = max |x;(u)| .

2 ueFy

Finally, the combination generator is vulnerable to correlation attacks [19] if the output of
the combining function statistically depends on one of its inputs. More generally, Siegen-
thaler [18] introduced the following criterion:

Definition 1 A Boolean function is t-th order correlation-immune if the probability distri-
bution of its output is unaltered when any t input variables are fized.

This property equivalently asserts that the output of f is statistically independent of any
linear combination of ¢ input variables. The correlation-immunity order of a function can
be characterized by its Walsh spectrum:

Proposition 2 [20] A Boolean function f is t-th order correlation-immune (denoted CI(t))
if and only if

Vu e Fy, 1 <wit(u) <t, Xr(u)=0.

If fis CI(t) then f if CI(k) for any k < t as well. Then the correlation-immunity order
of a function f the highest integer ¢ such that f is CI(t). Equivalently f is said (¢ 4+ 1)-th
order correlated.

Note that the correlation-immunity order of a function with n variables can not ex-
ceed (n — 1). This comes from Parseval’s relation:

Y Rrw)*=2".

u€Fy

This equality insures that there always exists a possibly high correlation order allowing
correlation attack. It also points out the existence of a trade-off between the correlation-
immunity order and the non-linearity of a function. The higher the correlation-immunity
order is, the lower the nonlinearity (i.e. the correlation value) may be. The correlation-
immunity order t of a Boolean function f with n variables also provides an upper bound on
its degree [18]: deg(f) < n —t . Moreover, if f is balanced, we have deg(f) <n—t—1.

3 The Decimation Attack

3.1 Description of the Algorithm

To deal with a more realistic attack, we will consider only ciphertext attack. So this will
limit the drawback of ciphertext length increasing. Then the BSC with error probability p
will model at the same time the correlation of the Boolean function P[z; = o] = p, and the
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8 E. Filiol

bit probability of plaintext pg = P[m; = 0]. We take py = 0.65 which corresponds to most
real-life cases. Then we have p = py + p, — 2.poPo -

Let be a target LFSR of length L such that there exists d|2” — 1 satisfying Proposition
1. In all these cases (it has been confirmed by exhaustive computing using GMP library),
the best d yields a simulated LFSR of length at most £ (for extended tables see [5]).

With the decimated ciphertext sequence p = o[d] we try to recover the corresponding
output sequence y of the simulated LFSR which is the decimated sequence z[d] of the
(original) target LFSR output sequence (see Figure 1 for notation). It simply consists of a
Siegenthaler attack [19] on this simulated LFSR. It then needs only 2&" exhaustive searches.
With the correct initialization of this shorter LFSR we easily get and use L bits of sequence
z[d] to retrieve the initialization of the original LFSR (by solving a linear equations system
through optimized Gaussian elimination).

Since each bit of sequence z[d] is a bit of sequence z as well, it can be described by two
different equations. One has L* variables (the bit is seen as a bit of sequence z[d]). The
other has L variables (the bit is seen as a bit of sequence z). Example 3.2 illustrates that
in details.

We compute for each of the 2-" possible initializations the value of estimator

E= Z(wf[d] ®o'ld®1).

For the correct L*-bit initialization, F has Gaussian distribution with mean value N.(1 —p)
and variance 02 = N.p.(1 —p) (H; hypothesis) whilst for all the wrong ones E has Gaussian
distribution with mean value N.} and variance 0 = N.%+ (H,) where N is the minimum
number of required ciphertext bits of o[d].

To discriminate Ho from H; we use a decision threshold 7. If |[E| > 7 then H; is
accepted and the initialization is kept otherwise Hj is chosen and the initialization is rejected.
The minimum number N of required ciphertext bits of o[d] depends on the number of
wrong decisions that we accept. This number (as well as the threshold 7) is determined
by the false alarm probability (pfa = P[E > T|Hp]) and the non detection probability
(pnd = P[E < T|H;1]). If ® denotes the normal distribution function

®(z) = ! /wexp(%)dt

sqri2m [

then we have [4]

T —

vz

pfa=1-®|a= pnd:{)(bzw)

N(1-p)p

=

INRIA
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Finally we obtain

1-2p)

N (21;,/ 1—p —a) 0
1

T = 5(aVN+N) (2)
In terms of ciphertext we then need N.d bits. To obtain a final pfa close to zero (that is
to say to obtain only the correct initialization), we perform the same work on a few shifted
decimated sequences oy [d], 01[d], . .. , ox[d] where o;[d] means that we decimate o from index
position i (0 <7 < d).

By simple sorting and pattern matching techniques on the kept candidates, their es-
timator value E and the corresponding L-bit initialization, we easily detect the correct
initialization. Good experimental values are 2 < k < 8.

3.2 Simulation Results

Now let us present simulation results of our attack.
Example CI(0) function.
Let us consider a LFSR of length L = 40 with feedback polynomial:

Piz) = 1422+ +a'+28° +a8 + 28 + 2t + 22 + 2% + 27 + 20 +
222 4 g2 4 25 4 26 4 27 L 98 L 020 | 035 L 40
Consider a BSC with noise probability of p = 0.49(Py, = 0.65 and Plzy = y;] = 0.534)
modelling a CI(0) Boolean function and the plaintext noise at the same time. Since 20 —1 =
3.52.11.17.31.41.61681, by choosing d = 1,048,577 as decimation factor for the LFSR output
sequence o, we obtain a simulated shorter LESR of length L* = 20 with feedback polynomial:
Pra)=1+z+2” +2° + 25 + 2" + 28 + 2" + 212 + 2% + 215 + '8 + 2°°

With pnd = 0.1 and pfa = 0.1, we then need by Equation 2, N = 13050 bits of decimated
sequence p = o[d] that is to say N.d = 233 bits of ciphertext. Complete computation time
(i.e. recovering the correct inital state, with k = 2) required about 15 minutes on PII 400
Mhz with less than 1 Mo of memory.

Note that the 20,971,5/1st bit (e.g.), when seen as belonging to sequence x is described
by the following (40 variables) equation (where x; 0 < i < 39 denotes ith unknown bit of the
L-bit initialization):

bao,971,541 = X2+ xs+Te+ T7 4+ T1a + Tie + Tiv + T1g + Tao + Tao + 23
+Z25 + Tag + Tag + T29 + T30 + T33 + T3e + T37

whilst, when seen as 21st bit of z[d], we have the following (20 variables) equation (where
yi 0 <@ <19 denotes ith unknown bit of the L*-bit initialization):

20,971,541 = Yo + Y1 + Y2 + Y3 + Y6 + Y7 + ys + Y11 + Y12 + Y13 + Y15 + Y18

RR n° 3990



10 E. Filiol

Example CI(1) function.
Consider now two LFSRs Py of length L1 = 34 and P, of length Ly = 39 combined by a
CI(1) Boolean function.

P(z) = 1+2'+2°+2°+2" +22 +2P +2" + 2" + 2" +2'8 +
.Z'2O+.Z'21 +$22+$24+$24+$25 +$29 +$30—|—.Z’31+.CL'33 +$34
Pz(.’L') — 1+$+$2+$3+$4+$5+$14+$15+3&'16—|—.’L'17+.CL'19+ZL'21+

56'24 +.’L'21 +$24 +$27 +IL‘28 +.CL'29 +IL’31 +IL’32 _,’_3;36 +IL'37 +$39

We take the same BSC model as Example 3.2 but for a CI(1) Boolean function. This
implies we must try all the possible initial states of at least two LFSRs at the same time
thus requiring with previous known attacks to consider a unique target LFSR of length 73.
The best decimation factor in this case is d = 131,073 which divides 23* — 1. So we obtain
these two new simulated LFSRs:

Pf(.flf) — 1+x+x2+x5+m6+x7+m9+x10+x11+:c12+.7:13+:cl5+
217
Piz) = 1+z+z*+2%+2"+2M +2" + 217 + 218 + 220 + 222 +

.’L'24 +$28 +iL'30 +$32 +$34 +.’L‘39

With pnd = 0.1 and pfa = 0.1, we then need by Equation 2, N = 13050 bits of decimated
sequence p = old] that is to say N.d = 230 bits of ciphertext. Complezity is in O(2°%) with
less than 1 Mo of memory. Partial experiment (k = 8) have been conducted on o PII 400
Mhz to verify that final pfa was effectively close to zero.

3.3 Decimation Attack Resistance Criterion

By direct use of Proposition 1, we can define the following criterion for Decimation Attack
resistance.

Proposition 3 Let L € N Any feedback polynomial of degree L will resist the decimation

attack if and only if Vd < 2% — 1 such that d|(2F — 1), the multiplicative order of 2 in Zr+
is equal to L where T™ = %.
We then obviously have

Corollary 1 If T = 2F —1 is prime then any feedback polynomial of length L will resist the
decimation attack.

In fact, finite field theory allows to precise im a simpler way this criterion.

Theorem 1 (Subfield Criterion) [10] Let Fy be a finite field with ¢ = p™ elements. Then
every subfield of F, has order p™, where m is a positive divisor of n. Conversely, if m is a
positive divisor of n, then there is exactly one subfield of |y, with p™ elements.

INRIA



Decimation Attack of Stream Ciphers 11

Then we can easily state the resistance criterion as follows:

Proposition 4 Any feedback polynomial of length L, such that L is prime, will resist the
decimation attack.

Proof.
straightforward by direct application of Theorem 1 and Proposition 3. O

Equivalently, resistance is ensured as soon as the field For contains no subfield. It becomes
then obvious that, when decimation attack is possible, there is always a value of L* at mot
equal to £.

Note that this criterion is very new and must not be mistaken with that of relative
primality of periods when considering the sum of outputs of LFSRs as described by the
following theorem:

Theorem 2 [10, p. 22/] For each i =1,2,... /b, let o; be an ultimately periodic sequence
in By with least period r;. If r1,72,... 7 are pairwise relatively prime, then the least period
of the sum o1 + o2 + -+ - + oy is equal to product ri7rs...7Th.

When designing a stream cipher system, one must carefully check the degree of the
chosen feedback polynomials (in connection with correlation order) to resist the Decimation
Attack. Table 1 gives some values of L satisfying this new resistance criterion ("prime"
relates to Corollary 1 and "order" relates to Proposition 3).

| Comment | L |
Prime 5-7-13-17-19-31-61-89-107 - 127
Order 11-23-29-37-41-43-47-53-59-67-71-173

83 -97-101-109 - 113 - 131 - 139 - 149 - 151 - 157 - 163
167 - 173 - 178 - 179 - 181 - 191 - 193 - 197 - 199
211 - 223 - 227 - 229 - 233 - 239 - 241 - 251

Table 1: Values of L < 256 resisting the Decimation Attack

A complete list of parameters d, T* and L* up to L = 256 has been computed and can
be found in [5]. Appendix A lists interesting values of d giving simulated register of half

: _L
length that is to say L* = 3.

4 Comparison with the Best Known Attacks

Canteaut and Trabbia (CT) in [2] recently obtained the best known attack on stream ciphers.
They considered parity-check equations of weight 6 = 4,5 with Gallager iterative decoding.
However, the main drawback of their approach, despite its relative efficiency, remains the
huge amount of required memory both for preprocessing (generation of the parity-check

RR n° 3990



12 E. Filiol

equations) and decoding steps. This latter, though being the best, still requires higher
complexity than suitable for frequent key recovering.

We now give here comparison of our attack (DA)(when possible, see Section 3.3) with
CT attack. Suppose that by applying condition of Proposition 1 a reduction of AL bits
on exhaustive search is possible. Then our attack has complexity Cps = O(2L~2L) and a
negligible amount of memory. Let us now compute the complexity gain from CT attack. In
[2] the complexity is given by the following formula:

K; L
Cor = 5.(6 —1).=——2— 2% P15t
or ( ) Cs—2(p)
where § is the weight of the parity-check equation (3 < § < 5) and Cs_»(p) is the BSC
capacity (with overall error probability ps_» = (1 — (1 —2p)®2)) i.e. Cs_a(p) =1+
ps_2log(ps_2) + (1 — ps_2)1log(l — ps_s). The value K5 ~ 1 if § > 4 and K3 ~ 2. Finally
as(p) = 517 1082 (6 — 1)l i ]-
The complexity gain of our attack is then

Cer K; L _A
L —5.(6-1).=—2—20PFs=—AL
Cpa ( ) Cs_2(p)

It is easy to see that the gain increases with 6. Now using higher weight precisely constitutes
the central point of CT attack. That particularly reinforces the impact of our technique.
Moreover, the gain increases with the error probability p. This fact ensures greater efficiency
than with CT attack in real-life cases.

Concerning the memory requirement, CT attack needs (§ — 1). C::(p) + 225+l
computer words of memory. This once again increases with § and p.

To illustrate this gain Tables 2 and 3 compare our simulation results (see Section 3.2)
with those of CT attack [1, 2]. Yet requiring a longer sequence, we have a complexity gain

| | Decimation Attack | CT Attack (§ =5) |

Ciphertext bits 233 220
Complexity 220 259
Memory (bytes) < 1024 238

Table 2: Comparaison on Example 3.2

of 2%° with no memory requirement. However CT attack still presents advantages in terms
of ciphertext length only for relatively short LFSRs. This is no longer the case as soon as L
increases as we can see it for Example 3.2 ("ppm" means preprocessing with memory and
"ppwm" means preprocessing without memory).

Note that preprocessing step in CT attack must be done once and for all but for each
different feedback polynomial of length L. On the contrary, Decimation Attack apply to all
polynomials of degree L (for suitable L) and no preprocessing is required.

INRIA
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DA CT (6 =5) CT (6=5)| CT (6=5)
(decoding step) | (ppm step) | (ppwm step)
Ciphertext bits 230 229 - -
Complexity 250 207 256 281
Mem. (bytes) | < 1024 239 257 -

Table 3: Comparaison on Example 3.2

5 Conclusion

A new attack on stream ciphers, called Decimation Attack has been presented which over-
performed all the previous known attacks, provided that a given new resistance criterion is
not satisfied. Particularly, Decimation Attack is not possible when L is prime, where L is
the length of the feedback polynomial. Only very few values of L allow to resist this attack.
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A Values of d giving at least L* = £

We give here few values of d allowing to reduce at least by half the size of the original
LFSR. Exhaustive search has been conducted with GPM library and can be find in [5].
Factorization of 27 — 1 has been done with Magma, 2.6.

[ L[L°] d [ L]|L] d |

4 | 2 5 34 | 17 131073

6 | 3 9 35| 7 270549121

8 | 4 17 36 | 18 786435

9| 3 73 38 | 19 524289

10| 5 33 39 | 13 8191

12| 6 65 40 | 20 1048577

14| 7 129 42 | 21 14680071

15| 5 1057 44 | 22 4194305

16 | 8 257 45 | 15 1073774593

18| 9 511 46 | 23 8388609

20 | 10 1025 48 | 24 16777217

21 | 7 16513 49 | 7 270549121

22 | 11 2049 50 | 25 33554433

24 | 12 12291 51 | 17 17180000257

25| 5 | 1082401 || 52 | 26 67108865

26 | 13 8193 54 | 27 134217729

27 | 9 | 262657 || 55 | 11 | 17600780175361

28 | 14 | 16385 56 | 28 268435457

30 | 15 | 32769 57 | 19 | 274878431233

32 | 16 | 65537 58 | 29 536870913

33 | 11 | 4196353 || 62 | 31 2147483649
63 | 21 | 4398048608257
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